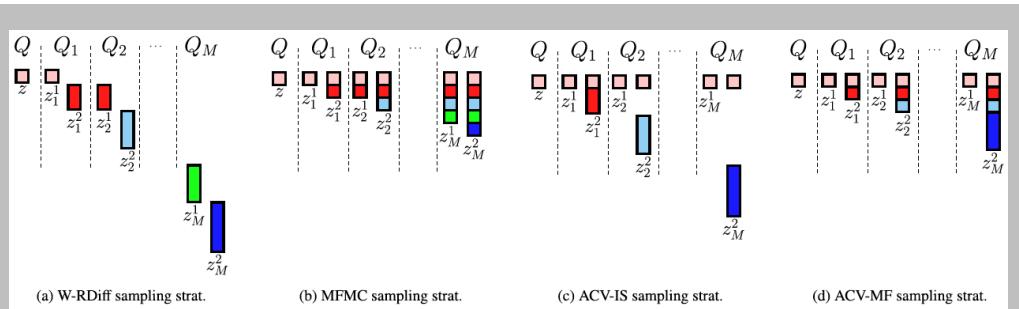
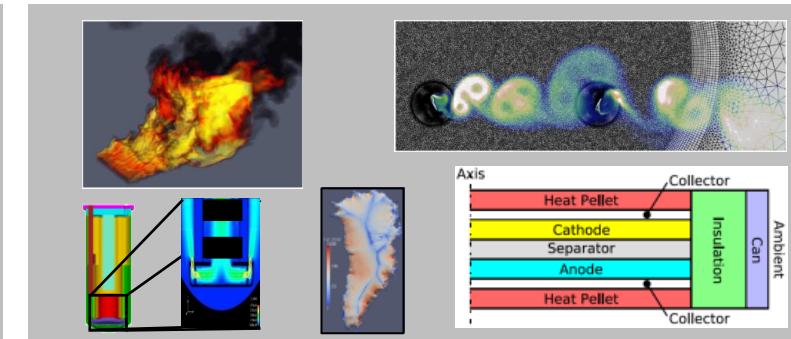


Exceptional service in the national interest



Recent Progress in Model Ensemble Configuration for Multifidelity UQ

Michael S. Eldred¹, John Jakeman¹, Alex Gorodetsky², Gianluca Geraci¹

¹*Optimization & Uncertainty Quantification Dept, Center for Computing Research, Sandia National Laboratories, Albuquerque NM*

²*Aerospace Engineering Department, University of Michigan, Ann Arbor MI*

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Multilevel / Multifidelity Estimators based on MC Sampling

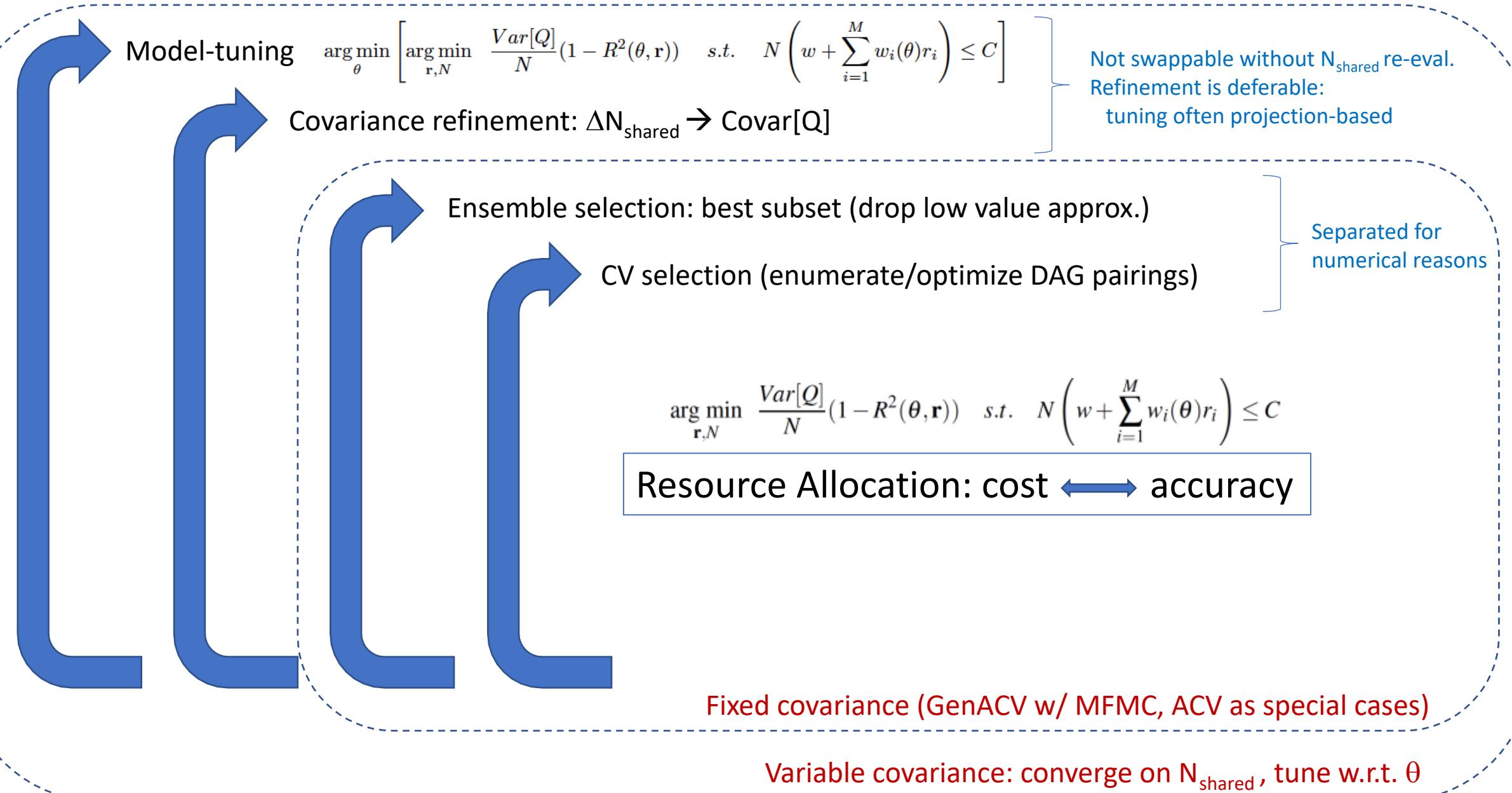
Estimator	Type	Sample allocation	
MLMC	1D: hierarchical, recursive	Analytic	1D/2D hierarchical
MFMC	1D: hierarchical, recursive	Analytic, Numerical	
MLMF MC	2D: HF,LF pair + resolutions	Analytic	
ACV	Non-recursive / peer: all CV pairings target root	Numerical	
Gen. ACV	Search over approx sets & DAGs (MFMC + ACV + intermediate)	Numerical	
ML BLUE	Model groupings	Numerical	non- hierarchical
Group ACV	Relax BLUE independence, solve linearly constrained opt	Numerical	

Motivation: production deployments of ML/MF methods encounter a variety of challenges that can impede performance

- Accurate a priori / offline estimations of Covar[Q] are often impractical, and should rather be integrated and optimized
→ *iterated pilot approaches including relaxation*
- LF models often have parameters that trade accuracy vs. cost (set via SME judgment, but intuition often inaccurate in this context)
→ *hyper-parameter model tuning*
- Numerical solutions often suffer from multiple minima, desirable to drop model allocations while retaining conditioning
→ *robust numerical solves*: coarse global search, multi-start compete local from {global,analytic}, SDP
- For general model ensembles, the best approximation selections and CV pairings/groupings are not known a priori
→ *ensemble selection and configuration*

Each of these concerns can introduce additional iteration or expand the scale of an integrated optimization

Ensemble Configuration in Multifidelity Sampling



Review of previous work:

Iterated Pilots → integrate pilot as *online cost*; optimize total

- Iterate shared $N^{(i)}$ for estimation of $\text{Covar}[Q]$ across models

Initialize: select small shared pilot $N^{(0)}$ to under-shoot optimal profile

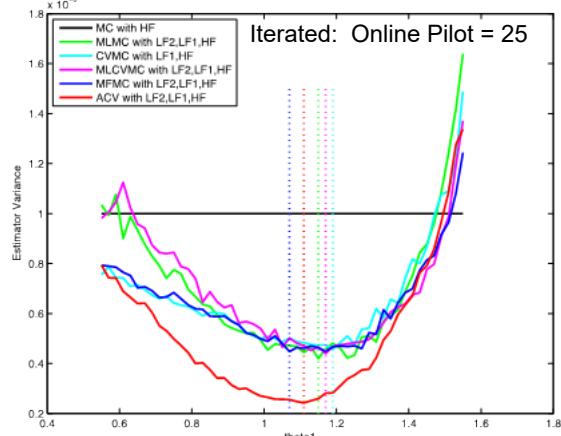
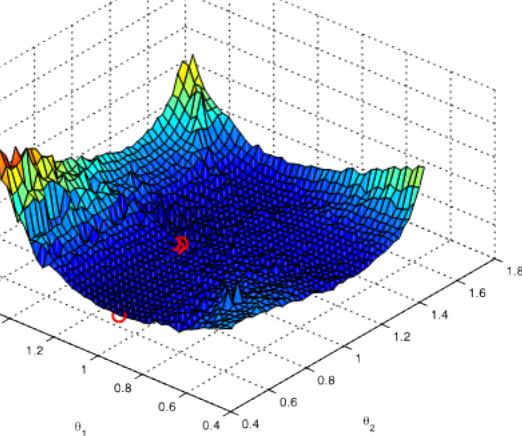
- Sample all models
- $N^{(i)}$ shared samples → $\text{Cov}_{LL}^{(i)}$, $\text{Cov}_{LH}^{(i)}$ → opt. solver → r^* , N^*
- Compute one-sided ΔN for shared samples from $N^{(i)}$ to N^*
 - Optional: apply under-relaxation factor γ
 - If non-zero increment, advance (i) and return to 1)

- Avoid inefficiency (over-est.) or inaccuracy (under-est.).

