What is my quantum computer good for? Quantum
capability learning with physics-aware neural

networks
Daniel Hothem Ashe Miller
Quantum Performance Laboratory Quantum Performance Laboratory
Sandia National Laboratories Sandia National Laboratories
Livermore, CA 94550 Albuquerque, NM 87185
dhothem@sandia.gov anmille@sandia.gov

Timothy Proctor
Quantum Performance Laboratory
Sandia National Laboratories
Livermore, CA 94550
tjproct@sandia.gov

Abstract

Quantum computers have the potential to revolutionize diverse fields, including
quantum chemistry, materials science, and machine learning, but quantum com-
puting hardware experiences errors that can cause quantum programs run on them
to fail. Until quantum computers can reliably execute large quantum programs,
stakeholders will need fast and reliable methods for assessing a quantum com-
puter’s capability—i.e., the programs it can run and how well it can run them.
Past works have used off-the-shelf neural network architectures to model quantum
computers’ capabilities, but with limited success, due to these networks’ inability
to learn the complex quantum physics that determines real hardware’s failures.
We address this shortcoming with a new physics-aware architecture for building
neural network capability models. We combine graph neural networks, for learning
the rates and locations of different kinds of errors in quantum programs, with a
network architecture that combines these error rates into a final prediction using
a physics-aware approximation for success probability. Our approach achieves
up to a ~ 50% and ~ 75% reduction in mean absolute error on experimental and
simulated data, respectively, over state-of-the-art models based on convolutional
neural networks.

1 Introduction

Quantum computers have the potential to efficiently solve classically intractable problems in quantum
chemistry [Cao et al.,[2019], material science [Rubin et al., [2023]], machine learning [Harrow et al.,
2009], and cryptography [Shor, [1997]]. While contemporary quantum processors (QPUs) are quickly
approaching the sizes and noise levels needed to solve interesting, practical problems, they are still
far from being capable of reliably running most useful quantum algorithms. Until we build QPUs
capable of executing any and all useful and interesting quantum algorithms, stakeholders will require

fast, reliable, and scalable methods for predicting the algorithms that given QPU can reliably execute.

The task of learning which quantum algorithms or quantum circuits a QPU can reliably execute is
known as quantum capability learning [[Proctor et al.,[2021a]. In general, quantum capability learning
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is a difficult task. The number of possible errors plaguing a QPU grows exponentially in the size of
the device (e.g., the number of qubits) [Blume-Kohout et al., 2022, and errors in a quantum circuit
can combine in difficult-to-predict ways. Most traditional approaches to capability learning restrict
themselves to learning how well a QPU executes a limited set of circuits by running those circuits
on the QPU, and using the data to estimate a success metric for each circuit [Hothem et al.| 2023b].
While these methods are valuable for understanding a device, they provide no principled way to
predict how well circuits outside of the chosen circuit set will run on the QPU. In other words, they
offer little predictive power about a QPU’s capability.

Recently, several groups have proposed building predictive models of a QPU’s capability using neural
networks [Elsayed Amer et al.,[2022] [Hothem et al., 2023c| [Vadali et al., 2024, [Wang et al., 2022]]. In
general, these neural network-based capability models achieve only a modest prediction accuracy
on real hardware, in part due to their inability to learn the complex physics that determines real
hardware’s failures. We overcome this limitation by making two changes.

First, we restrict our focus to learning a QPU’s capability on high-fidelity circuits. High-fidelity
circuits are those circuits that a QPU correctly executes with a high success rate. High-fidelity
circuits are arguably the most interesting circuits to study as we care far more about whether a
QPU successfully executes a circuit 90% or 95% of the time rather than 10% or 40% of the time.
Moreover, by restricting our focus to high-fidelity circuits, we are able to leverage known closed-form
approximations to the success rate of high-fidelity circuits that rely on understanding the error rates of
individual errors in the circuit. Therefore, instead of training a neural network to map a circuit direct
to its success rate, we instead train neural networks to map a circuit to the error rates of physically
relevant errors, using the signal provided by the success rate.

Second, we introduce a new physics-aware, graph neural network-based approach that is optimized for
learning a QPU’s capability on high-fidelity circuits. In our approach, we use a graph neural network
to predict the error rates of physically relevant errors in each layer of a quantum circuit. These error
rates are then efficiently combined using the internal logic of the circuit into an error vector for
the entire circuit, and the resulting error vector is used as the input to a first-order approximation
to the circuit’s success rate. By leveraging the graph structure of each quantum circuit, restricting
the neural network to focus exclusively on learning the error rates of physically relevant errors,
and offloading the difficult-to-learn, yet classically tractable task of combining the error rates, our
physics-aware neural networks vastly outperform the state-of-the-art convolutional neural network
approach in [[Hothem et al.| 2023c] on both experimental and simulated data.

In a direct, head-to-head comparison study, our physics-aware neural networks achieve, on average
a ~ 50%, reduction in mean absolute error over the CNNs used in [Hothem et al.| [2023¢c|] when
predicting the probability of successful trials (PST) of the circuits in the experimental datasets used in
Hothem et al. [2023¢|]. Our physics-aware neural networks achieve an average ~ 32% improvement
over those CNNs even after fine-tuning the CNNSs on a subset of the high-PST circuits in each data
set.

We hypothesize that our physics-aware neural networks’ improved performance is, in part, due to
their improved ability to model the impact of coherent errors on a circuit’s success rate.

