

Sandia
National
Laboratories

Exceptional service in the national interest

AUTOMATED MODEL SELECTION WITH FIRST-ORDER GAUGE-INVARIANT PARAMETERS

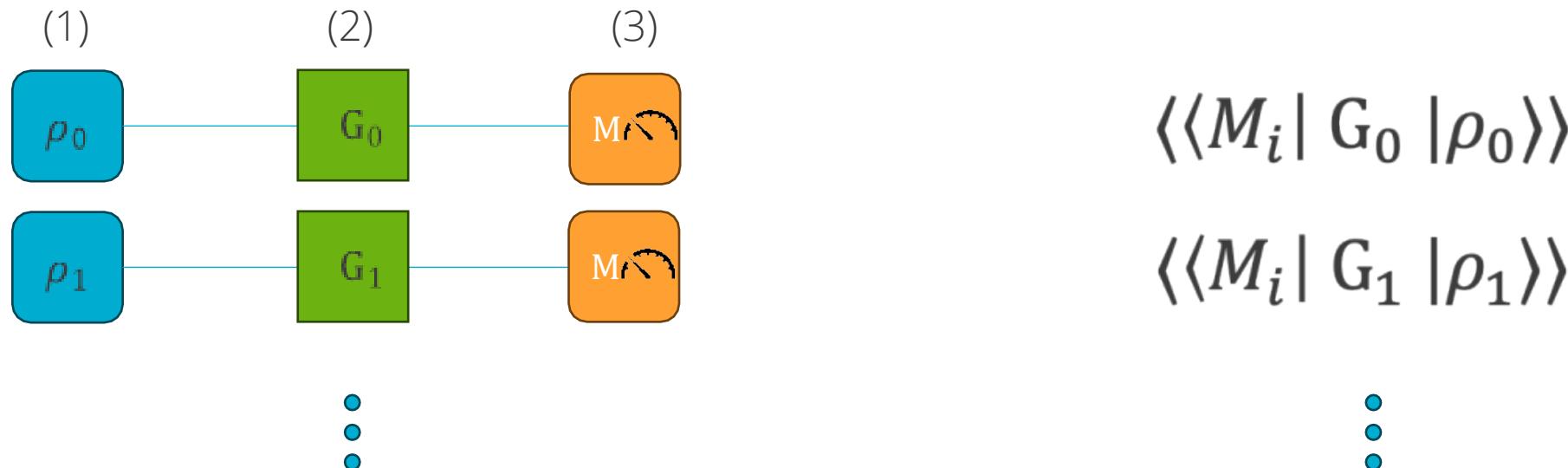
Juan Gonzalez De Mendoza

American Physical Association March Meeting

03/05/2024

TOMOGRAPHY

- Goal: Construct a comprehensive mathematical model that describes our quantum computer
- Typically we do this by independently describing a set of (1) state preparations, (2) gates, and (3) measurements