Hyper-Parameter Model Tuning

Tune approx to identify best accuracy vs. cost trade-off

$$\arg \min_{\theta} \left[\arg \min_{\mathbf{r}, N} \frac{\text{Var}[Q]}{N} (1 - R^2(\theta, \mathbf{r})) \quad \text{s.t.} \quad N \left(w + \sum_{i=1}^M w_i(\theta) r_i \right) \leq C \right]$$



Outer

Inner

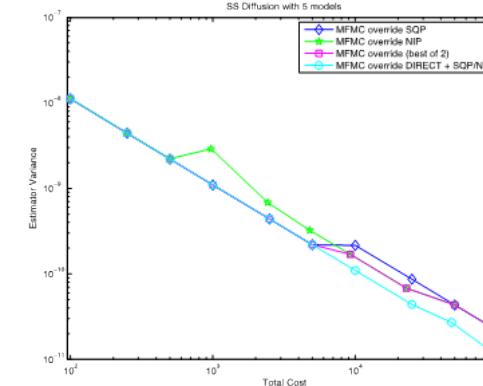
Harden numerical solutions

→ mitigate multi-modality

- Global search to identify promising regions:
 - SBGO, EA, EGO, DIRECT
- Competed NLP for local refinement:
 - SQP (via NPSOL), NIP (via OPT++)

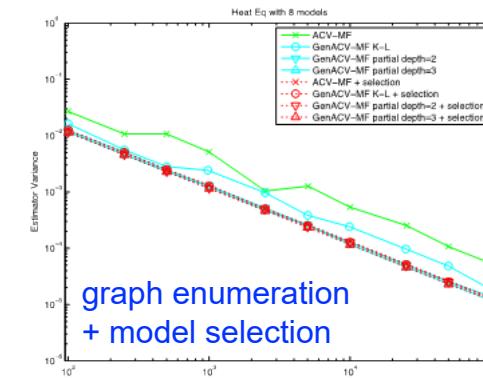
→ mitigate conditioning

- SDP to support indefinite solves from model removal



Ensemble selection / pairings:

Identify most performant approx: membership / relationship

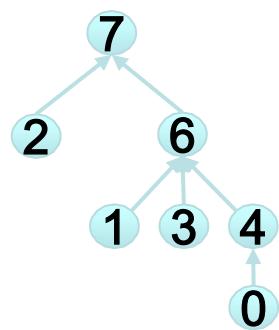


Combinatorial growth in alternatives:

- For 1 set of 8 models, # DAG = 214,720
- With model selection, # DAG = 350,870

Mitigate using DAG depth throttles:

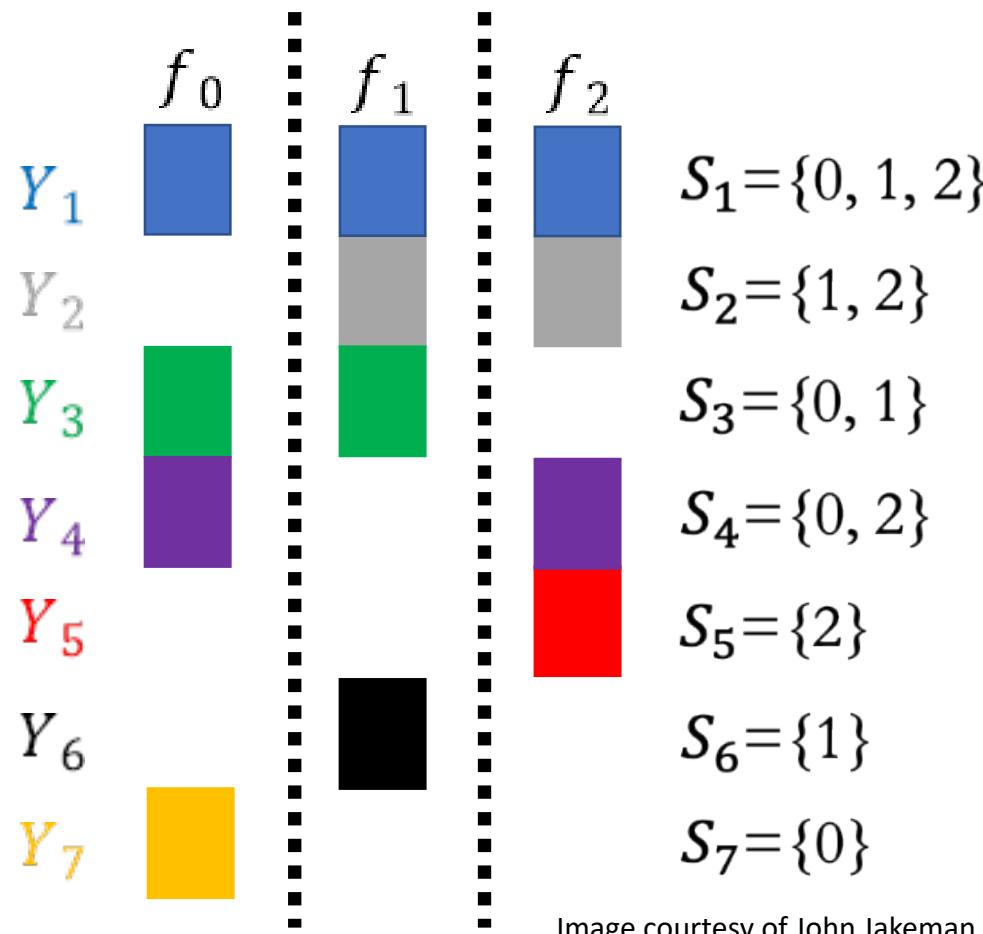
- K-L (ordered depth = 2): 22 or 800 w/ selection
- Depth = 2: 6,323 or 19,693 w/ selection
- Depth = 3: 48,260 or 105,870 w/ selection



Multilevel Best Linear Unbiased Estimator (ML BLUE)

Group-based estimator:

- Enumeration of model combinations via groups
- Allocate shared group samples (no profile in group)
- Group sample sets are independent



The ML BLUE estimator is

$$\Psi q^B = y$$

$$\Psi = \sum_{k=1}^K m_k R_k^\top C_k^{-1} R_k$$

$$y = \sum_{k=1}^K R_k^\top C_k^{-1} \sum_{i=1}^{m_k} Y_k^{(i)}$$

- For linear combination of the model means variance of ML BLUE is $\mathbb{V}[q_\beta^B] = \beta^\top \Psi^{-1} \beta$.
- Numerical soln for m minimizes this variance s.t. budget, where $\beta = [1, 0, 0, \dots]^\top$ targets the HF mean.

$$q_\beta^B = \beta^\top q^B$$

Features of Dakota implementation

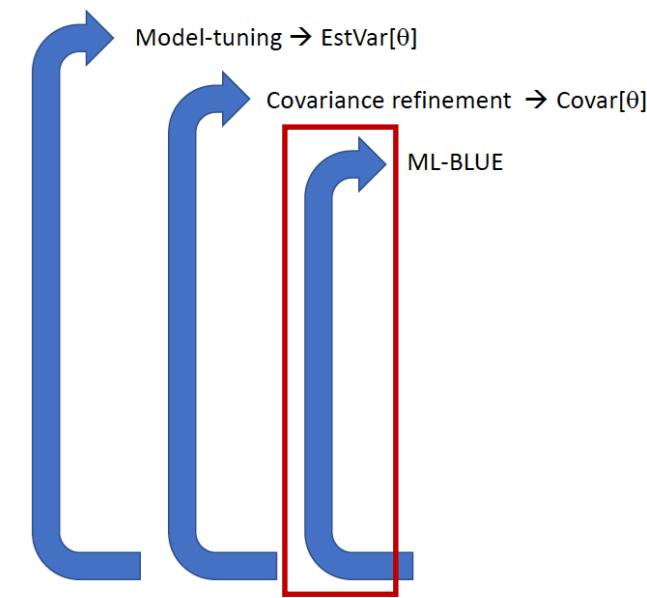
- Solution modes: {online,offline} x {perf projection,final stats}
- Shared vs. independent group pilot sampling
- Under-relaxation factors: fixed, recursive, sequence
- Group throttles: size (“SAOB,k”), MFMC (“FC,k”), common (MF, ML, pair CV)
- Online cost recovery, hyper-parameter control

Current limitations of Dakota implementation

- Conditioning mitigations limited to equilibration + iterative refinement
- Solvers limited to existing global + competet local (DIRECT + SQP/NIP)

Emerging extension: Group ACV <https://arxiv.org/abs/2402.14736>

Multilevel Best Linear Unbiased Estimator (ML BLUE)



Exploration of ensemble configuration with ML BLUE:

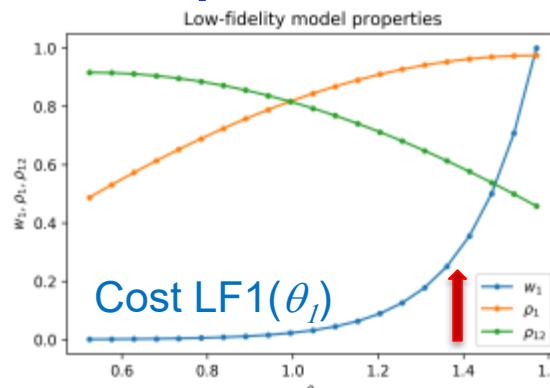
1. If matrix conditioning can be mitigated, ensemble config is embedded
2. Iterated covariance approaches take on new requirements → under-relaxation
 - Shared vs. independent pilot (if something interesting here)
 - Under-relaxation
3. Performance under model tuning → continuation of ACV/GenACV robustness trends?

