Sandia
National

Exceptional service in the national interest )
Laboratories

Q@@ Qu Q@ Q@ Qn  Q,Q1;Q: ;[ Qu Q QG Qu
oo_i_ i oogge | Dogoo oo OOgog o
ERl HH E a2 E EIH ﬁ )

! ! [t ap | ! ! !
i 2,1 i i | 1172 2 ! ' I I I ' '
R || [ Py T I || I = T
' ! ' ' | | | EM 2 ' ! | ! | 1 ! '
| | 21 | ! ! ! ! M | | 2 | i i i i 2
H - H ' ' ' ' H L2 1 : : : L 2y
D : m,“‘“ Collector
1 — Heat Pellet
ZM 2 5 =
k573 i Cathode o 3
. | Separator g ? z
27 ] Anode g =
f [ 1
(a) W-RDiff sampling strat. (b) MFMC sampling strat. (c) ACV-IS sampling strat. (d) ACV-MF sampling strat. Heat Pellet N
Collector

Recent Progress in Model Ensemble Configuration for Multifidelity UQ

Michael S. Eldred?, John Jakeman?, Alex Gorodetsky?, Gianluca Geraci'

1Optimization & Uncertainty Quantification Dept, Center for Computing Research, Sandia National Laboratories, Albuquerque NM
2Aerospace Engineering Department, University of Michigan, Ann Arbor M|

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the

US. DEFARTMENT OF ///A ' .' DQ:S‘A
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

{2ENERGY /MWA A5




Multilevel / Multifidelity Estimators based on MC Sampling

MLMC 1D: hierarchical, recursive Analytic

MFMC 1D: hierarchical, recursive Analytic, Numerical
MLMF MC 2D: HF,LF pair + resolutions Analytic

ACV Non-recursive / peer: all CV pairings target root Numerical

Gen. ACV Search over approx sets & DAGs (MFMC + ACV + intermediate) Numerical
ML BLUE Model groupings Numerical
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Motivation: production deployments of ML/MF methods encounter a variety of challenges that can impede performance
« Accurate a priori / offline estimations of Covar[Q] are often impractical, and should rather be integrated and optimized

- iterated pilot approaches including relaxation

« LF models often have parameters that trade accuracy vs. cost (set via SME judgment, but intuition often inaccurate in this context)

- hyper-parameter model tuning

* Numerical solutions often suffer from multiple minima, desirable to drop model allocations while retaining conditioning
—> robust numerical solves: coarse global search, multi-start competed local from {global,analytic}, SDP
* For general model ensembles, the best approximation selections and CV pairings/groupings are not known a priori

- ensemble selection and configuration

Each of these concerns can introduce additional iteration or expand the scale of an integrated optimization
I —

Giles 2008, Peherstorfer et al. 2016, Geraci et al. 2017, Gorodetsky et al. 2020, Bomarito et al. 2022, Schaden and Ullmann 2020, Gorodetsky et al. 2024
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Ensemble Configuration in Multifidelity Sampling
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Resource Allocation: cost «== accuracy

N Fixed covariance (GenACV w/ MFMC, ACV as special cases) .-
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Variable covariance: converge on N, .4, tunew.rt. 0 ..
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=l — Refinement is deferable:
Covariance refinement: AN, ., = Covar[Q] tuning often projection-based
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Review of previous work:

Iterated Pilots - integrate pilot as online cost; optimize total

« lterate shared NO for estimation of Covar[Q] across models

Outer

Initialize: select small shared pilot N© to under-shoot optimal profile

1) Sample all models
2) N0 shared samples > Cov, ", Cov,,! = opt. solver > r*, N*
3) Compute one-sided AN for shared samples from N to N*

A.  Optional: apply under-relaxation factor y

B. If non-zero increment, advance (i) and return to 1)

* Avoid inefficiency (over-est.) or inaccuracy (under-est.).