Our physics-aware neural networks’ improved performance is, in part, due to their improved ability
to correctly model the impact of coherent errors on a circuit’s success rate. Off-the shelf networks
struggle with coherent errors [Hothem et al.| [2023c]]. However, because we explicitly add in how
coherent error rates combine into our new approach, our physics-aware networks are much better at
predicting PST in the presence of coherent errors. To verify this claim, we demonstrate our networks’
performance at predicting the entanglement fidelity of random circuits run on a simulated 4-qubit
QPU experiencing only coherent gate errors. In these simulations, a physics-aware neural network
obtain a ~ 76% reduction in MAE when compared to a CNN, and exhibit moderate performance
when predicting the fidelity of out-of-distribution random mirror circuits [Proctor et al, [2021a]
simulated on the same 4-qubit QPU.

2 Background

In this section, we review the necessary background in quantum computing to understand this
paper. See |[Nielsen and Chuang| [2010] for a more in-depth introduction to quantum computing



and Blume-Kohout et al.|[2022] for a more thorough description of the errors that occur in quantum
processors.

2.1 Quantum computing

A quantum computer is a physical system that performs computations by exploiting the laws of
quantum mechanics. The fundamental computational unit of a quantum computer is the qubit. A qubit
is a two-level physical system whose pure states are normalized vectors in a complex two-dimensional
Hilbert space, H. The pure states of an n-qubit processor are normalized vectors in H®™. The two
orthonormal vectors |0) and |1) that are eigenvectors of the Z Pauli operator are identified as the
“computational basis states” of 7{. The computational basis states of H®" are all the tensor-product
combinations of |0) and |1). Noise processes in real quantum computers mean that they are typically
in mixed states p that are a probabilistic mixture of pure states.

A computation is performed by running a quantum circuit. Typically, an n-qubit, depth-d quantum
circuit consists of the following instructions: (i) an instruction to prepare the all-zero state, \0)®";
(ii) a sequence of d layers of logical instructions {L; }; and (iii) an end-of-circuit measurement. The
end-of-circuit measurement outputs a bitstring according to a probability distribution defined by the
end-of-circuit state of the n-qubits. The initial state preparation and final measurement layers are
fixed, so we define a quantum circuit by its set of logical instructions.

The “meat” of an n-qubit, depth-d circuit ¢ is the sequence of d logical circuit layers, { L; }. Together,
these circuit layers specify the application of an n-qubit unitary ¢ (c). Individually, a circuit layer L
specifies the application of an n-qubit unitary map U (L) to the qubits. Usually, the n-qubit unitary is
given as the parallel application of single-qubit and two-qubit gates.

2.2 Noise and errors in quantum computers

Unlike their idealized or classical counterparts, real quantum processors are highly error-prone.
While the errors come in many forms, they all have the same effect. The errors accumulate over the
execution of a circuit and lead to the measurement sampling from the incorrect distribution over bit
strings.

This process can be modelled as follows. Model the noisy implementation u (L;) of each circuit layer
L; as the ideal implementation U/ (L;) proceeded by an error channel &;:

U(L;) = E oU(Ly). (1

Then the noisy implementation 2/ (¢) of a circuit ¢ is modelled as

d
U(c) = H&'Ou(Lz‘)- (2)
i=1

We may compute an end-of-circuit error channel by “propagating” each layer’s error channel to the
end of the circuit by commuting the error channels past each U(G;),

Z;{(c) =E.olU(c). 3)

A convenient way to parameterize an error channel £ is as € = exp(}_, €;G;) where G are the set
of 16™ — 1 different elementary error generators introduced by Blume-Kohout et al.|[2022]. The
most common kinds of errors are the subset of {G; } known as Hamiltonian (H) and Pauli stochastic
(S) errors, of which is indexed by an element of the n-qubit Pauli group, P,,. There are 4™ — 1
of H and 4™ — 1 S errors and for the rest of this work we consider only the set of all such errors

{G, }3& 1”_1) and denote their rates by {ep} and {0p} respectively. The specific action of each error
is unimportant Instead, what is important is that a Pauli stochastic error P occurs randomly at some
rate sp, while coherent errors occur deterministically with some strength 6p. As a result, stochastic
errors, to first order, accumulate linearly, while coherent errors, due to error cancellation, accumulate
quadratically [Madzik et al., 2022].
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Figure 1: Our physics-aware neural network architecture for modelling the capabilities of real-world
imperfect quantum computers.

2.3 Quantum capability learning

Because quantum processors are error-prone, knowing which quantum circuits a processor can
successfully execute is important. Known as quantum capability learning, this task formally involves
learning the mapping between a set of quantum circuits ¢ € C and some success metric s(c) € R
quantifying how well ¢ runs on a processor Q. While there are many interesting circuit sets and useful
success metrics, we chose to focus on the probability of successful trial (PST) of definite-outcome
Clifford circuits, and the entanglement fidelity of generic quantum circuits.

A circuit c is a definite-outcome circuit if its end-of-circuit measurement distribution, ideally, has
support on a single bit string, b(c). The probability of successful trial is defined as

PST(c) = Pr(measuring b(c) when executing ¢ on Q). 4)
In practice, PST(c) is estimated by running ¢ many times on Q and calculating
som—, _ 7 observations of b(c)

PST(c) = N , (5)

where Ngpots 1S the number of shots or times ¢ was run for.