ML BLUE performance on 3 standard test problems is observed to be linked to model and sample counts

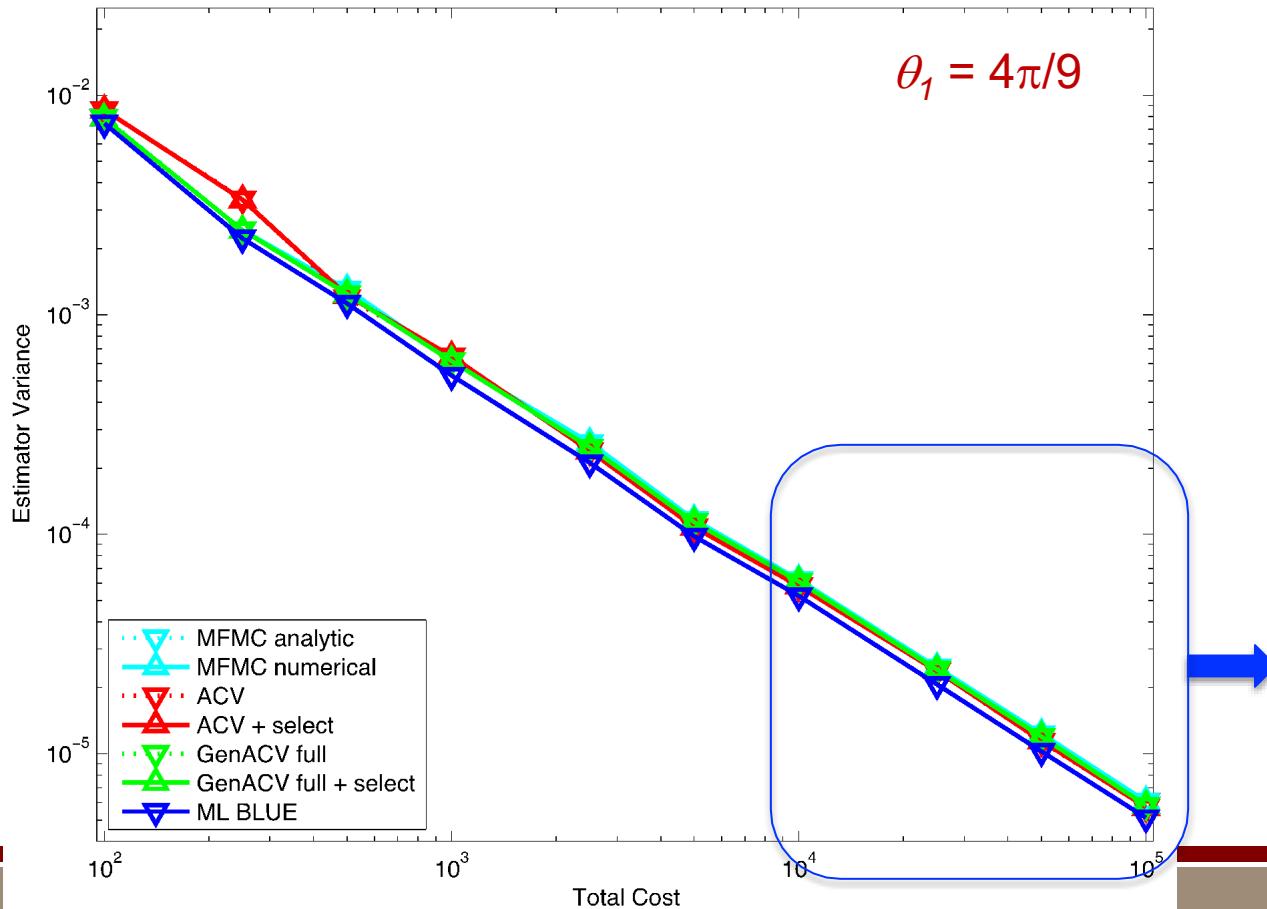
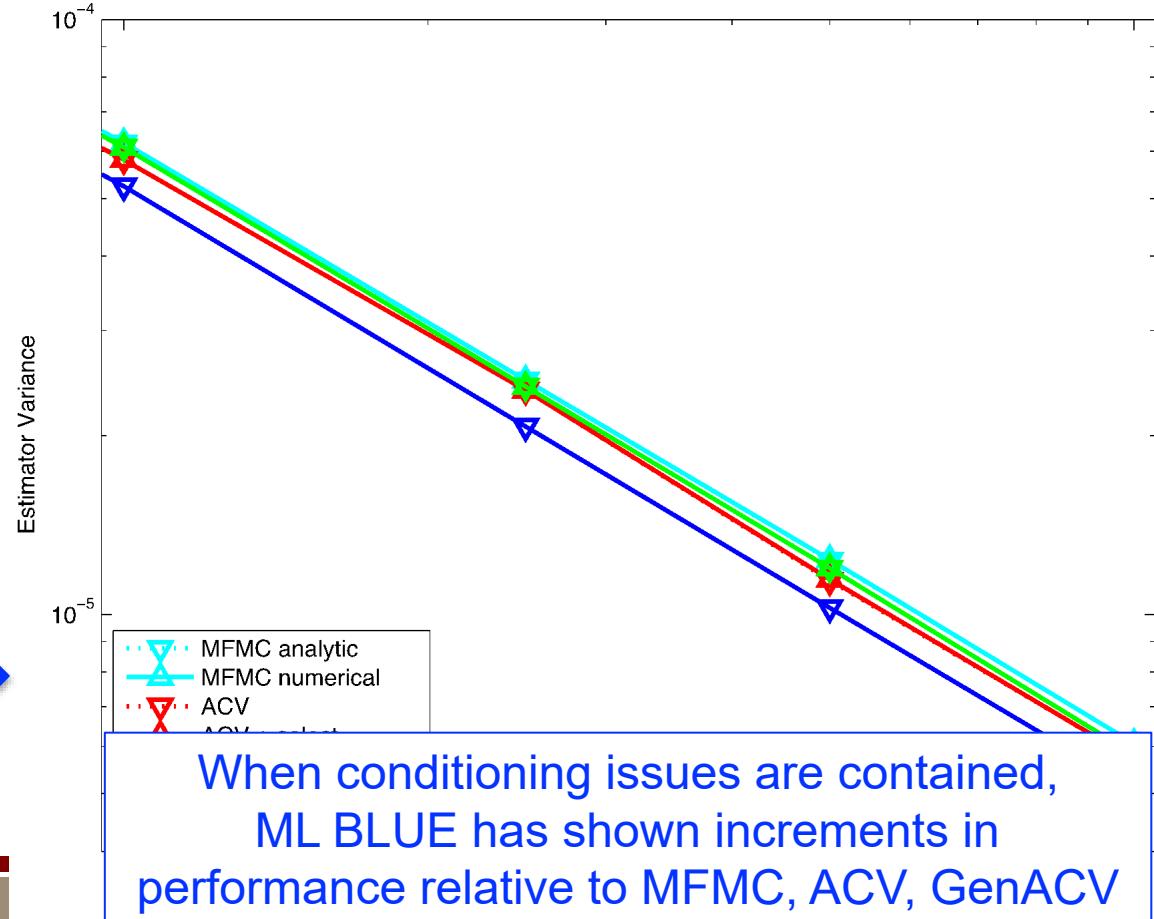
- *Tunable problem w/ 3 models with hyper-parameters*: excellent performance
- *Steady state diffusion w/ 5 resolutions*: conditioning is degrading for more aggressive sample distributions within large total budgets → group throttling required
- *Transient diffusion (heat eq) with 8 total models* (2 MF x 4 RL): solutions become unreliable without aggressive model pruning / group throttling

Tunable Model test problem (JCP 2020)

$$\begin{aligned}
 Q(\theta) &= \sqrt{11} [\cos(\theta) x^5 + \sin(\theta) y^5] \\
 Q_1(\theta_1) &= \sqrt{7} [\cos(\theta_1) x^3 + \sin(\theta_1) y^3] \\
 Q_2(\theta_2) &= \sqrt{3} [\cos(\theta_2) x + \sin(\theta_2) y]
 \end{aligned}$$

