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Prior work has shown a robust relationship between crackle from high-performance jets and the skewness of 
the distribution of the first time derivative of the pressure waveform; however, prior efforts have charac-
terized this relationship in terms of a linear relationship between the log of the derivative skewness and the 
category scaling responses. While the relationship is linear over important portions of its range, the use of a 
logistic curve fit more fully captures the characteristics of the relationship between log first time derivative 
skewness and category scaling relationship including implied non-negativity, and saturation. Additionally, 
time-varying sound quality metrics including loudness and sharpness have shown sensitivity to jet crackle. 
Accordingly, the subject data of a prior study –in which the “crackliness” of jet sounds was rated– are 
re-analyzed using the derivative skewness of the pressure waveform and sound quality metric-based 
variables as potential predictors of a crackling sound quality. After accounting for nonlinear trends in 
some of the predictor variables, a relationship using the derivative skewness and the standard deviation of 
the sharpness is able to account for all but 1.1% of the variance in the mean subjective crackle ratings for 
the waveforms in the prior study.
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1. INTRODUCTION

A. BACKGROUND ON CRACKLE

Crackle describes the distinctly abrasive quality of high-performance jets;1 many experience
crackle at sporting events featuring flyovers by high-power tactical fighter aircraft without neces-
sarily being aware of the technical term describing the phenomenon responsible for the subjective
experience.2 Crackle has long been of interest within the jet noise community because this sound
quality is a significant contributor to the annoyance elicited by these sounds.1 First described by
Ffowcs-Williams,1 efforts to assess it largely fell into two main approaches: measuring the skew-
ness of the pressure waveform, Sk{p}, and measuring the skewness of the derivative of the pressure
waveform (hereafter, derivative skewness, or Sk{∂p/∂t}).

Skewness is a measure of asymmetry in a distribution of values. Crackling waveforms contain a
multitude of shocks—extremely rapid, almost instantaneous increases in pressure—with interven-
ing periods of slower, smoother decreases in pressure. Consequently, the distribution of derivatives
of a crackling waveform contains a majority population of modestly negative values corresponding
to the gradual pressure decreases, and a smaller number of extremely positive values correspond-
ing to the shocks. Because of the sensitivity of the measure to shock content, crackling jet noise
waveforms exhibit elevated values of derivative skewness.3 Jet noise waveforms also often exhibit
positive pressure skewness,1 though this does not seem to directly affect the sound quality.4 The
key developments in the effort to understand how to correctly measure crackle are summarized
briefly in Reference 5.

B. GEE ET AL. STUDY INTRODUCTION

Arguments over the best physical measure of crackle culminated in a formal jury study on jet
crackle perception, in which the two authors of this presentation were involved.5, 6 31 listeners
evaluated 15 sounds from the F-35, rating the degree of “crackliness” present in each 3-second
sample using a slider. Replays and random access were permitted, and listener responses showed
conclusively that the jet noise crackle percept is strongly associated with the derivative skewness,
Sk{∂p/∂t}, and that the skewness of the pressure waveform, Sk{p}, falls into insignificance when
they are analyzed jointly.5 The analysis in that paper used linear regression with the logarithm
of the derivative skewness to fit the data. It showed conclusively the efficacy of Sk{∂p/∂t} as
a measure of the physical phenomena that lead to the crackle percept. The linear function fit
presented in that work explained 93.3% of the variance. However, the choice of a pure linear
function fit (including to the logarithm of the quantity) is questionable on several grounds, and can
be improved upon as we will demonstrate in this work.

