

View

Online


Export
Citation

OCTOBER 22 2024

Computational modeling of phononic pseudocrystal
isolators 
S. Hales Swift; Chandler B. Smith; Rick A. Kellogg; Ihab F. El-Kady; Jerry W. Rouse

Proc. Mtgs. Acoust. 51, 022007 (2023)
https://doi.org/10.1121/2.0001968

Articles You May Be Interested In

Large-scale simulation of high-intensity focused ultrasound with Sierra/SD

Proc. Mtgs. Acoust. (October 2023)

 21 O
ctober 2024 23:55:55

https://pubs.aip.org/asa/poma/article/51/1/022007/3317656/Computational-modeling-of-phononic-pseudocrystal
https://pubs.aip.org/asa/poma/article/51/1/022007/3317656/Computational-modeling-of-phononic-pseudocrystal?pdfCoverIconEvent=cite
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
https://crossmark.crossref.org/dialog/?doi=10.1121/2.0001968&domain=pdf&date_stamp=2024-10-22
https://doi.org/10.1121/2.0001968
https://pubs.aip.org/asa/poma/article/51/1/022006/2918294/Large-scale-simulation-of-high-intensity-focused
https://e-11492.adzerk.net/r?e=eyJ2IjoiMS4xMiIsImF2IjozMzYxNTcyLCJhdCI6MTA0NTAsImJ0IjowLCJjbSI6NDE2NzY3NzcxLCJjaCI6NjExNDcsImNrIjp7fSwiY3IiOjQ1NjcwMjgyNSwiZGkiOiJlYmNiNTBiMDg3MjQ0NGE3ODE2ZjgxZDBmOTE0NjQ2ZiIsImRqIjowLCJpaSI6IjQ2NjI5YWJiZjM3OTRlYjBhODc3OTFlNzQ4Zjg4ZTYzIiwiZG0iOjMsImZjIjo2MzE2NTA4MDEsImZsIjo2MTkxODAyNzQsImlwIjoiMjAuODEuMzQuMTc3IiwibnciOjExNDkyLCJwYyI6MCwib3AiOjAsIm1wIjowLCJlYyI6MCwiZ20iOjAsImVwIjpudWxsLCJwciI6MjQwMDM3LCJydCI6MSwicnMiOjUwMCwic2EiOiI1NiIsInNiIjoiaS0wNGVjMDMxM2ExYTk5N2JkYyIsInNwIjozMDUxNTM2LCJzdCI6MTI4ODE5NiwidWsiOiJ1ZTEtNWZhMjE3M2JkOWY0NDZlMDhmOGI5YWFkNmY4YmFiZWYiLCJ6biI6MzA3MzcwLCJ0cyI6MTcyOTU1NDk1NTI3OCwiZ2MiOnRydWUsImdDIjp0cnVlLCJncyI6Im5vbmUiLCJ0eiI6IkFtZXJpY2EvTmV3X1lvcmsiLCJ1ciI6Imh0dHBzOi8vYWNvdXN0aWNhbHNvY2lldHkub3JnL2FzYS1tZW1iZXJzaGlwLz91dG1fc291cmNlPVBERiUyMERvd25sb2FkcyZ1dG1fbWVkaXVtPUJhbm5lciUyMEFkJnV0bV9jYW1wYWlnbj1BU0FfTWVtYmVyJTIwU29jaWV0eSUyMFByb21vdGlvbl9KdW5lJTIwMjAyMCZ1dG1fY29udGVudD1odHRwcyUzQSUyRiUyRmFjb3VzdGljYWxzb2NpZXR5Lm9yZyUyRmFzYS1tZW1iZXJzaGlwJTJGX0p1bmUlMjAyMDIwX1BERiUyMERvd25sb2FkcyJ9&s=5-LqZ1UA_92myOyyhdCVZl_c4CU


Volume 51 http://acousticalsociety.org/

184th Meeting of the Acoustical Society of America
Chicago, Illinois

8-12 May 2023

Computational Acoustics: Paper 4pCA2

Computational modeling of phononic pseudocrystal
isolators
S. Hales Swift
Department of Photonic and Phononic Microsystems, Sandia National Laboratories, Albuquerque, NM,
87114; hales.swift@gmail.com

Chandler B. Smith
Simulation Modeling Sciences, Sandia National Laboratories, Albuquerque, NM, 89123; 
chasmit@sandia.gov

Rick A. Kellogg
Sandia National Laboratories, Albuquerque, NM, 87123; rakello@sandia.gov

Ihab F. El-Kady
Department of Photonic and Phononic Microsystems, Sandia National Laboratories, Albuquerque, NM, 
87123; ielkady@sandia.gov