In addition to being easily interpretable, PST(c) is a nice metric because it has a straightforward
first-order approximation in terms of the Pauli stochastic {sp} and coherent error rates {6, } of the

end-of-circuit error channel. If P2X>Y is the set of n-qubit Paulis containing at least one Pauli-X or
Pauli-Y entry, then

PST(c)~1— 3 (SP + og). ©)
PePyY
Equation [6]is a good approximation for high-PST circuits.
While PST(c) is a nice metric, it is not defined for non-definite-outcome circuits. Instead, we use
entanglement fidelity, F'(c). Protocols exist for efficiently estimating fidelity on real hardware [Proctor

et al.} [2022], and, in simulations of small systems (n <~ 10) it can be computed directly. Moreover,
like PST(c), entanglement fidelity has a simple first-order approximation [Madzik et al.,|[2022],

Floom1-Y (5p+9§>. %
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3 Neural network architecture

Our neural network architecture (see Fig. [I) for quantum capability learning combines neural network
layers that have GNN-like structures with efficient approximations to the physics of errors in quantum
computers. The overall action of our neural networks is to map an encoding of a circuit c to a



prediction for PST(c) or F(c). The same network can predict either PST(c) or F(c¢) by simply
toggling between two different output layers, that have no trainable parameters. Our architecture is
divided into two sequential parts. The first part of our architecture is a neural network A/ that has the
task of learning about the kinds and rates of errors that occur in quantum circuits. We use GNN-like
structures within A/ to embed physics knowledge for how those errors depend on the quantum circuit
being run. The second part of our architecture is a function f with no learnable parameters, that turns
N’s output into a prediction for PST(c) or F(c).

3.1 Physics-aware neural networks for predicting errors in quantum circuits

The neural network A”’s input is a circuit ¢ represented by (i) a tensor I(c) € {0, 1}x(e)xnen
describing the gates in ¢, and (i) a matrix M (c) € {0,1}**" describing the measurement of the
qubits at the end of c. A maps I(c) to a matrix £ € R¥*4() and M (c) to a vector 171 € R*. & is a
prediction for the rate with which error type j occurs during circuit layer ¢, and m; is a prediction for
the rate with which error type j occurs when measuring the qubits at the end of a circuit. There are
2(4™ — 1) different possible error types that can occur in principle (see Section so it is infeasible
to predict all their rates beyond very small n. However, the overwhelming majority of these errors
are implausible, i.e., they are not expected to occur in real quantum computers [Blume-Kohout et al.|
2022||. Our networks therefore predict the rates of every error from a relatively small set of error
types G = {G1, ..., G} containing the k most plausible kinds of error. G is a hyperparameter of
our networks. It can be chosen to reflect the known physics of a particular quantum computer and/or
optimized using hyperparameter tuning. In our demonstrations, we choose G to contain all one-body
H and S errors as well as all two-body H and S errors that interact pairs of qubits within A steps on the
modelled quantum computer’s connectivity graph for some constant h (see Fig.[Ib). This choice for
G encodes the physical principle that unwanted interactions between qubits are primarily two-body
and local [Blume-Kohout et al., [2022]]. The size of G grows with n, and for planar connectivity
graphs (as in, e.g., contemporary superconducting qubit systems) it grows linearly in n. This results
in k = O(n) errors whose rates A must learn to predict.

The internal structures of A are chosen to reflect general physical principles for how £ and 773 depend
on c. &;; is a prediction for the rate that G; occurs in circuit layer 7, and this error corresponds to
a space/time location within c—because it occurs at layer index or time ¢ and G; acts on a subset
of the qubits Q(G). This error’s rate will therefore primarily depend only on the gates in a time-
and space-local region around its location in c¢. Furthermore this dependence will be invariant
under time translations (except for some exotic kinds of errors, that we discuss in Section . We
can encode these structures into by predicting &;; from a space-time “window” of ¢ around the
associated error’s location using a filter W; that “slides” across the circuit to predict the rate of
G, versus time i. Stated more formally, we predict £;; using a multilayer perceptron N; whereby
N;(W;[I(c),i]) = E; and W;(I(c), i) is a snippet of I(c) whose temporal origin is 4 (see Fig.[Tp).
The shape of each filter W} is a hyperparameter of our networks and it can be designed to reflect
general physical principles, the known physics of a particular quantum computing system, and/or
optimized with hyperparameter tuning. The particular neural networks we present later herein use
filters W (I(c), i) that snip out only layer ¢ and discard the parts of the layer that act on qubits
more than [ steps away from (G;) in the quantum computer’s connectivity graph (see Fig. ??).
This structure has close connections to graph convolution layers, as well as CNNs. We choose this
particular structure as it enables modelling the effects of spatially localized crosstalk errors, which
are a ubiquitous but hard-to-model class of errors in quantum computers.

The network A/ must also predict the rates of errors that occur during measurements, but these are
not typically closely related to the rates of gate errors (which are predicted by the N;). So we do
not use the ; and their convolutional filters TV, to make predictions for 171. Instead we use separate
but structurally equivalent networks J\/j’ with corresponding filters W7/ that take M (c) as input and
implement only spatial filtering (i.e., W/ simply discard rows from M (c), as, unlike I(c), M (c) has
no temporal dimension). The W]’ are hyperparameters of our networks and we can separately adjust
the shape of each W]’ to reflect the known physics of errors induced by measuring qubits. We use the

same kind of filters as the TV;, with I’ steps on the connectivity graph.