Inner

Harden numerical solutions

- mitigate multi-modality
* Global search to identify
promising regions:
« SBGO, EA, EGO, DIRECT
 Competed NLP for local refinement:

o

Total Gost

. SQP (via NPSOL), NIP (via OPT++)

—> mitigate conditioning

Estimalor Variance

Hyper-Parameter Model Tuning

Tune approx to identify best accuracy vs. cost trade-off

Var[Q]

arg min [arg min
a r,N

M
(1-R*#,r)) st N (w—kai(ﬂ)n) <C

i=1

= MC with HF
MLMC with LFZ LF1. HF
CVMC 1.HF

lterated: Online Pilot = 25
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Ensemble selection / pairings:

|dentify most performant approx:
membership / relationship

Combinatorial growth in alternatives:
* For 1 set of 8 models, # DAG = 214,720
* With model selection, # DAG = 350,870

Mitigate using DAG depth throttles:

* K-L (ordered depth = 2): 22 or 800 w/ selection

* Depth=2: 6,323 or 19,693 w/ selection
 Depth = 3: 48,260 or 105,870 w/ selection

1 graph enumeration
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+ model selection

Total Cost




Multilevel Best Linear Unbiased Estimator (ML BLUE)

Group-based estimator:

* Enumeration of model combinations via groups

* Allocate shared group samples (no profile in group)
* Group sample sets are independent
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Image courtesy of John Jakeman

D Schaden, E Ullmann. On multilevel best linear unbiased estimators
SIAM/ASA J. Uncertainty Quantification 8 (2), 601 - 635

The ML BLUE estimatoris ~ ¥q =y
K K m,
k=1 k=1 i=1

T H

For linear combination of the model means :=#'4 ,
variance of ML BLUE is V[gg] = BT¥™18.

* Numerical soln for m minimizes this variance s.t. budget,

where f = [1,0,0,...]" targets the HF mean.

Features of Dakota implementation

Solution modes: {online,offline} x {perf projection,final stats}

Shared vs. independent group pilot sampling

Under-relaxation factors: fixed, recursive, sequence

Group throttles: size (“SAOB,k”), MFMC (“FC,k”), common (MF, ML, pair CV)
Online cost recovery, hyper-parameter control

Current limitations of Dakota implementation

Conditioning mitigations limited to equilibration + iterative refinement
Solvers limited to existing global + competed local (DIRECT + SQP/NIP)

Emerging extension: Group ACV https://arxiv.org/abs/2402.14736


https://scholar.google.com/citations?view_op=view_citation&hl=en&user=FL-ehIoAAAAJ&citation_for_view=FL-ehIoAAAAJ:IWHjjKOFINEC

Exploration of ensemble configuration with ML BLUE:

1. If matrix conditioning can be mitigated, ensemble config is embedded

Model-tuning = EstVar[6]

Multilevel Best Linear Unbiased Estimator (ML BLUE)

Covariance refinement = Covar[0]

ML-BLUE

ML BLUE performance on 3 standard test problems is observed to be linked to model and sample counts

Tunable problem w/ 3 models with hyper-parameters: excellent performance

Steady state diffusion w/ 5 resolutions: conditioning is degrading for more aggressive sample distributions
within large total budgets = group throttling required

Transient diffusion (heat eq) with 8 total models (2 MF x 4 RL): solutions become unreliable without
aggressive model pruning / group throttling



Tunable Model test problem (JCP 202

Q) = V11 [ cos(f) «° +sin(f) y° |
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Later we will tune hyper-params
6, and 6, for fixed HF 6 = n/2.
For this comparison, we fix

I — 6, = n/6 and 6, = 4n/9.

Q1(01) = V7 [ cos(fy) «® +sin(6;) 3° ] ]
Q2(62) = /3 [ cos(by) x+sin(b) y | "1 Cost LF1(9,
. 6, =4n/9

Estimator Variance

—
o

MFMC analytic
MFMC numerical
|+ ACV

ACV + select

10 H W+ GenACGV full

[ GenACYV full + select

|| =— ML BLUE

3

Estimator Variance

MFMC analytic
MFMC numerical

|y ACY

When conditioning issues are contained,
ML BLUE has shown increments in

. 10° 10 ITotamolst oW - performance relative to MFMC, ACV, GenACV .