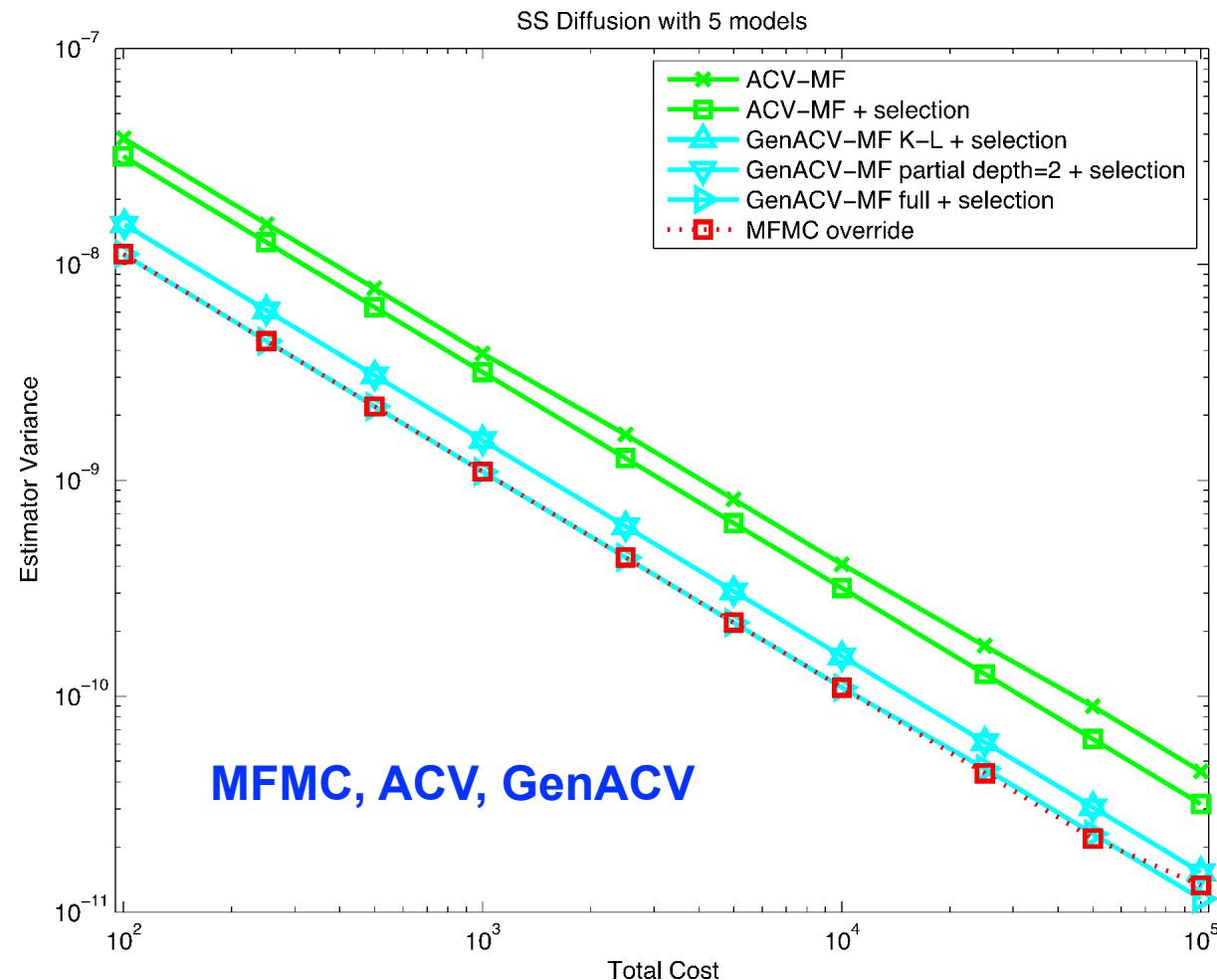


Later we will tune hyper-params θ_1 and θ_2 for fixed HF $\theta = \pi/2$. For this comparison, we fix $\theta_2 = \pi/6$ and $\theta_1 = 4\pi/9$.



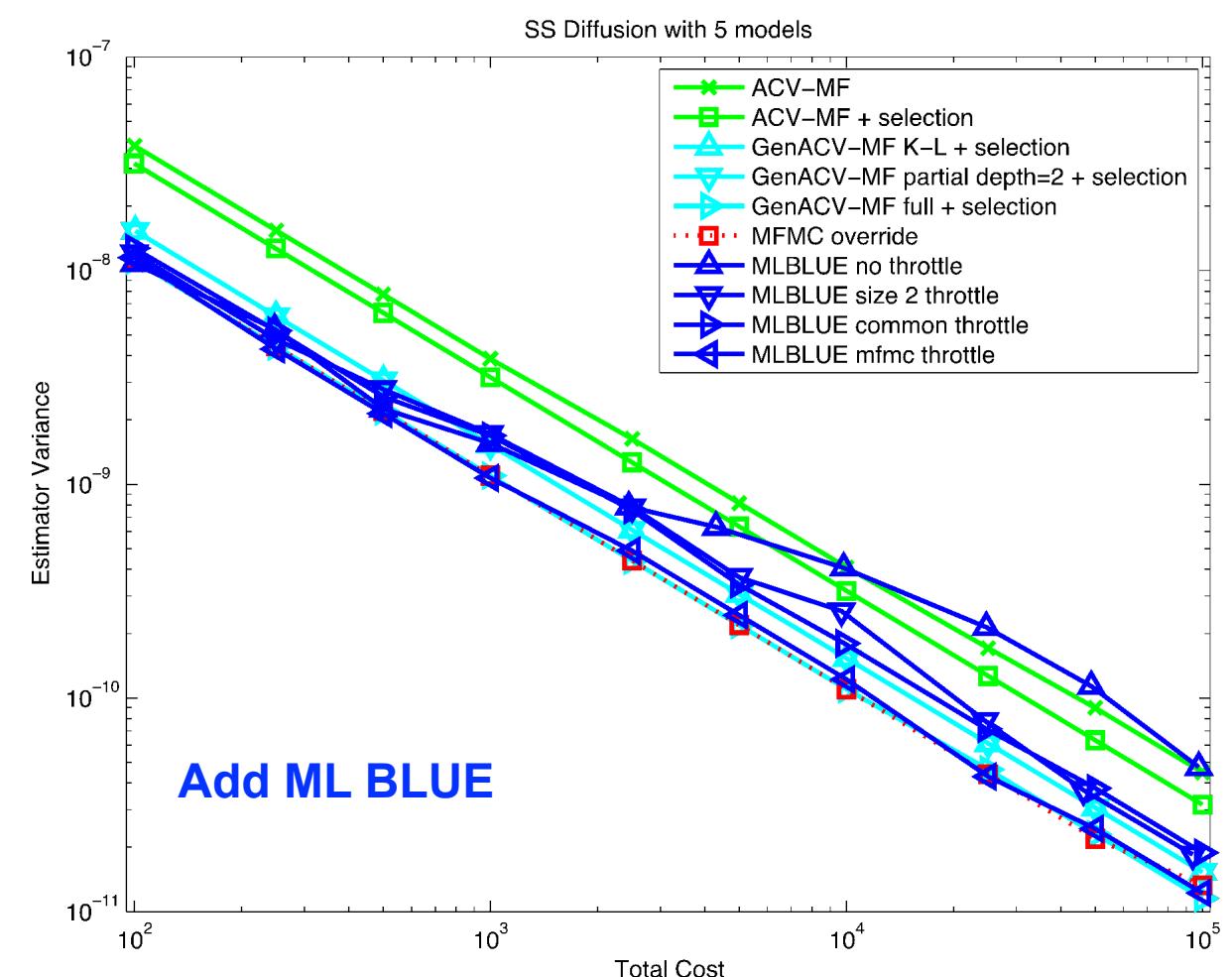
Steady state diffusion test problem

Steady state 1D diffusion: 5 models in 1D hierarchy
resolutions = {4,8,16,32,64}, relative cost = {1,4,16,64,256}



ACV peer DAG is poor → GenACV recovers MFMC at full depth

$$\begin{aligned}
 -\frac{d}{dx} \left[a(x, \xi) \frac{du}{dx}(x, \xi) \right] &= 10, \quad (x, \xi) \in (0, 1) \times I_\xi \\
 u(0, \xi) &= 0, \quad u(1, \xi) = 0.
 \end{aligned}$$