C. LOGISTIC FUNCTION INTRODUCTION

While a linear function fits their study data well, it is worthwhile to consider what happens
outside of the range of derivative skewness values that were evaluated in the subject test, a lim-
itation noted by Gee et al.5 For example, because it is symmetrically distributed, a period of a
cosine wave has Sk{∂p/∂t} = 0. The logarithm is undefined for zero inputs, and complex-valued
for inputs less than zero, resulting in a large class of signals—those with Sk{∂p/∂t} ≤ 0—for
which the expression given in the original study is inadequate. This class of signals also includes
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any time series with a finite but sufficiently small derivative skewness, for which the linear rela-
tion with log10(Sk{∂p/∂t}) results in negative values outside of the scope of possible responses
in the subject test. Similarly, for large enough values of log10(Sk{∂p/∂t}), the relation predicts
outcomes greater than 50, the highest value possible in the subject test. The logistic function, on
the other hand, overcomes these problems: its parameters can be chosen to yield a zero asymp-
tote in the negative direction and an asymptote of 50 in the positive direction, consistent with the
requirements of the experiment. The equation for the logistic curve is

r(x) =
lupper − llower

1 + e−k(x−x0)
+ llower =

50

1 + e−k(x−x0)
, (1)

where r(x) is the predicted rating, llower is the lower rating limit, 0, lupper is the upper rating limit,
50, x0 is the middle of the logistic curve, and k lupper−llower

4
is the slope at the midpoint. These

latter two parameters are conceptually akin to the intercept and slope in a linear equation. We thus
end up with an equation which, similar to the prior linear fit, has two undetermined parameters
to be determined using the data. However, the logistic equation’s structure conveniently avoids
the “out-of-bounds” issues of a linear function fit. This paper consequently takes as one of its
priorities evaluating the improvement in fit that results from using a logistic function fit. In doing
so, however, it is important to realize that the original work was not seeking to predict precise
crackle ratings so much as to define boundaries between categories of crackle ratings; because of
this, there was less rationale for determining the optimal function type in that effort, allowing that
task to be taken up here.

2. REANALYSIS

A. REFITTING USING THE LOGISTIC FUNCTION

The data were refit using a logistic functional form with the lower and upper asymptotes 0 and
50, respectively, as dictated by the experimental constraints, and the linear and logistical function
fits plotted in Fig. 1. The values of x0 and k were chosen to minimize the RMS error; the RMS
error is equivalent to the standard deviation of the residuals, so the typical difference between the
predicted crackle rating and the average subject rating decreases by 24% when a logistic function
is used instead of a linear fit. Thus, instead of the crackle rating prediction typically differing
by 3.3 from the subject rated value, with the logistic fit it typically differs by 2.5. The logistic
function fit avoids the prediction of a negative value for the first experimental data point, which the
linear fit implies if used for predictive purposes. In the plot, the regions where the linear fit yields
out-of-range values are shaded gray. Several groups of points in the figure have been marked with
ovals; the logistic curve passes notably closer to the points in the first two groups that are marked
by light blue (cyan) ovals. However, the group of points marked by the dotted red oval paints a
more complicated picture because they are non-monotonic, potentially suggesting the presence of
factors in crackle perception not fully accounted for by derivative skewness. In one instance, they
are even non-monotonic with widely non-overlapping standard error intervals. Non-monotonicity
is surprising because if we have:

1. a metric which completely describes human response to crackle, and

2. have faithfully reproduced the sounds based on that metric, then we would expect that
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Figure 1: Linear and logistic fits to the human subject crackle ratings with respect to the base
ten logarithm of the derivative skewness. The domain for which the linear fit gives of range
values is shown in grey. The logistic fit results in a 24% decrease in RMS error.

3. a monotonic increase in the independent variable leads to a monotonic increase in the de-
pendent variable.

A completely descriptive metric should preserve ordering under these circumstances. Human re-
sponse is intrinsically noisy or uncertain, so some finite scatter in the data is expected. However,
considering the second and third points in the inset of Figure 1 the substantially disjoint calculated
error bars complicate an appeal to experimental uncertainty as an explanation.