3.2 Processing predicting error rates to predict capabilities

We process A’s output to predict PST(c) or F'(c), using a function f with no learnable parameters.
We do so for two reasons. First, the error matrix £ predicted by N is not a directly observable
quantity, and so we cannot easily train these networks in isolation. Generating the data needed to
train V' directly would require extraordinarily expensive quantum process tomography ? and it is
utterly infeasible except for very small n. In constract, both PST(c) and F'(c) can be efficiently
estimated (see Section[2)) for a given circuit c. So concatenating A/ with f makes training feasible.
Secondly, this means that the network is being directly trained to predict the quantities of interest.

The function f computes an approximation to the PST(c) or F'(c) predicted by £ and . The matrix
& encodes the prediction that ¢’s imperfect action is

Ue) = Ma(E)U(La) - - - M (E)U(Lr), ®

where the L; are the d layers of ¢ (see Section and A;(€) = exp(Z?z1 &i;Gj), e, Ai(€)is an
error channel parameterized by the ith column of £. Equation (8) implies an exact prediction for
PST(c) or F(c) [e.g., F(c) = Tr(U(c)U~1(¢))/(4™ — 1)], but exactly computing that prediction
involves explicitly creating and multiplying together each of the 4™ x 4" matrices in Eq. (8). This
is infeasible, except for very small n. Instead our f computes an efficient approximation to this
prediction. f’s action is most easily described by embedding £ into the space of all possible errors

{G, }3&: -, resulting in a d x 2(4™ — 1) matrix £, whose columns are k-sparse, although note that

we never construct these exponentially large matrices. Then we pull each error channel to the end of
the circuit U(c) = AL(EL) - AL (EU(c) where Aj(EL) = exp(32) "V [€1];;G;) where £/ has
columns that are just c-dependent signed permutations of £.’s columns. The signed permutations
required can be efficiently computed in advance (i.e., as an input encoding step) using an efficient
representation of Clifford unitaries, utilizing a high-performance implementation of those methods
in Stim, and can be efficiently represented in two d x k matrices: a sign matrix S containing +1
signs to be element-wise multiplied with £ and a permutation indices matrix P containing values in
[1,2(4™ — 1)] where P;; specifies what error G; because when pulled through the remaining circuit
layers. Next, we combine the A} () into a single error map A(c) using a first-order Baker-Campbell-
Hausdorff (BCH) expansion. Using our embedded representation, this means simply approximating

A(c) as A(c) = exp(}_; v;G) where v; = Zle[é’é}ij, i.e., we sum over the rows of £.. To predict
F'(c) we then simply apply Eq. @) (meaning summing up v; with those elements that correspond

to Hamiltonian errors squared), and to predict PST(c) wealso combined in the measurement error

map exp(zjéz1 m;G;) and apply Eq. . The efficient representation of the overall action of f is
illustrated in Fig.

4 Datasets

4.1 Experimental data

We used the 5-qubit data sets in[Hothem et al.| [2023c] for our experimental demonstrations. Each

——

of these data sets D = {(¢, PST(c))} was gathered by running random and periodic mirror circuits
(two types of definite-outcome circuits) on the first five qubits of an IBMQ processor, and using
the results to estimate the PST of each circuit. Each circuit ran between 1024 and 4096 times on
the processor, with the exact shot count depending upon how often the circuit-generating process
generated the circuit (some short, 1-qubit circuits were generated multiple times). The random and
periodic mirror circuits ranged in width from 1 to 5 qubits, and ranged in depth from 3 to 515 layers
(alt. 259 for the ibmqg_yorktown dataset).

Because we are focused on high-PST circuits, we removed all circuits with a PST less than .85
from each data set, leaving between 864 (ibmg_burlington) to 1369 (ibmq_yorktown circuits in
each data set. The remaining circuits were partitioned into training, validation, and test sets based
upon their original assignment in|Hothem et al.| [2023c]. This choice allows us to directly compare
our newly trained physics-aware neural networks to those used in the original paper. Training set
sizes ranged from 682 circuits on ibmg_burlington to 1097 circuits on ibmg_yorktown, with an
approximate training, validation, testing split of 80%, 10%, and 10%, respectively. See Figure 2{a)
for a representative histogram of the PSTs from the ibmqg_vigo processor.



4.2 Simulated data

For our simulations, we generated DGH: ONE datasets of 5000 high-fidelity (> 90%) random
circuits, for a 4-qubit processor with a “ring” geometry (see Figure ??). The circuits ranged in width
w from 1 to 4 qubits, and in depth from 1 to 180 circuit layers. Each circuit was designed to be
applied to a randomly chosen (possibly disconnected) subset w of qubits. Each circuit layer was
created by i.i.d. sampling from all possible circuit layers on the w active qubits. We used a gate
set of {X(7/2),Y (7/2), X(37/2),Y (37/2), X (n),Y (7), Z(m)} single-qubit rotation gates and
two-qubit CNOT gates. See Appendix ?? for additional details.

All circuits were simulated under the same error model, consisting of unbiased local coherent errors.
The exact error model was randomly selected (see Appendix ?? for the process). At a high-level,
each gate was assigned a small overall error strength, which was distributed randomly across all
possible single-qubit or two-qubit coherent errors. We chose a coherent-only error model as coherent
errors are prevalent errors that CNNs are struggle to accurately model. See Figure [3for a histogram
of fidelities.