Steady state diffusion test problem (i) Noma

d du
Steady state 1D diffusion: 5 models in 1D hierarchy “dz [a(%ﬁ)a(“f?@] =10, (@,8)€(0.1)x I
resolutions = {4,8,16,32,64}, relative cost = {1,4,16,64,256} u(0,£) =0, u(1,£) =0.

SS Diffusion with 5 models

7 SS Diffusion with 5 models

107 ¢ —————— ' 10 . s e
i —3— ACV-MF ] | —— ACV-MF
—E— ACV-MF + selection —— ACV-MF + selection
GenACV-MF K-L + selection 7 GenACV-MF K-L + selection 7
GenACV-MF partial depth=2 + selection | ] GenACV-MF partial depth=2 + selection |
GenACV-MF full + selection 1 GenACV-MF full + selection 1
\ -+ MFMC override - MFMC override
10° B g 1078 MLBLUE no throttle -
FoT MLBLUE size 2 throttle ]
—P— MLBLUE common throttle
—<€— MLBLUE mfmc throttle

|
©

Estimator Variance
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MFMC, ACV, GenACV 'E'u,,' | - Add ML BLUE
R
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Total Cost Total Cost
ACV peer DAG is poor - GenACV recovers MFMC at full depth Throttles necessary to mitigate conditioning at higher sample counts




Estimator Variance

Transient diffusion test problem et _ P 8D o osoxefoll=acR ]|
1D transient diffusion (“heat equation”) ] w0 =uox§), te0,tr] and €= CR /)({ “\AV NH’ ‘!\/" }“\
« 8 models in 2D hierarchy: multifidelity + multilevel u(x,€.t)|po =0 m\;f" \(Il W \VT ! "\(/
* Fourier solution modes = 3 LF, 21 HF | ug(x, &) = G(&)F1(x) +1(§)F2(x) o
* Spatial coordinates = {5 15 30 60} LF, {30 60 100 200} HF . Heat Eq with 8 models

Heat Eq with 8 models 10" ¢ ' S W T T T

10° ¢ e N — D\\
su'Nl

@+ MFMC numerical

Estimator Variance
o
w
T
]

F| —%— ACV-MF 2.,
-| —E— ACV-MF + selection >- .
GenACV-MF K-L + selection - PN N
r GenACV-MF partial depth=3 + selection r - " g& i
107t Ll - $>= ML BLUE 2M MF throttle I - ‘
I Fl -g— ML BLUE 2M no throttle \"
: [+ > ML BLUE 3M mf throttle ‘
107 G pumerical ; |+ @+ ML BLUE 3M no throttle N
| —E— AGV-MF + selection | =$— ML BLUE 4M mf throttle \
I GenACV-MF K-L + selection 1 107° - —€— ML BLUE 4M s2 throttle E
3 GenACV-MF partial depth=3 + selection ] | =—B— ML BLUE 4M no throttle
107 e e B — "| =—$»— ML BLUE 8M mf throttle
10 10 rotal Cost 10 10 | —€— ML BLUE 8M s2 throttie
=—H— ML BLUE 8M no throttle
More complex hierarchy benefits significantly from DAG search 107811 e a—a .. L

Work in progress (truncating eigenvalues from ¥, SDP formulations)
Expected to unify inner configurations




Multilevel Best Linear Unbiased Estimator (ML BLUE) e e

Covariance refinement = Covar[0]

ML-BLUE

Exploration of ensemble configuration with ML BLUE:

2. lterated covariance approaches take on new requirements
* Under-relaxation becomes more important due to ordering of budget allocation
* Shared vs. independent pilot: both can be iterated, w/ greater budget freedom in the former

Iterated ML BLUE

Initialize: select a small initial pilot sample expected to under-shoot the optimal profile
define group a as the group containing all models

1) Sample all models for (i) group a only (reuse covariances), (i) all k = 1,...,K groups independently

2) Shared covariance iteration (option (i) only)
o A m,samples > (C,shaed) 5 Yy > opt. solver ming BTV > m
B. Compute one-sided Am, and under-relax step (full budget will not be expended, even unrelaxed)
C. If Am, =0, stop shared iteration; else perform Am, and return to 2A