B. REANALYSIS USING SOUND QUALITY METRICS

The above analysis, however, takes certain assumptions for granted. To begin with, it is worth
asking what aspect(s) of crackle the derivative skewness, Sk{∂p/∂t}, is measuring. It is a nearly
ideal measure for assessing the presence of nonlinear steepening and shocks and, given adequate
measurement system capabilities, assesses the presence of these features in the waveforms well.
However, this approach risks focusing entirely on the physical processes which lead to crackle
rather than on the attributes that make up the perceptual experience of crackle. The human hear-
ing system has differing sensitivity to different frequencies of sound and, consequently, the same
sound (with the same derivative skewness) that produced a crackling sound quality might be en-
tirely inaudible if played back at too high of a frequency or undergo other more subtle alterations
in perceived character under lesser shifts in frequency. Additionally, it is not automatically clear
which aspects of the sound lead to the human experience of a succession of shock waves. Is the

S. H. Swift and K. L. Gee Reanalysis of crackle data using logistic fits and sound quality metrics

Proceedings of Meetings on Acoustics, Vol. 50, 040009 (2024) Page 4

 08 O
ctober 2024 16:57:12



perceptual essence of a crackling waveform to be found in its temporal concentration of loud-
ness, or the temporal concentration of high frequencies, or the coincidence of the two, or some
other factor? Consequently, it makes sense to explore the possibility that the use of sound quality
metrics—as mathematical models of key aspects of the hearing system—could enable an improved
picture of crackle as a perceptual entity, with associated improved predictive capability, and all of
the attendant community noise management benefits.

With these objectives in mind, we turn to a collection of metrics that have been shown to be
associated with crackle in a prior informal listening study7 that focused on the sound quality of
altered jet noise waveforms; the metrics included in this prior work were:

• instantaneous loudness distribution,

• instantaneous sharpness distribution,

• distribution of the product of instantaneous loudness and instantaneous sharpness,

• correlation between instantaneous loudness and instantaneous sharpness,

• roughness, and

• sharp roughness.

Though extremely promising, the latter two metrics are not explored on this occasion because these
codes, which implemented roughness based on the Cambridge loudness metric, have not yet been
concretely validated by comparison with either human subject data or a metric well anchored to
such data. Based on the results of the prior informal test, the following more adequately validated
metrics were explored (with the theoretical rationale for each in parentheses):

• mean sharpness (control on spectral effects)

• standard deviation of instantaneous loudness (exploits loudness concentration),

• skewness of instantaneous loudness (exploits loudness concentration),

• skewness of short-term loudness (exploits loudness concentration),

• skewness of instantaneous loudness normalized by short-term loudness (exploits loudness
concentration),

• standard deviation of instantaneous loudness effectively normalized by short-term loudness
because the signals were normalized in loudness (exploits loudness concentration),

• standard deviation of instantaneous sharpness (exploits spectral concentration),

• skewness of instantaneous sharpness (exploits spectral concentration),

• skewness of instantaneous sharpness normalized by short-term loudness (exploits spectral
concentration),

• standard deviation of instantaneous sharpness normalized by short-term loudness (exploits
spectral concentration),
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Sk{S} Sk{N} Sk{S’} Sk{NS} σN ρNS σS µS σS/µS

Sk{S} 1.0000 0.8434 0.8608 0.7653 0.5437 0.7172 0.3160 -0.0721 0.3855
Sk{N} 0.8434 1.0000 0.9881 0.8278 0.6800 0.6240 0.3814 -0.4310 0.5186
Sk{S’} 0.8608 0.9881 1.0000 0.8590 0.7103 0.6568 0.4335 -0.3910 0.5612
Sk{NS} 0.7653 0.8278 0.8590 1.0000 0.8952 0.8901 0.8009 -0.0043 0.8518

σN 0.5437 0.6800 0.7103 0.8952 1.0000 0.7189 0.8830 -0.0679 0.9585
ρNS 0.7172 0.6240 0.6568 0.8901 0.7189 1.0000 0.7739 0.3723 0.7393
σS 0.3160 0.3814 0.4335 0.8009 0.8830 0.7739 1.0000 0.3017 0.9739
µS -0.0721 -0.4310 -0.3910 -0.0043 -0.0679 0.3723 0.3017 1.0000 0.0933

σS/µS 0.3855 0.5186 0.5612 0.8518 0.9585 0.7393 0.9739 0.0933 1.0000

Table 1: Correlations between sound quality metrics.