STATE/MEASUREMENT/GATE TOMOGRAPHY

State Tomography

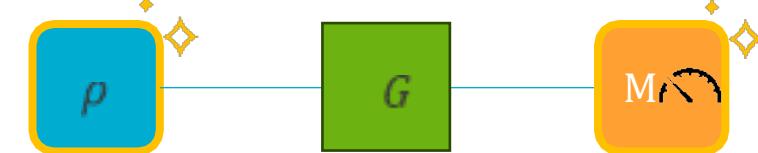
Assumes perfect measurements

Measurement Tomography

Assumes perfect state preparations

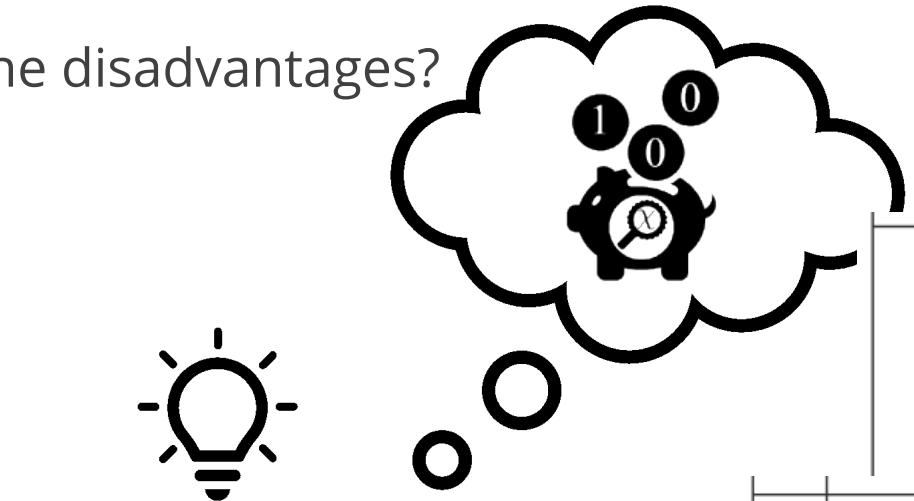
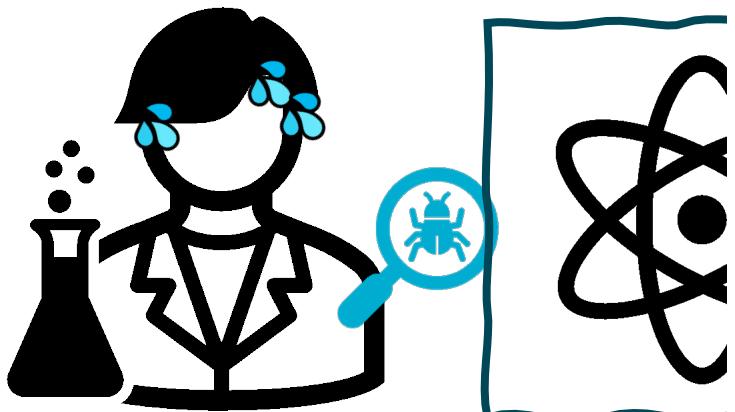
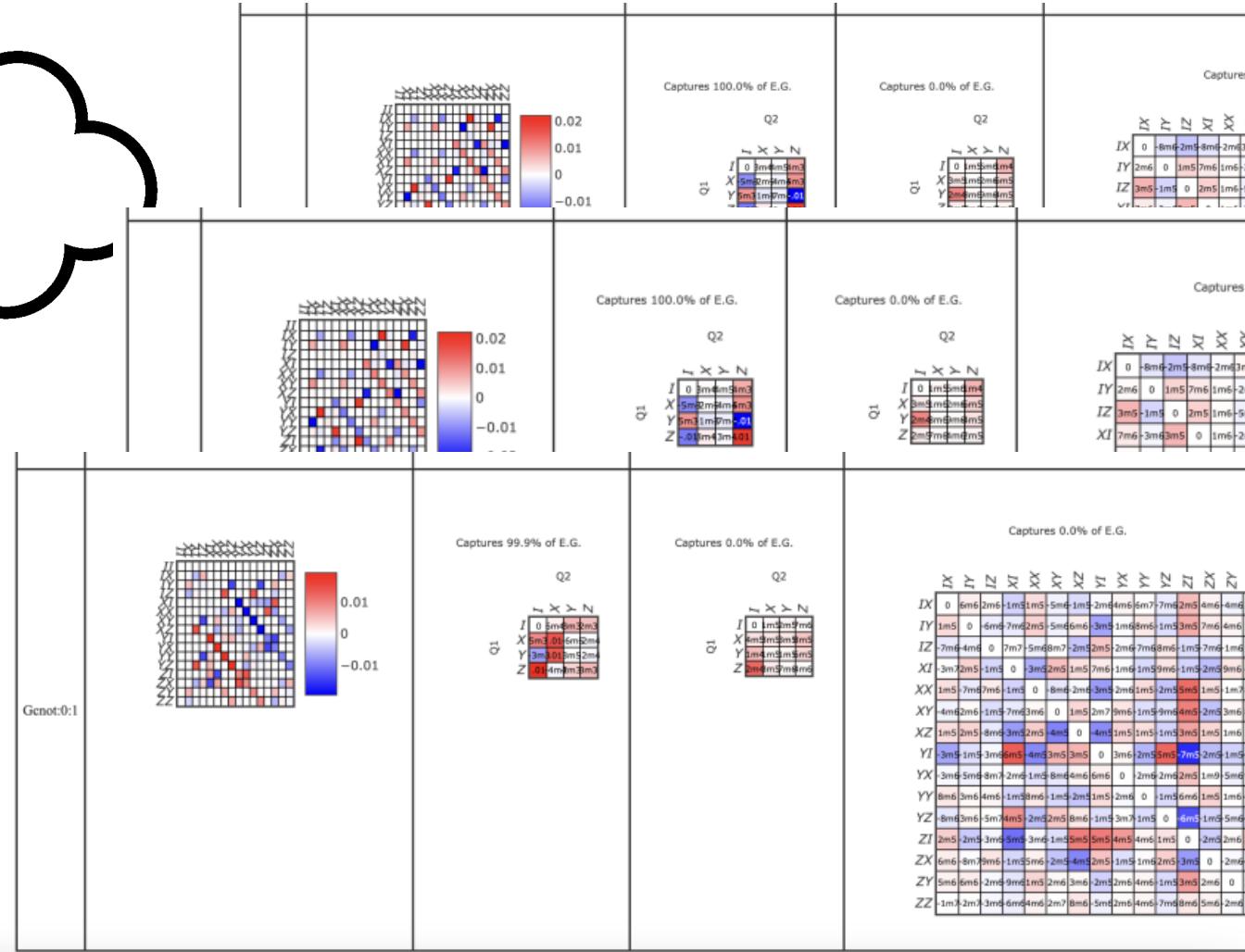
Gate Tomography