3) Compute Am for every group (only Am,is zero for (i), under-relax step, and perform sample increments

4) Independent iteration (both options (i) and (ii) )
i A. Group samples > (,(independent) 5 Psj vy - opt. solver > m
B. Compute one-sided Am and under-relax steps (full budget expended on 18t iter. unless step is relaxed)
C. If Am =0, stop independent iteration; else perform Am and return to 3A

Finalize: solve for u for statistics of interest (currently moments 1 through 4 for each Qol)

Iterated MFMC / ACV / GenACV converge on group a covariances as in step 2) above, prior to any LF increments




Estimator Variance

Online pilot integration — under-relaxation for small pilots Sonda

Low-fidelity model properties Laboratories

“Tunable Model” Definitions (JCP 2020)

Q1(61) = V7 [ cos(by) «® +sin(6y) y* |

Q) = V11 [ cos(f) 2° +sin(6) y° |

Q2(602) = V3 [ cos(fy) x+sin(by) y |
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Later we will tune hyper-params

6, and 6, for fixed HF 6 = /2.

For this study, we fix 6, = /6 and
0, = 1.53 (MF similar to HF)
Under-relax sequence ={.5, .8, 1.}
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: %7+ ML BLUE online 5 no relax

ML BLUE online 5 relax seq

[V * ML BLUE online 10 no relax

ML BLUE online 10 relax seq
%7+ ML BLUE online 25 no relax
ML BLUE online 25 relax seq

| == ML BLUE offline 5000 (oracle)
L L L L M|

=1.53

L v’

2

R ]
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0.8

Estimator Variance

1.0

1

F 14 L&

L N+ ML BLUE online 5 no relax

W+ ML BLUE online 10 no relax

ML BLUE online 5 relax seq V... .

B
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prediction without relaxation (which also

Significant inaccuracy in performance

) 10° I

= 10 0 'Ttllclt' TN = 10| suppresses iteration in case of ML BLUE =



Online pilot integration — effect of pilot over-estimation

“Tunable Model” Definitions (JCP 2020)

Q(0)
Q1(01)

= V11 [ cos(#) 2® 4 sin(6) y° |
= V7 [ cos(f1) * +sin(6) v

Q 0 N
10513 models 0
0 models 1
146 models 0 1

0 models 2
® 0 models 0 2

13 [ cos(fy) x + sin(6;)

y

]

1.0

0.8
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Later we will tune hyper-params
0, and 6, for fixed HF 6 = /2.
For this study, we fix 6, = n/6 and
study 6, = 4n/9 and 6, = 1.53.

Low-fidelity model properties
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(ER 0.8 1.0 1.2 14 18
L}

59554 models 0
500 models 1
2381 models 0 1
500 models 2
500 models 0 2
500 models 1 2
500 models 01 2

. 0 models 1 2
107K 500 models 0 1 2
Budget
32185 models 0 exhausted
0 models 1 by pilot
146 models 0 1
0 models 2
982 models 0 2
0 models 1 2
0 models 01 2
2 89344 models 0
0 models 1
0 models 0 1
107k 0 models 2
4948 models 0 2
0 models 12
* ML BLUE or 0 models 012
ML BLUE onfrmre—vororororromoe

* ML BLUE online 500 no relax indep
ML BLUE online 500 relax indep
—afe— ML BLUE offllne 5000 (oracle)

| 85019 models 0

0 models 1
1139 models 0 1
0 models 2
3198 models 0 2
0 models 1 2
500 models 01 2

Config: €, = 1.53, 3 models, 7 groups, online pilot size = 500

Online iteration + relaxation not a concern for resolved
covariances from larger pilot. Issue is rather the
inefficiency of this pilot relative to optimal online allocation.
» Highlighted constraints force solns away from Oracle
* For fixed pilot size, increasing budget reduces effect
* Independent pilots amplify inefficiency of over-est.
« Effects not as severe for flexible numerical estimators:
solns are fairly resilient and find near-optimal alternatives

lterated + relaxed avoids inefficiency from pilot

Total Cost

over-est. and inaccuracy from under-est.