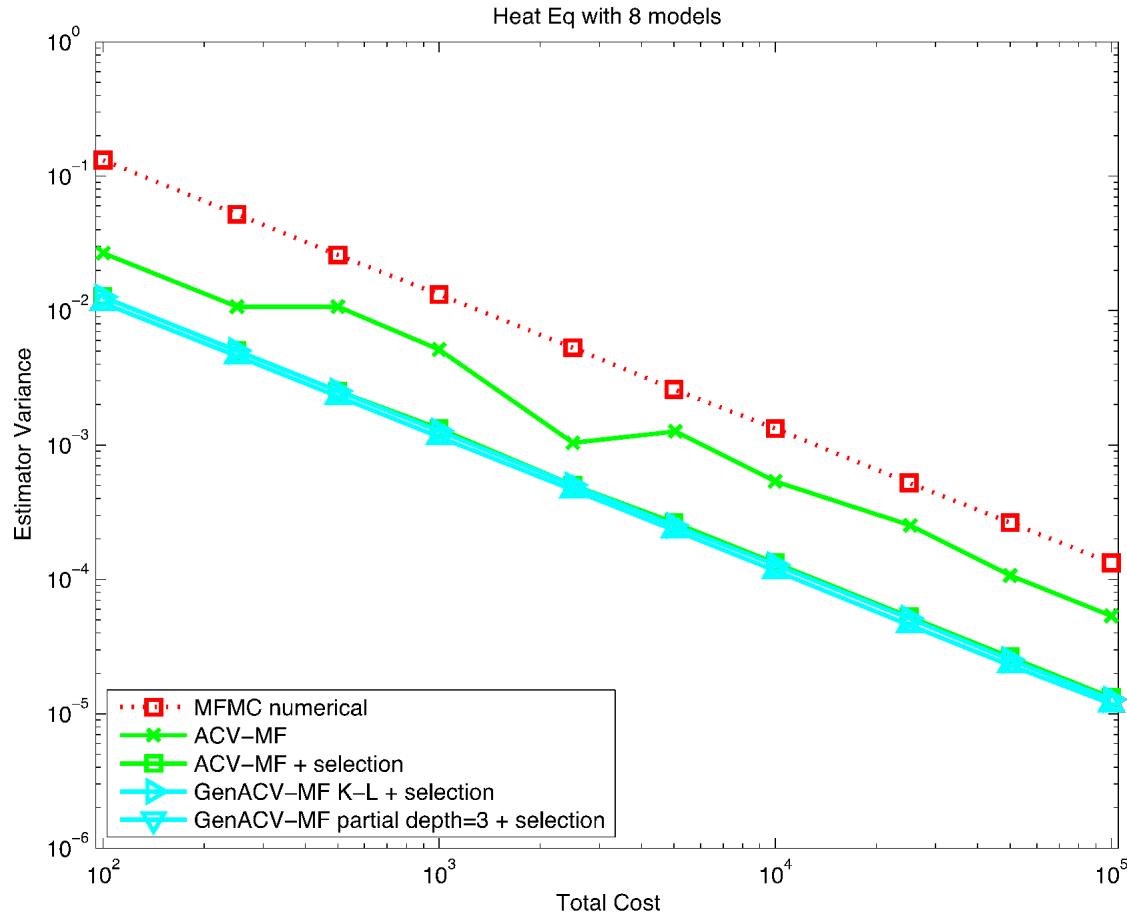


Throttles necessary to mitigate conditioning at higher sample counts

Transient diffusion test problem

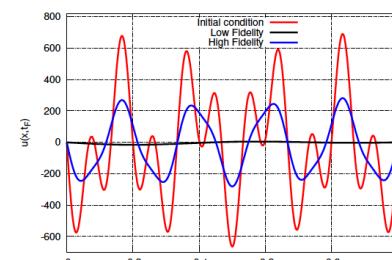
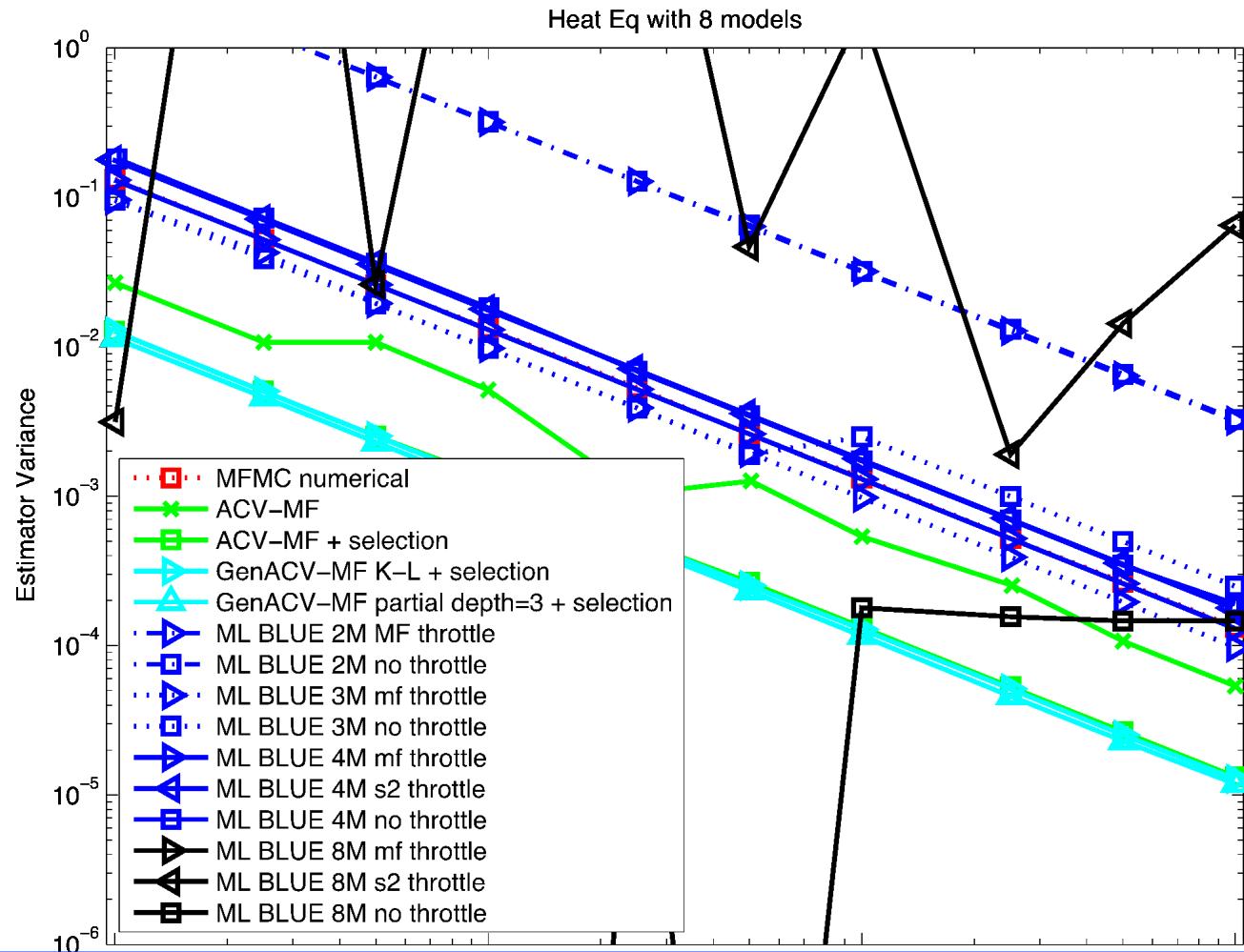
1D transient diffusion (“heat equation”)

- 8 models in 2D hierarchy: multifidelity + multilevel
- Fourier solution modes = 3 LF, 21 HF
- Spatial coordinates = {5 15 30 60} LF, {30 60 100 200} HF



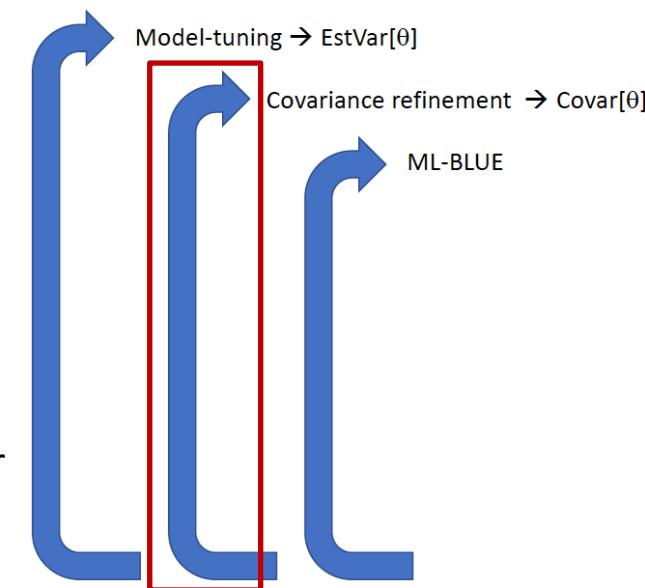
More complex hierarchy benefits significantly from DAG search

$$\begin{cases} \frac{\partial u(x, \xi, t)}{\partial t} - \alpha(\xi) \frac{\partial^2 u(x, \xi, t)}{\partial x^2} = 0, & \alpha > 0, x \in [0, L] = \Omega \subset \mathbb{R} \\ u(x, \xi, 0) = u_0(x, \xi), & t \in [0, t_F] \quad \text{and} \quad \xi \in \Xi \subset \mathbb{R}^d \\ u(x, \xi, t)|_{\partial\Omega} = 0 \\ u_0(x, \xi) = \mathcal{G}(\xi) \mathcal{F}_1(x) + \mathcal{I}(\xi) \mathcal{F}_2(x) \end{cases}$$



Work in progress (truncating eigenvalues from Ψ , SDP formulations)
Expected to unify inner configurations

Multilevel Best Linear Unbiased Estimator (ML BLUE)



Exploration of ensemble configuration with ML BLUE:

1. If matrix conditioning can be mitigated, ensemble config is embedded
2. Iterated covariance approaches take on new requirements
 - Under-relaxation becomes more important due to ordering of budget allocation
 - Shared vs. independent pilot: both can be iterated, w/ greater budget freedom in the former
3. Performance under model tuning → continuation of ACV/GenACV robustness trends?

Iterated ML BLUE

Initialize: select a small initial pilot sample expected to under-shoot the optimal profile
 define group a as the group containing *all* models

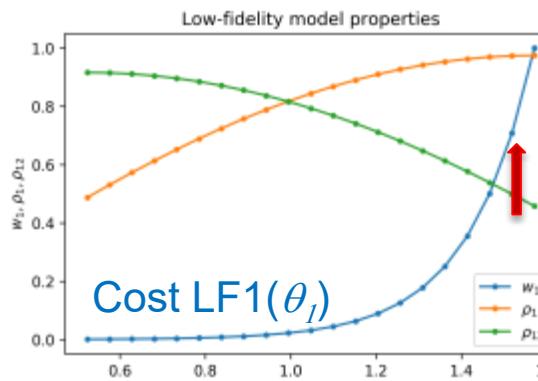
- 1) Sample all models for (i) group a only (reuse covariances), (ii) all $k = 1, \dots, K$ groups independently
- 2) Shared covariance iteration (option (i) only)
 - m_a samples → $C_k^{(\text{shared})} \rightarrow \Psi, y \rightarrow \text{opt. solver } \min_N \beta^T \Psi^{-1} \beta \rightarrow \mathbf{m}$
 - Compute one-sided Δm_a and under-relax step (**full budget will not be expended, even unrelaxed**)
 - If $\Delta m_a = 0$, stop shared iteration; else perform Δm_a and return to 2A
- 3) Compute $\Delta \mathbf{m}$ for every group (only Δm_a is zero for (i)), under-relax step, and perform sample increments
- 4) Independent iteration (both options (i) and (ii))
 - Group samples → $C_k^{(\text{independent})} \rightarrow \Psi, y \rightarrow \text{opt. solver} \rightarrow \mathbf{m}$
 - Compute one-sided $\Delta \mathbf{m}$ and under-relax steps (**full budget expended on 1st iter. unless step is relaxed**)
 - If $\Delta \mathbf{m} = 0$, stop independent iteration; else perform $\Delta \mathbf{m}$ and return to 3A

Finalize: solve for μ for statistics of interest (currently moments 1 through 4 for each QoI)