Assumes perfect state preparations
and measurements



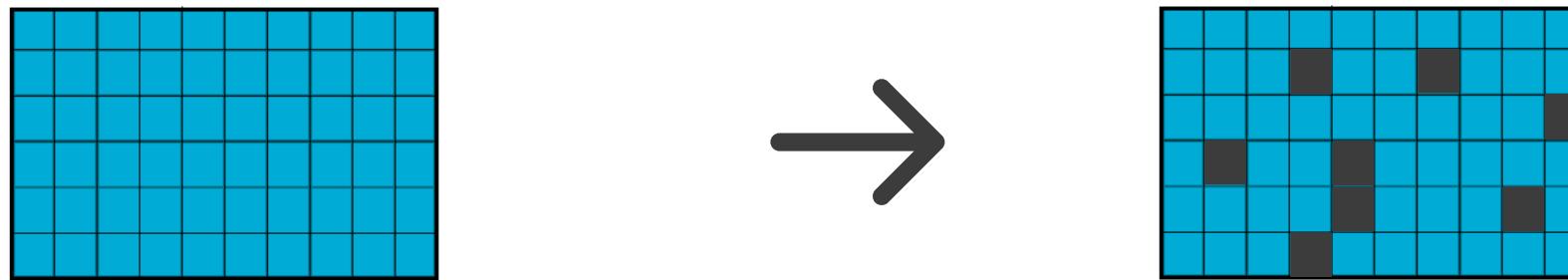
GATE SET TOMOGRAPHY

- GST assumes no perfect operations! It characterizes noise for states, measurements and gates.
- What are the disadvantages?



REDUCED MODELS

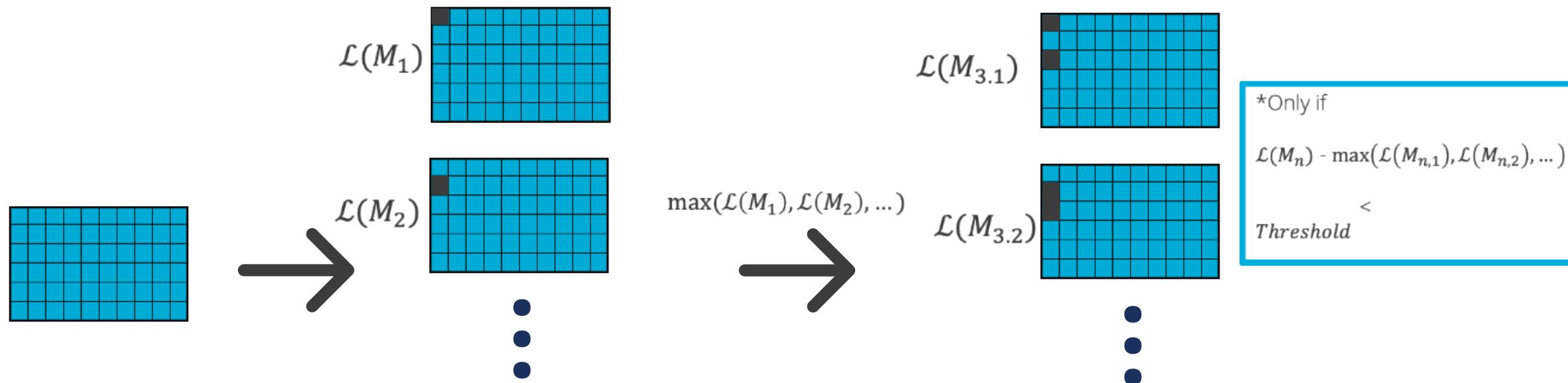
- In practice, we observe that many parameters are not necessary to describe some systems.
- Can we remove parameters without sacrificing how *well* the model fits experimental data?