Each sampled circuit ¢ was simulated under the chosen error model to compute its entanglement
fidelity sp(c) exactly. After removing duplicate circuits, the resulting dataset(s) D = {(¢, sp(c))}
were partitioned into training, validation, and testing subsets, with a partition of 56.25%, 18.75%,
and 25%, respectively.

We also generated DGH: ONE datasets of 750 random mirror circuits on the same processor. Again,
random mirror circuits varied in width from 1 to 4 qubits, and were designed to be run on a randomly
selected subset w of qubits. However, instead of i.i.d. sampling each circuit layer, each circuit was
randomly sampled from the class of random mirror circuits on the w qubits. The depth of the mirror
circuits ranged from 8 to 174 layers. We generated the mirror circuit datasets to evaluate how well
the physics-aware and convolutional networks generalize to out-of-distribution circuits, as such they
were used exclusively as testing sets. In order to ensure that no training was performed on the mirror
circuits, we removed any mirror circuits that appeared in the random circuit sets (in actuality, there
were no duplicates).

4.3 Encoding schemes

We used two different encoding schemes for converting each circuit ¢ into a tensor: a shared scheme
for the physics-aware networks and the CNNs on simulated data and a separate scheme for the CNNs
on experimental data For the CNNs on experimental data, we used the same encoding scheme as
Hothem et al.|[2023c]], as we used their data and networks. We now describe the encoding scheme
used with the physics-aware networks and the CNNs on simulated data.

As outlined in Section [3] each width-w circuit ¢ is represented by a three-dimensional tensor
I(c) € {0,1}wxde)xnen describing the gates in ¢ and a matrix M(C) € {0,1}?** describing
the measurement of the qubits. The 4j-th entry of I(c),

1ij(¢) = (Liji(c), - - - Lijn,y (), ©)
is a one-hot encoded vector of what happens to qubit ¢ in layer j. For the ring processor, n., = 11:
one channel for each single-qubit gate and four channels for the CNOT gates. There are four CNOT
channels to specify if the qubit i is the target or control qubit and if the interacting qubit is to the
left or right of qubit 7. We used an additional 4 or 8 CNOT channels for the experimental data. The
first row in M (c) is the bitstring specifying which qubits are measured at the end of c. When c is a
definite-outcome circuit, the second row is its target bitstring, i.e., the sole bitstring supported by the
end-of-circuit measurement distribution when c is executed without error. Both I(c) and M(c) are
zero-padded to ensure a consistent tensor shape across a dataset.

In practice, we make a few modifications to the encoding scheme described above. First, we reshape
I(c) to have shape nd(c) x n., when working with the physics-aware network. This allows each
row to store all the gate information of a circuit layer. Second, we discard M (¢) when predicting the
entanglement fidelity, as entanglement fidelity is independent of measurement error.

Additionally, each circuit ¢ is accompanied by a permutation matrix P(c) € N¥*"errors and sign
matrix S(c) € {£1}W*merrors. The ij-entry of P(c) specifies which error the j-th tracked error
occurring after the i-th layer is transformed into at the end of the circuit. The ij-th entry of S(c)
specifies the sign of that error.
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Figure 2: Predictions and prediction accuracy on real hardware (a) A scatter plot of the PST
predictions on the ibmq_vigo test data by the physics-aware NN (pa-NN, @), CNNs (0-CNN, +),
and fine-tuned CNNs (ft-CNN, ). The top subplot depicts histograms of each model’s predictions,
while the right subplot is a histogram of the PST. (b) The mean absolute error on test data of the
physics-aware NNs (pa-NN), CNNs (o-CNN), and fine-tuned CNNs (ft-CNN) trained on six different
IBMQ processors.

We now present the results from our head-to-head comparison between the physics-aware neural
networks and the CNNs on the 5-qubit datasets used in[Hothem et al| [2023c]|. Figure 2] summarizes
the mean absolute error (MAE) achieved by the CNNs (red +) and the physics-aware neural networks
(orange e on each of the 5-qubit data sets. There is an across-the-board reduction in the MAE between
the CNNs and the physics-aware networks, with an average 50.4% reduction in MAE (o = 15.25%).
The ratio of the likehood of the physics-aware network to the likehood of the CNN (X, the Bayes
factor) given the test data is between 1032 and 10380, which is overwhelming evidence that the
physics-aware network is a better model (K > 102 is typically considered decisive). These results
strongly suggest that the extra infrastructure in the physics-aware models is making a difference.

Of course, it is possible that the improved performance is driven by a difference in model size; however,
this is unlikely. For context, the ibmq_london CNN contains 6,649, 531 trainable parameters
compared to the 1,218, 348 trainable parameters in the physics-aware network. Moreover, models of
equivalent sizes to the physics-aware networks were included in the hyperparameter optimization
space of the CNNs [Hothem et al.,|2023c|]. Therefore, we can conclude that simply changing the
CNN’s parameter count will not lead to a noticeable improvement in performance.