• skewness of the product of instantaneous loudness and instantaneous sharpness (exploits
coincidence between spectral and loudness concentration), and

• correlation between instantaneous loudness and instantaneous sharpness (exploits coinci-
dence between spectral and loudness concentration).

To provide some context for these metrics, while not originally thought to be available for con-
scious perception,9 the instantaneous loudness has been seen as useful in characterizing certain
perceptual “textures” that may or may not be appropriately called loudness.10 The short term loud-
ness on the other hand is thought to be the loudness that one typically experiences at a moment
in time.9 In dividing the instantaneous loudness by the short term loudness at the same point in
time, something akin to a coefficient of variation (the standard deviation divided by the mean of a
quantity) is produced; however, unlike a more globally oriented coefficient of variation, the fluctu-
ation in the instantaneous loudness is normalized by the local loudness (which varies significantly
in many of the waveforms considered) rather than a less relevant global value. The standard devia-
tion by itself gives an estimate of how much a quantity varies; for crackle, this is important because
the shocks produce peaks in loudness and sharpness, while the spaces between the shocks result in
lower values for both quantities than would be present in a noise spectrum with the same spectral
content making the variation an indicator or crackle. The correlation measure uses the coupling
between peaks in loudness and sharpness in crackling waveforms as a crackle indicator. Given the
role of derivative skewness in crackle research generally and the prior evidence of crackling wave-
forms producing skewed distributions of these variables, these skewness-based measures and other
metrics seemed appropriate.7 These metrics can be calculated using codes found on the MATLAB
file exchange.8 The correlation values between the sound quality metrics considered are given in
Table 1.

C. SOUND QUALITY METRIC PROCEDURES

In the original subject test, the loudness of the sounds fell within a specified range of 23.4 ±
0.6 sones. In order to ensure the loudness of the sounds fell within this range, the level of the sound
was iteratively varied with the calibration factor C23.4 updated as C23.4 → C23.4 × (23.4/µloud)

2
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Figure 2: Example loudness trace with truncation limits shown. Outside the limits noticeable
transient behavior associated with signal onset/offset occur.

where µloud is the mean short-term loudness for each signal. Beginning with a calibration value of
C23.4 = 1 for all signals and following this process for each signal, the mean loudness of all signals
was within 7.1× 10−4 of the target value within two iterations.

The short-term loudness of a steady sound takes a certain amount of time to achieve its asymp-
totic value and similarly takes time to decay after signal cessation. In order to avoid the resultant
transient periods associated with the beginning and ending of the signals, the first 145 and the last
62 samples of the metric variables were discarded from all analyses after identifying these tran-
sient intervals through visual inspection of all time series. The truncation bounds are shown for
reference with an example loudness trace in Fig. 2. All subsequent analyses thus involve only the
remaining intermediate values.

3. RESULTS

The metrics identified above were evaluated and their statistical associations with the dependent
variable (crackle predictions reported during human subject testing) were assessed using linear re-
gression. The relationship between derivative skewness and crackle prediction was also revisited in
order to avoid introducing an unfair procedure by hunting for better curve fits using only the sound
quality metrics, and ignoring derivative skewness in some of the more sophisticated analyses.