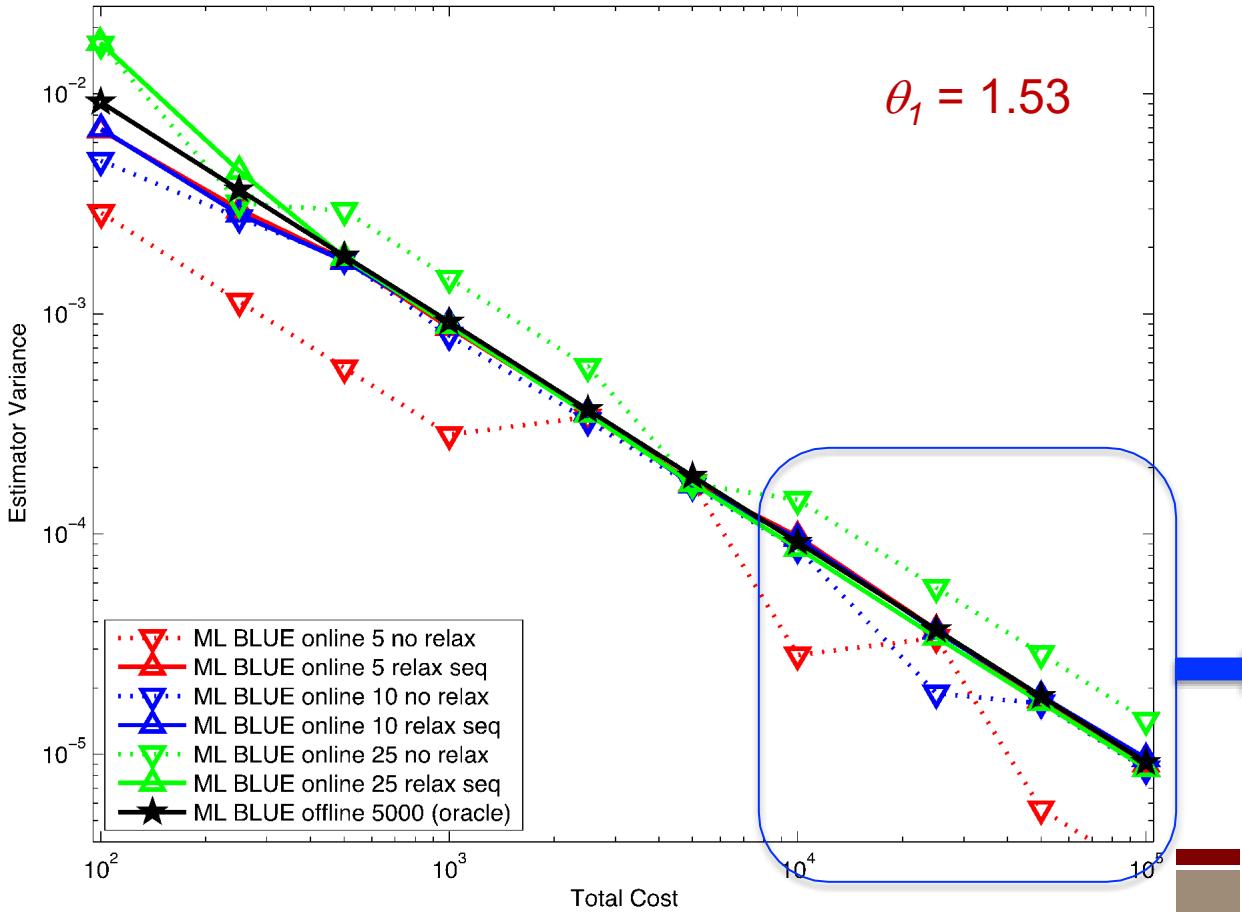
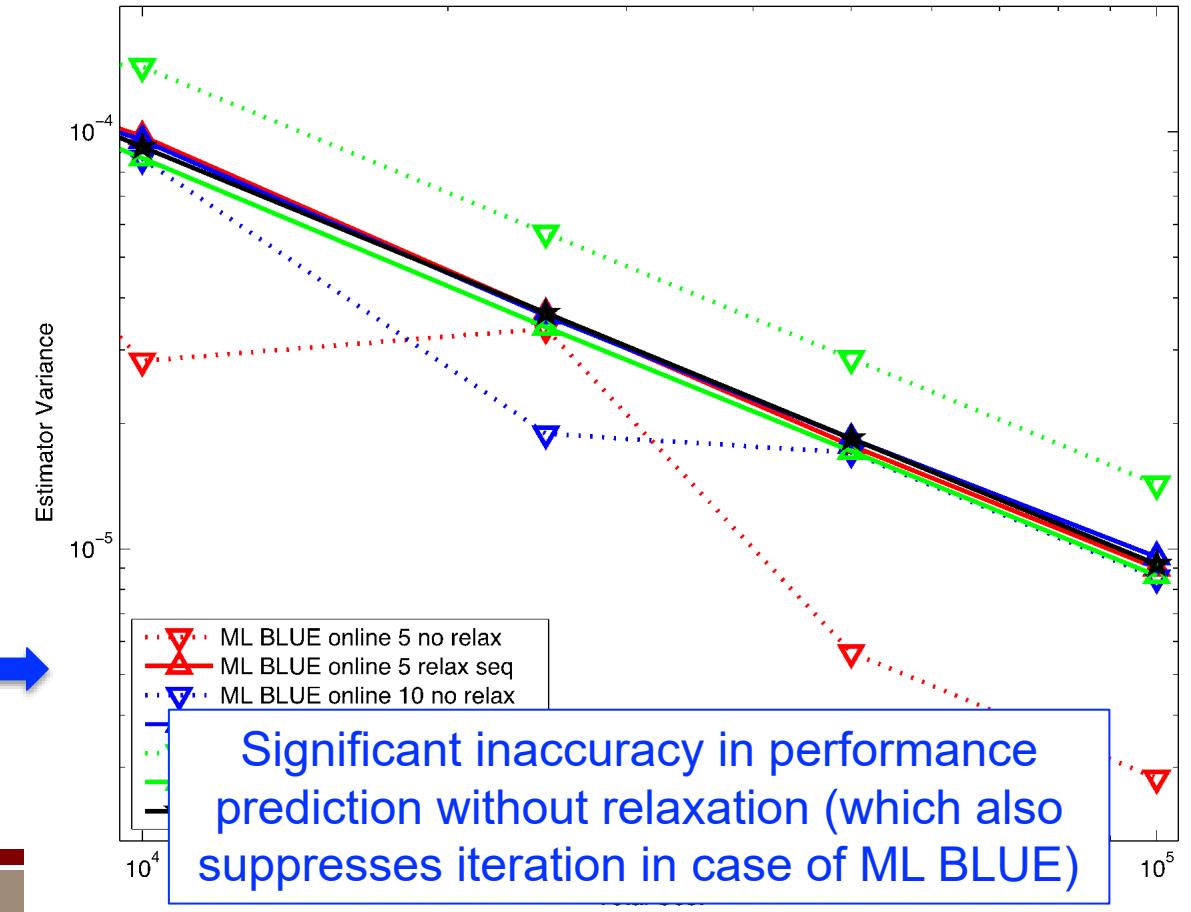
Online pilot integration – under-relaxation for small pilots

“Tunable Model” Definitions (JCP 2020)

$$\begin{aligned}
 Q(\theta) &= \sqrt{11} [\cos(\theta) x^5 + \sin(\theta) y^5] \\
 Q_1(\theta_1) &= \sqrt{7} [\cos(\theta_1) x^3 + \sin(\theta_1) y^3] \\
 Q_2(\theta_2) &= \sqrt{3} [\cos(\theta_2) x + \sin(\theta_2) y]
 \end{aligned}$$



Later we will tune hyper-params θ_1 and θ_2 for fixed HF $\theta = \pi/2$.
 For this study, we fix $\theta_2 = \pi/6$ and $\theta_1 = 1.53$ (MF similar to HF)
 Under-relax sequence = {.5, .8, 1.}



Online pilot integration – effect of pilot over-estimation

“Tunable Model” Definitions (JCP 2020)

$$Q(\theta) = \sqrt{11} [\cos(\theta) x^5 + \sin(\theta) y^5]$$

$$Q_1(\theta_1) = \sqrt{7} [\cos(\theta_1) x^3 + \sin(\theta_1) y^3]$$

$$Q_2(\theta_2) = \sqrt{3} [\cos(\theta_2) x + \sin(\theta_2) y]$$

10513 models 0

0 models 1

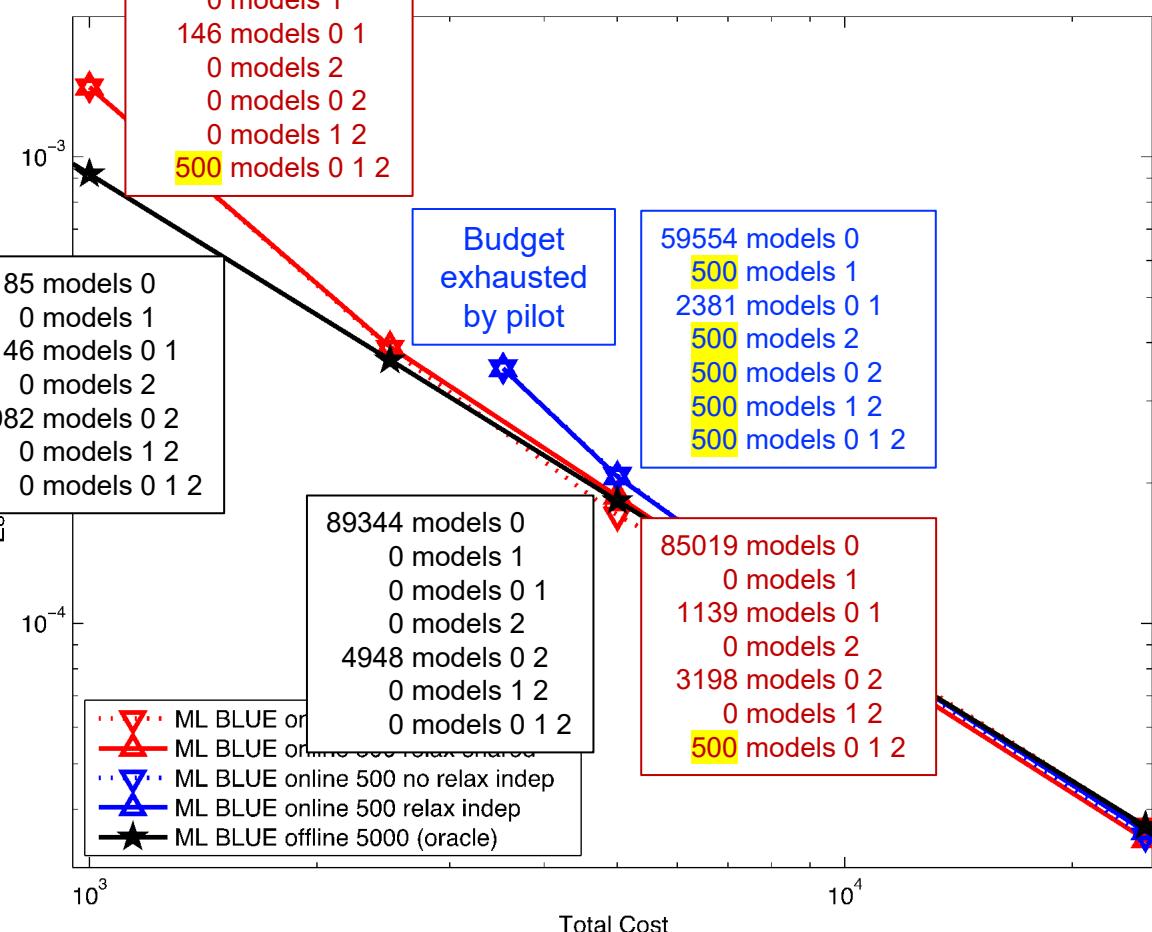
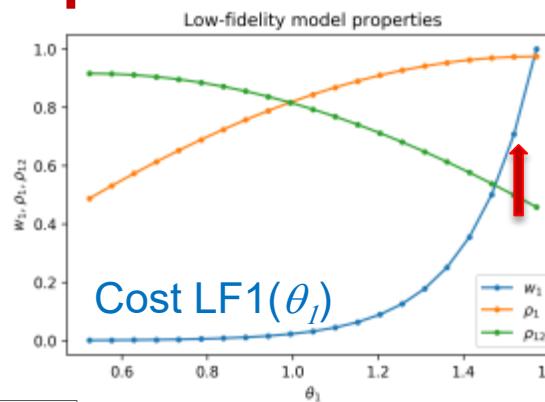
146 models 0 1