- Automated Model Selection (AMS) finds the best bang for your buck

AUTOMATED MODEL SELECTION

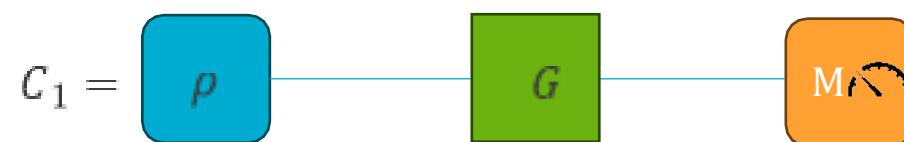
- Goal: Find the best model with the least number of parameters
- In order to quantify how "good" a model is, we use the likelihood function
- We used a greedy algorithm:
 1. Remove every parameter independently
 2. Run GST on every reduced model. Calculate the likelihood for each reduced model
 3. Pick the one with the best likelihood
 4. Repeat*



GAUGE FREEDOM

- Parameters depend on what basis is chosen to represent a gate set
 - Example, process matrix and vector entries:

$$G = \begin{pmatrix} G_{00} & G_{01} & G_{02} & G_{03} \\ G_{10} & G_{11} & G_{12} & G_{13} \\ G_{20} & G_{21} & G_{22} & G_{23} \\ G_{30} & G_{31} & G_{32} & G_{33} \end{pmatrix}, \quad |\rho\rangle\rangle = \begin{pmatrix} \rho_0 \\ \rho_1 \\ \rho_2 \\ \rho_3 \end{pmatrix}, \quad \langle\langle M_0 | = \begin{pmatrix} E_0 \\ E_1 \\ E_2 \\ E_3 \end{pmatrix}^T \rightarrow \vec{p} = (G_{00}, \dots, G_{33}, \rho_0, \dots, \rho_3, E_0, \dots, E_3)$$



$$P(0|C_1, \vec{p}) = \langle\langle M_0 | G | \rho \rangle\rangle = \langle\langle M_0 | T | T^{-1} G T | T^{-1} | \rho \rangle\rangle = \langle\langle M_0' | G' | \rho' \rangle\rangle = P(0|C_1, \vec{p}')$$

$$\vec{p}' = (G'_0, \dots, G'_3, \rho'_0, \dots, \rho'_3, E'_0, \dots, E'_3) := \vec{p}$$

GAUGE FREEDOM + AMS = GAUGE **PROBLEM**

- Consider a quantum device with two gates, G_z and G_x
- Let us describe it with a 2-parameter model

$$\vec{p} = (\theta_z, \theta_x)$$

- Let the physical device have 120° between them
- Doing GST on the reduced models will result in:

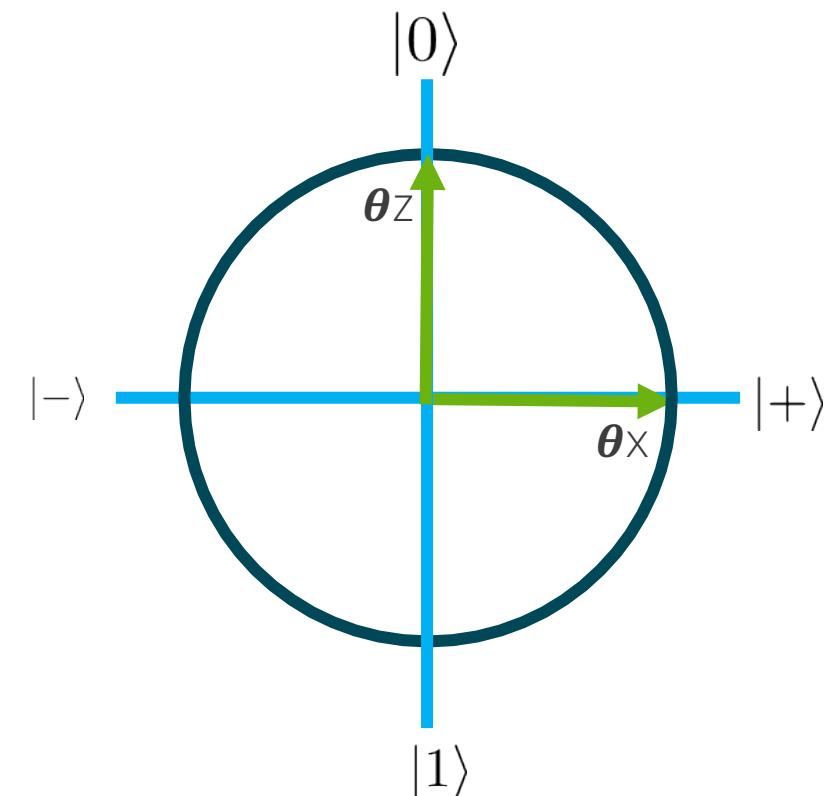
$$\vec{p}_{r1} = (\text{■}, 30^\circ)$$

$$\vec{p}_{r2} = (30^\circ, \text{■})$$

- These two models are gauge equivalent, and thus have the same likelihood value!