A. RAW SINGLE-METRIC PREDICTIONS

The single-metric predictors outlined above were calculated and processed as explained and the
resultant relationships with rated crackle are shown in Fig. 3; in each instance where they occur, S
is sharpness, N is loudness, µ is mean, σ is standard deviation, ρ is correlation, and Sk is skewness;
primes on a variable indicate short-term rather than instantaneous values. As a starting point for
evaluating which model variables proved most indicative in terms of explained variance, r2, the
subparts of the figure are given in ascending order of variance explained by a linear dependence on
the proposed variable (i.e., ascending r2 values); they are shown in Table 2 in the same order.
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Figure 3: Raw subject crackle ratings shown as a function of each of the proposed sound
quality-based predictors with linear fit and 95% confidence intervals. Variables are presented in
order of increasing r2 values. Nonlinear trends in data limit linear explanatory efficacy in some
instances, particularly for σN and σS .
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Metric µS Sk{S} Sk{N} Sk{N’} σN σS/µS σS ρS,N Sk{NS}
r2: linear 3.6% 36.8% 44.5% 50.0% 72.2% 78.8% 79.6% 84.7% 88.9%

r2: log a+ x N.C. N.C. N.C. N.C. 90.0% N.C. 95.7% N.C. 90.8%

Table 2: Variance explained by linear and log(a + x)-form nonlinear single-variable sound
quality-based models. N.C. indicates quantity not calculated because nonlinearity did not appear
to be a main issue.

The mean of sharpness was not expected to be particularly indicative of a crackling sound qual-
ity because the variation rather than the average quantity is believed to be the important variable,
but seemed worth testing in case it affected the relationship in some way. However, it accounted
for only 3.6% of the variance and so is not shown. Sk{S} and Sk{N} are modest predictors of
crackle, predicting 36.8% and 44.5% of the variance, respectively; however, their product is a
strong predictor of crackle, predicting 88.9% of the variance. A likely explanation for this is that
the shocks in crackle-containing waveforms lead to concentration of both sharpness and loudness
in time, so the skewness of their product, Sk{NS}, exhibits much greater sensitivity to crackling
sound quality than either variable independently, predicting 88.9% of the variance. The correlation
coefficient between the instantaneous loudness and the instantaneous sharpness, ρSN , similarly
performs well by exploiting the strong relationship between loudness and sharpness in crackling
signals, predicting 84.7% of the variance. The concept of a coefficient of variation (the standard
deviation of a quantity divided by its mean) seemed potentially useful in this venue. Consequently,
the relationship of the sharpness coefficient of variation to the response variable seemed worth
including, and accounted for 78.8% of the variance.

The standard deviation of loudness, σN , and sharpness, σN , were both fairly strong predic-
tors of crackle, predicting 72.2% and 79.6% of the variance, respectively, and also make intuitive
sense: crackle results in large variations in both loudness and sharpness. The standard deviation of
loudness is also a de facto coefficient of variation because the loudness of sounds was kept uniform
in this test and thus gives us a qualitative idea of the proportional impact of this variation on the
texture of the sound. Despite the relatively large portion of the variance explained by linear mod-
els on σN and σS , it is immediate clear that the relationships between these metrics and crackle
perception are quite nonlinear and, consequently, the r2 value may not truly capture the strength
of a potential causal relationship without further processing.

B. LOG-TRANSFORMED SINGLE-VARIABLE PREDICTORS

This caveat regarding nonlinearity is particularly true for the plot of σS , where the data exhibit
a very strong approximately monotonic relationship between σS and crackle rating, but are clearly
grouped along a curve rather than following the straight line with which linear regression would
attempt to fit the data. Concerns regarding the nonlinear form of the relationship appropriately
apply to σN as well. The growth of crackle rating with σS and σN is similar in form to a plot of the
logarithm; consequently, we next try transforming the independent variable using the form

log10 (a+ x) (2)

to determine if this is an appropriate transformation to address the nonlinearity in our model. The
value of a in the model is determined by optimization of r2, which effectively means that a has been