0 models 2

0 models 0 2

0 models 1 2

500 models 0 1 2



Later we will tune hyper-params θ_1 and θ_2 for fixed HF $\theta = \pi/2$.
For this study, we fix $\theta_2 = \pi/6$ and study $\theta_1 = 4\pi/9$ and $\theta_1 = 1.53$.

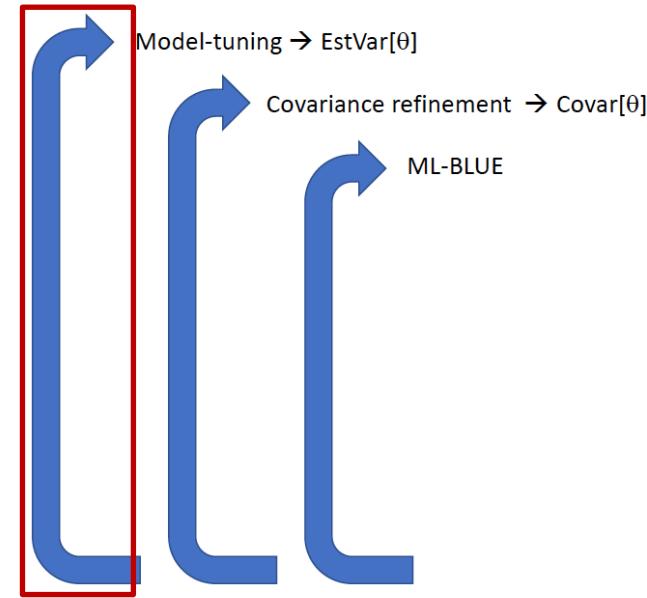
Config: $\theta_1 = 1.53$, 3 models, 7 groups, online pilot size = 500

Online iteration + relaxation not a concern for resolved covariances from larger pilot. Issue is rather the *inefficiency of this pilot relative to optimal online allocation*.

- **Highlighted** constraints force solns away from Oracle
 - For fixed pilot size, increasing budget reduces effect
 - Independent pilots amplify inefficiency of over-est.
- Effects not as severe for flexible numerical estimators: solns are fairly resilient and find near-optimal alternatives

Iterated + relaxed avoids inefficiency from pilot over-est. and **inaccuracy** from under-est.

Multilevel Best Linear Unbiased Estimator (ML BLUE)



Exploration of ensemble configuration with ML BLUE:

1. If matrix conditioning can be mitigated, ensemble config is embedded
2. Iterated covariance approaches take on new requirements → under-relaxation
 - Shared vs. independent pilot (if something interesting here)
 - Under-relaxation
3. Performance under model tuning → continuation of ACV/GenACV robustness trends?

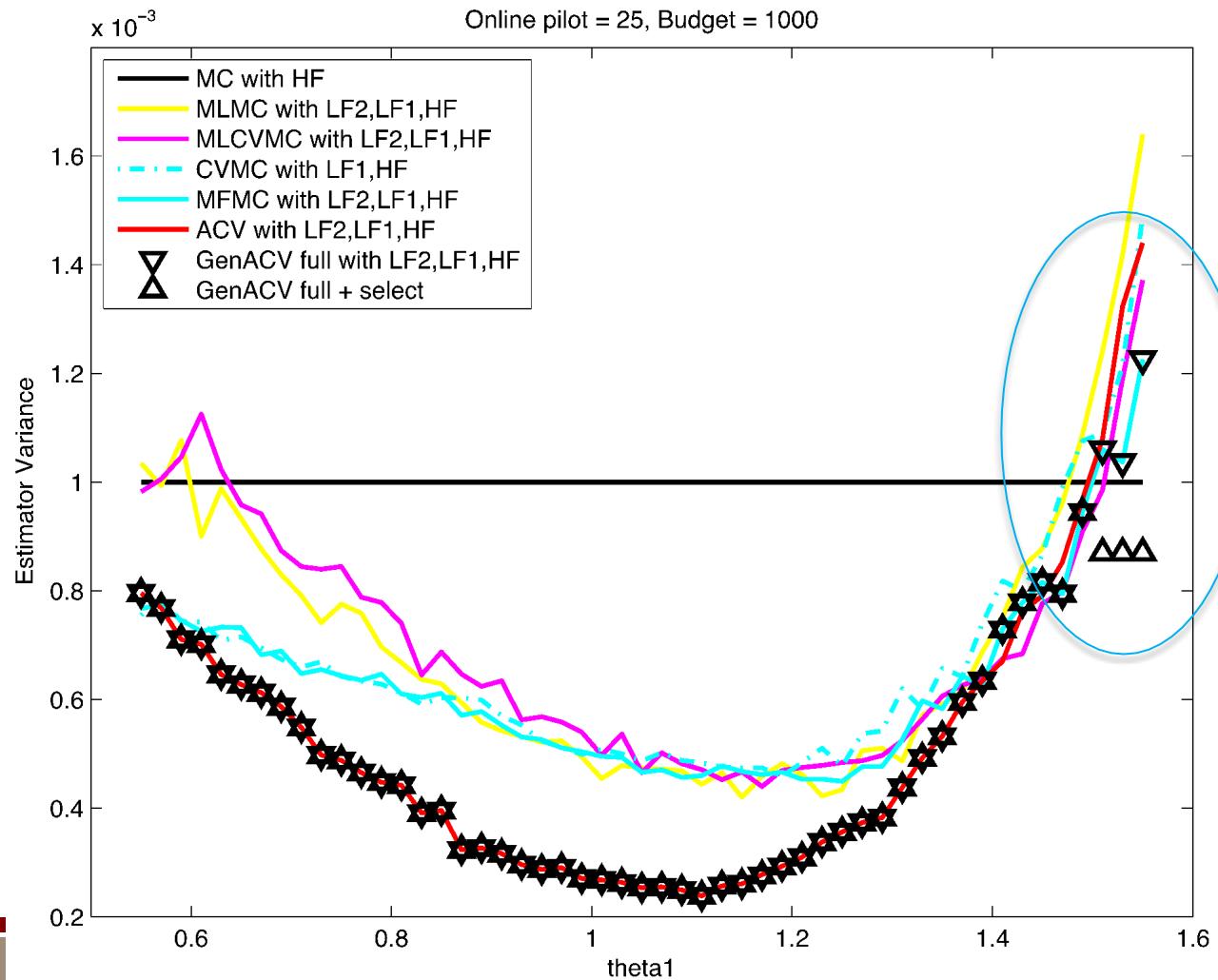
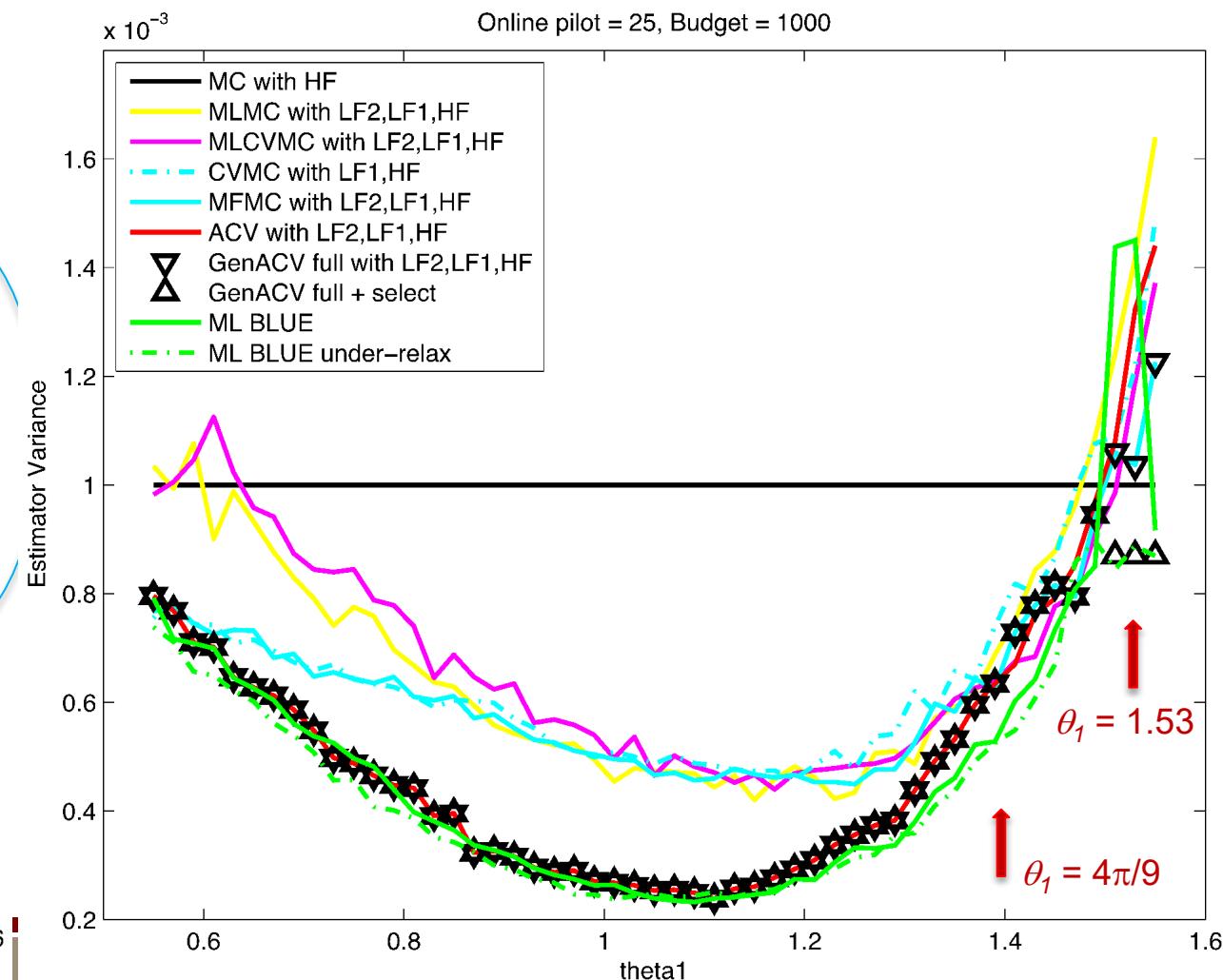
Bi-level tuning of hyper-parameters θ