Nonetheless, comparing the physics-aware networks to the CNNss is still somewhat unfair as the
CNNs were trained on out-of-distribution circuits (i.e., low-PST circuits). For a fairer comparison, we
fine-tuned each CNN (Figure 2] purple 4) on the high-PST circuits in each training set. Fine-tuning
generally increased the CNNs’ performances (mean 25% improvement, o = 20%); however, the
physics-aware networks still achieved an average reduction of MAE of 32.2% (o = 15.8%) and
outperformed the fine-tuned CNNs on all six datasets. K is between 1026 and 10237, which is
overwhelming evidence that the physics-aware network is a better model than the fine-tuned CNN.

6 Simulations

One reason why the extra infrastructure of our physics-aware networks may be necessary is that
off-the-shelf networks struggle with modeling coherent errors [Hothem et al., 2023c]]. To test our
hypothesis, we compared the performance of a physics-aware neural network trained to predict the
entanglement infidelity of random circuits executed on a simulated 4-qubit QPU experiencing solely
coherent errors to a hyperparameter-tuned CNN trained on the same task. Figure [3|summarizes the
results.

As expected, the physics-aware networks quantitatively and qualitatively outperform the CNNs. The
CNNss struggle to extract any meaningful features from the training set, and learn to predict ~ 100%
for almost all circuits. Whereas, the physics-aware networks learn to disambiguate between circuits.
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Figure 3: CNN and physics-aware network predictions on simulated data. (a) A scatter plot
of the fidelity predictions on the simulated 4-qubit “ring” processor test data by the physics-aware
NN (pa-NN, @) and CNNs (0-CNN, +). The top subplot depicts histogram of the physics-aware
network’s predictions, while the right subplot is a histogram of the true fidelities. (b) A scatter
plot of the fidelity predictions on the simulated 4-qubit “ring” processor mirror circuit data by the
physics-aware NN (pa-NN, o). Interestingly, the physics-aware network achieves modest prediction
accuracy on this out-of-distribution task, suggesting that the physics-aware network is accurately
learning error rates.

Opverall, the physics-aware networks achieves an average 76.6% reduction in MAE, with a standard
deviation of [FILL IN].

We also found that the physics-aware networks trained on random circuits are modest predictors
of the infidelity of random mirror circuits. This phenomenon is an example of out-of-distribution
generalization, as random mirror circuits contain (noiseless) idling gates on qubits, in addition
to structure not present in random circuits that interacts more severely with coherent errors. On
average, the physics-aware networks achieve an average MAE of .72% on the random mirror circuits.
Although this result does represent a 3.2x increase in MAE, the strong linear relation between the
network’s predictions and the ground truth (r = .91) strongly suggests that the physics-aware network
is learning information relevant to random mirror circuits.

7 Discussion

7.1 Limitations

While our results are a significant improvement over the state of the art, our approach does have
several limitations:

1. As presently conceived, our approach assumes that a processor’s physics are Markovian
(i.e., they do not change over time). However, non-Markovian noise exists in QPUs [?]. In
the future, we plan to address this issue by adding temporal information into our approach,
perhaps with a temporal encoding.

2. Our approach only considers two error classes. Other Markovian error classes, like amplitude
damping, exist, but their error rates contribute to PST and fidelity at order O (&%) [?]. If
necessary, we can easily track these additional errors, and update f to account for their
presence.

3. Propagating errors through a generic circuit, at scale, is computationally challenging, and
so, for many-qubit QPUs, our current approach only works with Clifford circuits. While
our approach works for generic, few-qubit (< 10 qubits) quantum circuits, we will need to
develop approximate methods for propagating errors through generic circuits if we want our
approach to scale for generic circuits.

7.2 Conclusion

In this paper, we presented a new physics-aware neural network architecture for modelling a quantum
processor’s capability that significantly improves upon the state of the art. The new architecture



has two parts: a graph neural network that uses gate information and a QPU’s connectivity graph
to predicting the rates of errors in a circuit layer, and a non-trainable component that turns the
per-layer error rates into a capability prediction. By imbuing the network with knowledge about
how errors propagate through a circuit and restricting the graph neural network to predict error rates,
our new networks outperform state-of-the-art convolutional neural network-based capability models
by ~ 50% on experimental data and ~ 75% in simulated data. We also provided evidence that
these physics-aware networks are learning the physical error rates, as they exhibit modest prediction
accuracy when predicting the fidelity of out-of-distribution quantum circuits.

Understanding which quantum circuits a quantum processor can run, and how well it can run them,
is an important, yet challenging component of understanding a quantum processor’s power. Given
the complexity of the problem, neural networks are likely to play a large role in its solution. As
our results demonstrate, our new physics-aware network architecture should play a critical role in
building fast and reliable neural network-based capability models.
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A Compute resources

All of the physics-aware neural networks were trained using a 6-Core Intel Core 19 processor on a
MacBookPro 15.1 with 32GB of memory. Each model took roughly 15-20 wall clock minutes to
train. Total training time, across the paper, totaled ~ 160 wall clock minutes.

All of the simulations and data pre-processing was performed using a 6-core Intel Core 19 processor
on a MacBookPro 15.1 with 32GB of memory. Each dataset took approximately 1 hour of wall clock
time to create. This total includes the initial circuit creation, simulating the circuits, and encoding
each circuit into a tensor.

B Code and data availability

The simulated 5-qubit data as well as records of all the physics-aware networks can be found
in |Anonymous, The CNNs and 5-qubit experimental datasets used in |[Hothem et al.|[2023c| are
available at Hothem et al.|[2023a]]. The data sets were originally located at|Proctor et al.|[2021b].
Each dataset was released under a CC-BY 4.0 International license.