Model-tuning = EstVar[6]

Multilevel Best Linear Unbiased Estimator (ML BLUE)

Covariance refinement = Covar[0]

ML-BLUE

Exploration of ensemble configuration with ML BLUE:
1. If matrix conditioning can be mitigated, ensemble config is embedded
2. lterated covariance approaches take on new requirements = under-relaxation
. Shared vs. independent pilot (if something interesting here)
. Under-relaxation
3. Performance under model tuning = continuation of ACV/GenACV robustness trends?

Bi-level tuning of hyper-parameters 6

. - Var[Q S
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Estimator Variance
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Putting it all together: model tuning, iterated + under-relaxed, ensemble configuration

Q(0) V1L [ cos(f) =® +sin(6) y° |
Q1(01) VT [ cos(b) 2® +sin(6;) 3 |
Q2(62) V3 [ cos(fy) =+ sin(f3) y |
107° Online pilot = 25, Budget = 1000

Start with parameter sweep for /6 < ¢, < /2 for mid-fidelity
with high / low hyper-parameters fixed at ¢ = /2, 6, = n/6.

— MC with HF
MLMC with LF2,LF1,HF
—— MLCVMC with LF2,LF1,HF
CVMC with LF1,HF
MFMC with LF2,LF1,HF
m— ACV with LF2,LF1,HF
GenACYV full with LF2,LF1,HF
GenACV full + select

1.4

Estimator Variance
—
- no

o
o

0.6

04

0.6 0.8

x 1072 Online pilot = 25, Budget = 1000

|

— MC with HF

MLMC with LF2,LF1,HF

= MLCVMC with LF2,LF1,HF

| CVMC with LF1,HF

MFMC with LF2,LF1,HF
— ACV with LF2,LF1,HF
- GenACYV full with LF2,LF1,HF

GenACV full + select
= ML BLUE
+ == ML BLUE under-relax

thetal




Putting it all together: model tuning, iterated + under-relaxed, ensemble configuration

Low-fidelity model properties Cost profile for LF1 and LF2

Q) = V11 [ cos(d) 2° +sin(f) y° | 081 0]

Q1(0,) = VT [ cos(6,) «® +sin(6,) v* ] goe 5 Cost LF1(09)),
o. — V3 [ cos(8,) x + sin(6 £ 04 % 04
Q2(6,) [ cos(6,) x (6,) y ] N Cost LF1(8,) N
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Whether for efficiency or robustness, ensemble + DAG / group flexibility amplifies effect of model tuning



Summary Observations (i) Ntor

Laboratories

Production deployments of multifidelity methods encounter a variety of challenges

* Accurate offline estimations of Covar[Q] should be integrated / optimized - Outer: Iterated online pilots

« LF models often have parameters that trade accuracy vs. cost - Outer: Hyper-parameter model tuning

* Numerical solutions are not always reliable w/ local solvers - Inner: Multistart/multisolver, global/local
* Best selections/pairings/groupings often unknown a priori - Inner: Model ensemble configuration

Multilevel Best Linear Unbiased Estimator (ML BLUE)

* Allocations per enumerated group show significant promise

* Recent exploration has subjected ML BLUE to the same practical considerations as other estimators in Dakota
« Solution modes, shared vs. independent pilots, under-relaxation, group enumeration throttles

Explore model configuration aspects of ML BLUE and compare to existing estimators
* Inner loop (covariance fixed)
« Estimator variance at least on par with GenACV, with potential for more direct & efficient solutions
* Avoids need to enumerate model subsets and DAGs, instead enumerating group memberships w/i integrated solve
* Numerical conditioning requires effective mitigation
* Quter loop (converge/tune covariance):
» lIterated approaches are again effective, but must now rely on under-relaxation due to ordering of budget allocation
* Model tuning enhances efficiency/robustness, reinforcing the link between hyper-parameter utility and estimator flexibility

Next steps
 Work in progress
* Numerics: eigenvalue truncation in ¥, Semidefinite programming
— * Group ACV approaches relax independence, allowing sample reuse (https://arxiv.org/abs/2402.14736)

—