$$\arg \min_{\theta} \left[\arg \min_{\mathbf{r}, N} \frac{\text{Var}[Q]}{N} (1 - R^2(\theta, \mathbf{r})) \quad \text{s.t.} \quad N \left(w + \sum_{i=1}^M w_i(\theta) r_i \right) \leq C \right]$$

Putting it all together: model tuning, iterated + under-relaxed, ensemble configuration

$$\begin{aligned}
 Q(\theta) &= \sqrt{11} [\cos(\theta) x^5 + \sin(\theta) y^5] \\
 Q_1(\theta_1) &= \sqrt{7} [\cos(\theta_1) x^3 + \sin(\theta_1) y^3] \\
 Q_2(\theta_2) &= \sqrt{3} [\cos(\theta_2) x + \sin(\theta_2) y]
 \end{aligned}$$

Start with parameter sweep for $\pi/6 < \theta_1 < \pi/2$ for mid-fidelity with high / low hyper-parameters fixed at $\theta = \pi/2$, $\theta_2 = \pi/6$.

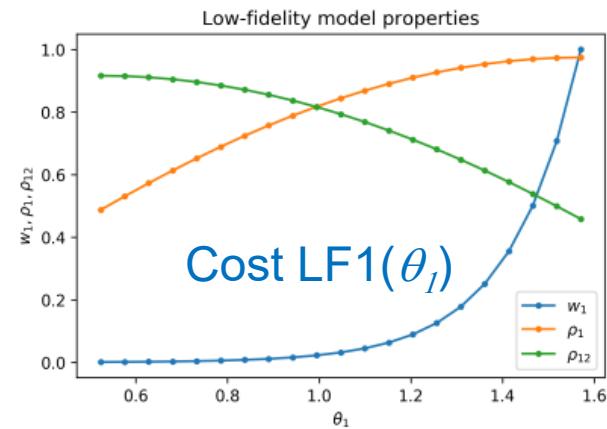
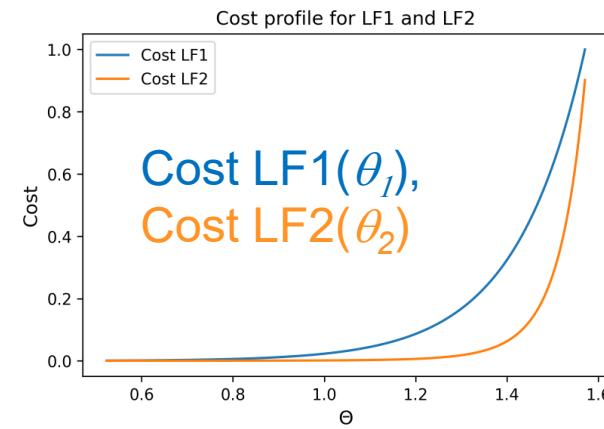
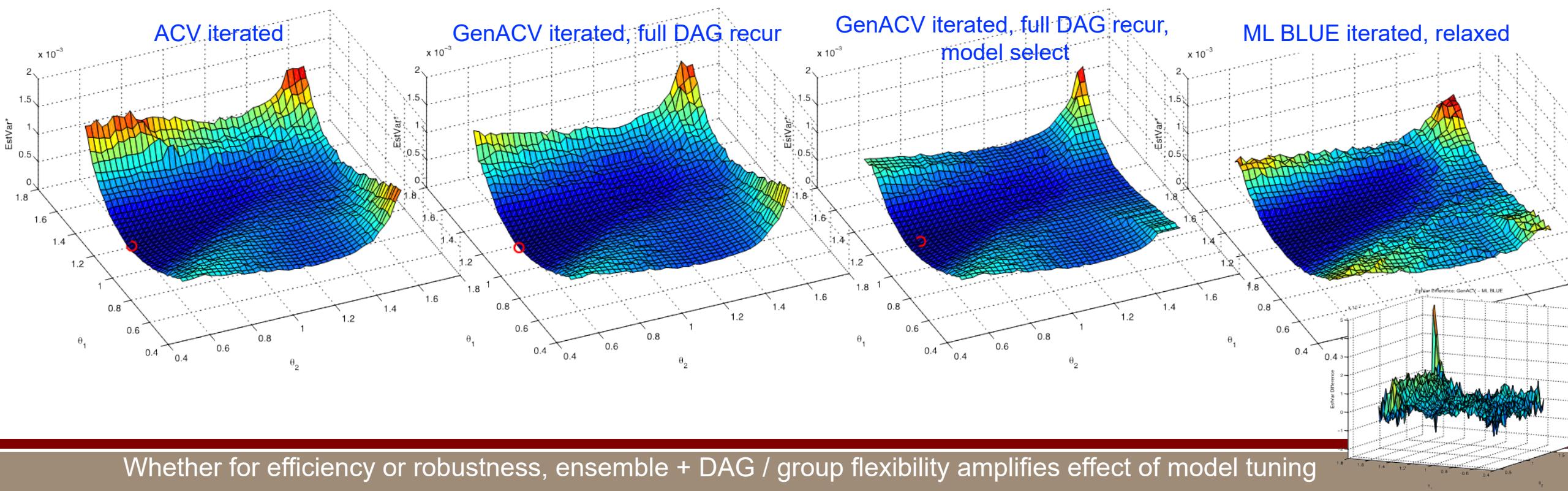


Putting it all together: model tuning, iterated + under-relaxed, ensemble configuration

$$Q(\theta) = \sqrt{11} [\cos(\theta) x^5 + \sin(\theta) y^5]$$

$$Q_1(\theta_1) = \sqrt{7} [\cos(\theta_1) x^3 + \sin(\theta_1) y^3]$$

$$Q_2(\theta_2) = \sqrt{3} [\cos(\theta_2) x + \sin(\theta_2) y]$$



Whether for efficiency or robustness, ensemble + DAG / group flexibility amplifies effect of model tuning

Summary Observations

Production deployments of multifidelity methods encounter a variety of challenges

- Accurate offline estimations of Covar[Q] should be integrated / optimized → Outer: Iterated online pilots
- LF models often have parameters that trade accuracy vs. cost → Outer: Hyper-parameter model tuning
- Numerical solutions are not always reliable w/ local solvers → Inner: Multistart/multisolver, global/local
- Best selections/pairings/groupings often unknown a priori → Inner: Model ensemble configuration

Multilevel Best Linear Unbiased Estimator (ML BLUE)

- Allocations per enumerated group show significant promise
- Recent exploration has subjected ML BLUE to the same practical considerations as other estimators in Dakota
 - Solution modes, shared vs. independent pilots, under-relaxation, group enumeration throttles

Explore model configuration aspects of ML BLUE and compare to existing estimators

- Inner loop (covariance fixed)
 - Estimator variance at least on par with GenACV, with potential for more direct & efficient solutions
 - Avoids need to enumerate model subsets and DAGs, instead enumerating group memberships w/i integrated solve
 - Numerical conditioning requires effective mitigation
- Outer loop (converge/tune covariance):
 - Iterated approaches are again effective, but must now rely on under-relaxation due to ordering of budget allocation
 - Model tuning enhances efficiency/robustness, reinforcing the link between hyper-parameter utility and estimator flexibility

Next steps

- Work in progress
 - Numerics: eigenvalue truncation in Ψ , Semidefinite programming
 - Group ACV approaches relax independence, allowing sample reuse (<https://arxiv.org/abs/2402.14736>)