S. H. Swift and K. L. Gee Reanalysis of crackle data using logistic fits and sound quality metrics

Proceedings of Meetings on Acoustics, Vol. 50, 040009 (2024) Page 9

 08 O
ctober 2024 16:57:12



chosen to make the model as linear as possible. With this transformation the portion of the variance
explained by σN and σS rises substantially from r2 = 0.72155 and r2 = 0.79646, respectively, to
r2 = 0.90042 and r2 = 0.95724. Thus both variables are potentially very strong descriptors of
crackle once the nonlinearity in the relationship is taken into account. Additionally, when this
modification is applied to Sk{∂p/∂t}, the variance explained increases from 93.3% reported in the
study of Gee et al.5 to 95.6%, making σS and Sk{∂p/∂t} the two best single-variable predictors
of crackling sound quality identified within this study when employing this transformation.

The log transformation procedure of course reintroduces one of the issues which this paper set
out to address: that of fitting data using functional relationships that have a domain which fails to
include and give reasonable values for all of possible values of the independent variable. While
these data happen to be compatible with this nonlinear transformation, nothing prevents one of the
independent variable values from being small enough that a+ x assumes a negative value causing
log a + x to yield a nonsensical result. We could solve this by imposing a piecewise argument
outside the logarithm so that the independent variable is expressed as

0, if x ≤ 10c/b−a

b log10(a+ x) + c, if 10c/b−a < x < 10
50−c

b − a

50, if 10
50−c

b − a < x,

 (3)

or we could impose a similar piecewise argument inside the logarithm so that the possibility of an
out-of-bounds argument to the logarithm is foreclosed. Using the logistic function within the trans-
formation could also keep all inputs in bounds and would have the additional benefit of maintaining
derivative continuity.

C. LOGISTIC FUNCTION FIT TO DERIVATIVE SKEWNESS

Recalling the earlier success with reducing RMS error by fitting a logistic function to the
derivative skewness, we again consider that form here. Because the logistic function better cap-
tures the particular form of the nonlinearity of the relationship of the logarithm of the derivative
skewness with crackle rating, this model predicts 96.1% of the variance in the data, making it the
best single-variable predictor identified in this study, as shown in the lower left panel of Fig. 4.

D. TWO-VARIABLE PREDICTION USING DERIVATIVE SKEWNESS AND STANDARD
DEVIATION OF SHARPNESS

The two most descriptive metrics—the logistical fit to the logarithm of Sk{∂p/∂t}, and the
logarithmically transformed σS—were placed in a linear regression together, and the resultant fit
is shown in Fig. 5, where 97.8% of the variance is explained by their linear combination.
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Figure 4: Raw subject crackle ratings shown as a function of each of the proposed measures
with nonlinear adjustments as indicated in the x-axis labels. After applying a logarithm trans-
formation to deal with their nonlinearity, the variance explained by σN and σS increases sub-
stantially, and the skewness-based measure’s explanatory capacity increases marginally. When
a logistic fit is applied to Sk{∂p/∂t}, 96% of variance is explained.
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Figure 5: The logistic fit to logarithm of the derivative skewness and the log(a + σS) are used
together in a linear regression to explain 97.89% of the variance.

E. TRANSITIONAL FIT TO DERIVATIVE SKEWNESS AND SHARPNESS MEASURES

Because the logistic fit to the logarithm of the derivative skewness and the sharpness each have
differing regions in which they are relatively poor predictors of crackling sound quality (the lower
crackle values for sharpness, and the higher for derivative skewness) one could envision a blended
function which performed better than either alone. This could, for example, be accomplished by
expressing the two relationships under consideration as

a1 = 27.4612× log10(−0.0350 + σS) + 59.9564,

and
a2 = 50/(1 + exp(−1.86× log10(Sk{∂p/∂t} − 0.21)),

and using a logistic function

ϕ = 1/(1 + exp(−0.288(a2 − 21.94)))

to weight the two functions as
a1 × ϕ+ a2 × (1− ϕ).