All simulations were performed using a combination of pygsti version 0.9.11.2 [Nielsen et al., 2020]
and stim version 1.13.0 [|Gidney}, |2021]]. Models were trained and developed using Keras version
2.12.0 [Chollet et al.,|2015]] and TensorFlow version 2.12.0 [Abadi et al.,|2015]]. The physics-aware
network model classes (CircuitErrorVecScreenZErrorsWithMeasurementsBitstrings for
PST and CircuitErrorVec for entanglement fidelity) are available in the Supplementary Material.

C Datasets
Device Geometry Circuit Circuit Circuit Training Validation Test set
types widths depths set size set size size
ibmq_london t-bar mirror 1-5 3-515 711 cir- 104 cir- 91
qubits layers cuits cuits circuits
ibmq_ourense t-bar mirror 1-5 3-515 930 cir- 124 cir- 114 cir-
qubits layers cuits cuits cuits
ibmq_essex t-bar mirror 1-5 3-515 713 cir- 93 86
qubits layers cuits circuits circuits
ibmg_burlington  t-bar mirror 1-5 3-515 682 cir- 90 92
qubits layers cuits circuits circuits
ibmg_vigo t-bar mirror 1-5 3-515 1029 cir- 137 cir- 126 cir-
qubits layers cuits cuits cuits
ibmg_yorktown  bowtie mirror 1-5 3-515 1097 cir- 132 cir- 140 cir-
qubits layers cuits cuits cuits
Ring (x10) ring iid ran- 1-4 1-180 2813 cir- 938 cir- 1250 cir-
dom qubits layers cuits cuits cuits
Ring (x10) ring mirror 1-4 8-174 - - 750 cir-
qubits layers cuits

Table 1: Summary data of every dataset used in the paper. The data for the ring processors is
averaged over the 10 simulated datasets. See Figure ] for images of each processor geometry (i.e.,
the qubit connectivity graph).

We provide additional details on the datasets used in the paper. Table [T|summarizes each dataset. We
tracked all weight-2 errors with support on qubits connected by 2 hops in all the datasets. Below, we
provide additional details on the circuit and error model generating processes.

C.1 Creating the circuits

In this subsection, we go over how the random i.i.d.-layer circuits and random mirror circuits were
created for this paper. We will begin by explaining how we generated the random i.i.d.-layer circuits
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(a) bowtie (c) ring

(b) t-bar

Figure 4: Device geometries. The connectivity graphs for the (a) 5-qubit ibmq_yorktown “bowtie
processor; (b) the remaining 5-qubit experimental “t-bar” processors; and (c¢) the 4-qubit simulated
“ring” processor.

th)

for a 4-qubit ring processor, and then explain the modifications needed to generate the random mirror
circuits. This subsection’s content is conceptual. The actual circuits were created in pygsti using
the code in the Supplementary Material.

Each random i.i.d.-layer circuit ¢ was created by a multi-step process. First, we randomly sampled a
connected subset Q. C {Q0, Q1, Q2, Q3} of qubits for which ¢ is designed for. Then, we uniformly
sampled c’s depth from between 1 and a d,,, a pre-determined, circuit-width-dependent maximum
depth. The depths d,, were selected to ensure that s (c) > 90% given the maximum error strengths
used to create the simulated error model (Section [C.2). Third, we randomly sampled a two-qubit gate
density paq between 0 and 2/3. The density poq determines the average number of two-qubit gates
in each of ¢’s layers. We then sampled each layer i.i.d. from all possible circuit layers on the qubits

in Q..

The random mirror circuits were generated using a similar multi-step process with two differences.
The first difference is that we used a pre-determined maximum depth of d,,, /6. We chose to reduce the
pre-determined, circuit-width-dependent maximum depth so that the deepest random mirror circuits
had roughly the same length as the deepest random i.i.d. circuits. The second difference is that we
created a random mirror circuit on Q.. See |Proctor et al.| [2021a]] for more details.

C.2 Creating an error model

In this subsection, we explain how we constructed the 4-qubit Markovian local coherent error model
used in Section[6] Here we provide a conceptual explanation. The actual error model was created in
pygsti using the code found in the Supplementary Material.

The 4-qubit Markovian local coherent error model was specified using the error generator framework
explained in Section ?? and Blume-Kohout et al.|[2022]]. The error model consists of operation-
dependent errors sampled according to a two-step process. The error strengths for each gate and
qubit(s) pairs were independently sampled. First, we sampled an overall error strength €, for each one-
and two-qubit gate g by randomly sampling from [0, 1] and scaling by a pre-determined maximum
error strength (.025%). Then we sampled the relative error strengths & o1 of each of the 4™ — 1
coherent errors, where n = 1, 2 for one- and two-qubit gates, respectively. We then normalized £ ;.1
to obtain the actual error strengths according to the following equation:

3 5 re
_ ¥ foral, (10)
A/ i852;,i

The re-scaling ensures that, to first-order, gate g contributes approximately ¢, to the circuit’s entan-
glement infidelity (or PST, if appropriate).