$$\vec{p}_{r1} := \vec{p}_{r2} \rightarrow \mathcal{L}(\vec{p}_{r1}) = \mathcal{L}(\vec{p}_{r2})$$

- This makes traversing the tree of reduced models much harder



FIRST-ORDER GAUGE-INVARIANT (FOGI) PARAMETERS

- Parameters that are resilient to the gauge-problem should simplify the search landscape
- FOGI comprises a basis that is invariant under *small* gauge transformations

$$\langle\langle M_0 | T T^{-1} G T T^{-1} | \rho \rangle\rangle, \text{ Where } T = e^K \approx \mathbb{1} + k$$

- For example, expressed in terms of elementary error generators, these are the (first 14) FOGI parameters for a 1 Qubit model with a X and Y gate:

1	$H_x(G_x)$	8	$\rho_z + 0.25 M1 + 0.25 Mz$
2	$S_y(G_x) + S_z(G_x)$	9	$Hy(Gx) - Hz(Gx) - Cxy(Gx) - Cxz(Gx) - 0.5 Mx$
3	$Ayz(Gx)$	10	$Axy(Gx) - Axz(Gx) - 0.25 M1$
4	$Hy(Gy)$	11	$Hx(Gy) + Hz(Gy) - Cxy(Gy) + Cyz(Gy) + 0.5 My$
5	$Sx(Gy) + Sz(Gy)$	12	$Axy(Gy) - Ayz(Gy) - 0.25 M1$
6	$Axz(Gy)$	13	$Hy(Gx) + Hz(Gx) + Hx(Gy) - Hz(Gy)$
7	$Sy(Gy)$	14	$Cxy(Gx) - 0.5 Cxy(Gy) - 0.5 Cxz(Gy) - 0.5 Cyz(Gy)$

• • •

RESULTS: AMS ON SIMULATED DATA (NO SAMPLE ERROR)

- Simulated data for a 1 Qubit model with X & Y gates. Modeled with elementary error generators. We selected the following FOGI quantities*:

- In this example we observed FOGI AMS outperform non-FOGI AMS by a reduction of up to **92%** of total parameters in reduced models

	Data Generating Model	AMS Reduced Model	Data Generating Model	AMS Reduced Model
Param 1	0	removed	Param 11	0
Param 2	0	removed	Param 12	0
Param 3	0	removed	Param 13	0
Param 4	0	removed	Param 14	0
Param 5	0	removed	Param 15	0
Param 6	0	removed	Param 16	0
Param 7	0	removed	Param 17	0
Param 8	0	removed	Param 18	0
Param 9	-1.41e-4	-1.68e-4	Param 19	-1.49e-8
Param 10	0	removed	Param 20	1.00e-2

*Values below 1e-17 were truncated to 0

RESULTS: AMS ON SIMULATED DATA (WITH SAMPLE ERROR)

- Simulated data for a 1 Qubit model with X & Y gates. Modeled with elementary error generators. We selected the following FOGI quantities*:

- In this example we observed FOGI AMS outperform non-FOGI AMS by a reduction of up to **73%** of total parameters in reduced models

	Data Generating Model	AMS Reduced Model	Data Generating Model	AMS Reduced Model
Param 1	0	removed	Param 11	0
Param 2	0	-4.65e-6	Param 12	0
Param 3	0	removed	Param 13	0
Param 4	0	removed	Param 14	0
Param 5	0	removed	Param 15	0
Param 6	0	5.29e-6	Param 16	0
Param 7	0	removed	Param 17	0
Param 8	0	-9.68e-6	Param 18	0
Param 9	-1.41e-4	-2.14e-4	Param 19	-1.49e-8
Param 10	0	-6.39e-4	Param 20	1.00e-2

*Values below 1e-17 were truncated to 0

FUTURE DIRECTIONS

Run AMS on real experimental data

Ongoing collaboration with Sandia neutral atom experimental team

Run AMS “from the top-down”

Save computation instead of adding

Implement in pyGSTi for public use

Stay tuned!

MANY THANKS TO MY COLLABORATORS

Corey Ostrove

Robin Blume-Kohout

Stefan Seritan