When this approach is followed, the resultant prediction capitalizes on the seeming heteroscedas-
ticity in each predictor by combining the low-scatter regions of each to obtain a relationship which
predicts 98.87% of the variance as seen in Fig. 6.
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Figure 6: The logistic fit to logarithm of the derivative skewness and the log(a+σS) are combined
together using a logistic blending function to explain 98.87% of the variance.

However, at this point it is worthwhile to recall the statement famously attributed to Johnny von
Neumann11 that “with four parameters I can fit an elephant, and with five I can make him wiggle
his trunk.” Given the degree of optimization and the number of parameters involved in obtaining
the final relationship, substantial caution should accompany any effort to apply this relationship
outside of the present data set before rigorously testing it using a wider database of crackle rating
data. Particularly, the qualitative result that Sk{∂p/∂t} performs better at low crackle ratings and
σS performs better at high crackle ratings needs to be evaluated using data from other studies. For
example, a larger study of crackle rating was performed at Brigham Young University in collab-
oration with Blue Ridge Research and Consulting. The data from that study would be a natural
choice for evaluating the generalizability of the metrics identified in this study, and the predictive
scope of the relationships identified between them and rated crackle.12, 13 Additionally, repeating
this analysis with a greater degree of statistical rigor (for example using leave-one-out cross val-
idation) could allow us to more easily assess whether these models are justified or suffer from
overfitting. Furthermore, several of the runners up—σN , Sk{NS}, σN , ρSN—also had regimes
for which they performed well; consequently, a variety of regime-specific combinations could be
explored. Finally, the metrics that have performed well in previous studies but were not included
in this study—in particular, roughness and sharp roughness—should be included in a definitive
analysis.

4. CONCLUSION

We reanalyzed published subject response data from a crackle rating study by Gee et al.5 by
applying sound quality metrics to the original waveforms as well as a collection of transforma-
tions, including a logistic curve fit, to address nonlinearity between the dependent and independent
variables. Gee et al.’s original linear fit accounted for 93.3% of the variance using Sk{∂p/∂t}; this
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rose to 95.6% when using a transformation of the form log10(a + bx). The standard deviation of
the sharpness σS explained 79.6% of the variance as a single linear variable; however, this rose to
95.7% when a transformation of the form log10(a+ bx) was employed to deal with the functional
relationship’s nonlinearity. When a logistical function of Sk{∂p/∂t} was fit to the subject data,
the portion of the variance explained rose to 96.1%. When the logistical function of Sk{∂p/∂t}
was used in a linear regression with the standard deviation of the sharpness transformed using
log10(a + bx), the resultant linear combination explained 97.9% of the variance. A final fit taking
advantage of the superior prediction quality from Sk{∂p/∂t} at low crackle levels and σS at higher
was constructed using a logistic transition between the two, and this accounted for 98.9% of the
variance; however, this last result effectively rests on generalizing the qualitative performance of
the two component metrics within this study, and should be confirmed using data other than that
originally used to devise it before applying it more generally. Additionally, future efforts should
include leave-one-out cross validation to assess whether and to what degree overfitting may have
occurred.

5. LINGERING QUESTIONS

Despite predicting all but a trivial portion of the variance in crackle ratings from the study of
Gee et al.,5 a few limitations exist. Although the study’s signals were available for reanalysis, these
were the signals as used to drive the loudspeaker rather than as received by listeners. Although the
loudspeaker’s amplitude frequency response was verified and acceptable, minor phase differences
may exist between the output signal and the received signal and, if present, could have affected
both the received derivative skewness as well as the sound quality metric values.

Additionally, given the minimal unexplained variance, small differences in loudness normalization—
loudness significantly affects crackle perception—may explain some of the residual variance; how-
ever, without knowing the exact calibrations of the signals, this possibility is difficult to assess.

However, given the strength of the result, it is difficult to fret too much about whether this may
have robbed us of some portion of the remaining 2.2% or 1.1% worth of conceivable variance,
depending on which of the two final formulae one employs.
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