€g
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D Networks

D.1 Physics-aware network details

Dataset Metric Model size Nhops Nerrors Dense units

5-qubit t-bar PST(c) 1218348 3 174 [30, 20, 10, 5,
5,1]

5-qubit bowtie PST(c) 1596420 3 210 [30, 20, 10, 5,
5,1]

4-qubit ring sr(e) 299772 2 132 [30, 20, 10, 5,
5,1]

Table 2: Summary data for the physics-aware networks used in the paper.

Table [2] briefly outlines the hyperparameters and model sizes of the physics-aware neural networks
used in this paper. All dense subunits used a ReLLU activation function. All models were trained
using keras’s Adam [Kingma and Ba, [2015]] optimizer with a step size of le — 3 and with MSE
as the loss function. Model training was cut short using early stopping. To help with training, we
scaled PST(¢) and sp(c) by 10000 when training the physics-aware networks. The notebooks in the
Supplementary Material contain more details.

D.2 Convolutional neural network details

Details on the specific convolutional neural networks used in this paper are located in[Hothem et al.
[2023c|]. We fine-tuned each network on high-PST experimental data using the Adam optimizer and
early stopping.

The model architecture for the convolutional neural networks used in our simulations was selected
via hyperparameter tuning. We tuned the number of convolutional layers, dense layers, etc. We
performed XX search rounds using keras — tuner’s built-in Bayesian optimization class.

E Experimental results

In this section we provide prediction plots for each experiment.
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Figure 5: Combined prediction error plot for the simulation

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should

follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

14



s 10
) D . \ C
. oo 100
16 PN
b NN
_ o fONN as
g 8 B
v g 3
S ol 38 £ 9
g, *y - I
5 - *e %% . 14
£ s ° ! 8
£ .
12 .
16 80
-20
8 86 9 92 94 9 98 100
Fidelity (%)
5 10
" o 20w o 00 25 50
. bal 100
16 paNy
95
£ 90
I
4
85
80
10
. 10
o o 00 25 50
© paNN 100
NN
o fONN 9
_ T 9
I
D 85
80
75
9% 98 100 75 80 85 90 95 100
Prediction (%)
s 10
1 o 20 o o 5
- 100
16 Lol
NN
o o fONN 95
s
g 8
: 4 R
g %
i g e
£ s
1z 80
-16
B 75
8 86 9% 92 94 9 98 100
Fidelity (%)
10
s
5
o w0 o o 5
. paN 100
NN
o fONN 95
= %
=
oy o8
4
80
75
"Tea 86 9% 92 94 9 98 100 7 80 85 90 95 100
Fidelity (%) Prediction (%)
o 1 00 25 50
B 9% 98 100 75 80 95 100

90 92 9
Fidelity (%)

85 90
Prediction (%)

Figure 6: All experiment results.
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Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading “NeurIPS paper checklist',
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Yes, we list the main claims and the section in which they are answered below.
(a) We developed a new physics-aware neural network architecture for quantum capability
learning: Section 3]
(b) Our new approach achieves up to a ~ 50% and ~ 76% improvement over state-of-the-
art convolutional neural networks on experimental and simulated data, respectively:
Section[3]and

(c) Our new approach beats state-of-the-art convolutional networks, in part, due to their
improved ability to model coherent errors: Section 6]

(d) Our new approach achieves moderate prediction accuracy on an out-of-distribution
prediction task: Section|[6]
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]
Justification: We include a discussion of the limitations of the work in Section[Z.1]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We do not include any new theoretical results or proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We believe that we provide sufficient details to reproduce the main experimen-
tal results of the paper. Readers should be able to recreate our results based on the details in
the main body of the paper and the appendix, or by using the notebooks in the supplemental
material.
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Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided an anonymized version of the code and novel data used
in the paper with our submission. We provide explicit instructions on how to access the
experimental data in Appendix [B]

Guidelines:

The answer NA means that paper does not include experiments requiring code.
Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section ff] we explain how we processed the experimental and simulated
datasets. Appendices|Cland ?? contain additional details on the datasets, specific network
instantiations, and model training.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars on the mean absolute error of the models’ predictions in
Section[] We do not report error bars on the models’ predictions in the experimental data as
the original paper [Hothem et al.| 2023c] reported their error bars as being trivial. However,
we do provide the standard deviation of the percent change in the MAE across the experi-
mental datasets, and we report log-likelihood ratios for each model on each experimental
dataset, demonstrating substantial improvement by the physics-aware networks.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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10.

Answer: [Yes]

Justification: We provide details on the compute resources and compute time used in this
work in Appendix [A]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We believe that we have conducted our research in a manner that conforms, in
every respect, with the NeurIPS Code of Ethics. The only relevant areas of concern are the
use of deprecated datasets and respect for copyright and fair use. We believe that we have
not violated either of these requirements, although the cloud-accessed processors used in
the experimental section are no longer available (but the datasets are not deprecated).

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

 The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA|

Justification: We believe that there is little to no societal impact of our work. We believe
that the following quote from the checklist guidelines is relevant: “it is not needed to point
out that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.”” While quantum computers might some day have a
large societal impact, our work does not directly improve their ability to run programs with
societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

» If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We explicitly reference each existing dataset in the References, and state each

existing datasets license in Appendix [B] All existing assets were licensed under a CC-BY
4.0 license, requiring proper attribution.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]

Justification: At the time of submission, we have released code used in Section[6]and the
new simulated dataset in the supplemental material. In the future we will release additional
assets, such as the models trained on experimental data, publicly after receiving approval
from our employer.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

e The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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