Jerry W. Rouse
Sandia National Laboratories, Analytical Structural Dynamics, Albuquerque, NM, 87123; 
jwrouse@sandia.gov

Recent technical efforts at Sandia National Laboratories have identified a need for broadband high-
frequency vibration isolation spanning a wide range of ultrasonic frequencies. To fill this need, phononic 
pseudocrystal isolators based upon a structure with cyclic symmetry and radial self-similarity was developed 
that can potentially suppress frequency transmission across a range far larger than that observed for normal 
phononic crystals. To enable calculation of transmission characteristics for these articles, boundary 
conditions enabling half-channel calculations are proposed and their validity demonstrated for both 
longitudinal and shear waves. These boundary conditions also apply to conventional phononic crystals and 
can result in significant savings when properly applied for normal incidence longitudinal and shear waves. 
Additionally, this paper demonstrates and gives formulas for implementing energy density methods that 
can be used to track wave extinction within phononic pseudocrystals as well as canonical phononic crystal 
structures.
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1. PROBLEM INTRODUCTION

Isolating specific regions or parts to exclude or contain vibration is important. Whether isolat-
ing optics from vibration, separating mechanical power and data channels to prevent mechanical
crosstalk,1 or otherwise containing or excluding vibration in a particular region, the ability to con-
tain vibration within a specified frequency range in a specified region to a specified degree is key.

The present effort originated with a requirement for vibration isolation of 20 dB or more across
a “wide” frequency range, wide in this case meaning a suppression range 50% above and be-
low a center frequency, resulting in a ratio between the upper and lower bounds of the suppres-
sion range of 3. The geometry of interest for this problem was also roughly annular. Conse-
quently, we opted for an unconventional approach. A pseudocrystal with cyclic symmetry in
the circumferential direction, but growing geometrically in the radial direction with row num-
ber would allow the resultant structure to fit nicely into an annular footprint, while also block-
ing a frequency range that would be expected to expand with the ratio between the outer and
inner radii. A 2-D example of this family of pseudocrystal configuration is shown in Fig. 1.

Figure 1: Example annular phononic
pseudocrystal with hole size growing geo-
metrically with row number in the radial
direction. Case has 120 holes per ring, geo-
metric growth rate 1.05, and filling fraction
of 0.42. The size outer-to-inner radii ratio
is close to 10.

Conventional phononic crystals are structures
that have a strict geometric or material periodicity;
in some instances, owing to the pattern of scattering
produced, such structures exhibit band gaps: ranges
of frequencies at which no wave can propagate (see
Ref. 2 for a general review). If a wave were initi-
ated with a frequency within this prohibited range
at the crystal boundary it would be reflected with
its remnants in the crystal region evanescing. When
modeling phononic crystals to find band gaps, a unit
cell—the smallest piece of the structure that can
completely tessellate (tile) the structure—is identi-
fied, and Bloch-Floquet boundary conditions are im-
posed, which represent the propagation of unattenu-
ated plane waves through the unit cell over the range
of unique wavenumbers (representing among other
things the possible directions in which waves could
be traveling through the material) or, as is more fre-
quently done, the boundary of that set of wavenum-
bers. The unit cell and the associated boundary is
shown in the inset to Fig. 2, where the center Γ,
the center of the x side X , and the corner M—the
symmetry points that serve as the boundaries for the
Bloch-Floquet evaluation—are shown. The eigenmodes and eigenvalues are then evaluated over
these wavenumber combinations to determine the allowed modes and their frequencies as shown
in Fig. 2. The polarization—the source of the colorization in the plot—is given by

P =

∫
|u|2dV∫

|u|2 + |v|2dV

S. H. Swift et al. Computational modeling phononic pseudocrystal isolators

Proceedings of Meetings on Acoustics, Vol. 51, 022007 (2024) Page 2

 21 O
ctober 2024 23:55:55



and can be used to easily identify longitudinal modes (red) and shear modes (blue) in the
dispersion. The total band gaps associated with our unit cell are shown as red rectangles.
The calculation process used to produce the band diagram assumes that the unit cell is infinitely
repeated, a condition which is, however, never true in nature: phononic crystals are nevertheless
known to perform well in suppressing vibration at frequencies sufficiently within the band gap if
the barrier contains around 5 similar unit cells in the direction of propagation.

Figure 2: 2-D band structure calculated in
COMSOL for a hole in a square unit cell with
hole radius equal to 0.43 times the square side
length, and the material aluminum.

In our original design approach, instead of
interpreting similar to mean identical (as in
conventional phononic crystals) we interpreted
it to mean that unit cells exhibited overlapping
band gaps; consequently, after identifying a
unit cell with acceptable structural properties
(constant filling fraction of 0.42), and a reason-
ably prominent band gap (upper to lower gap
edge frequency ratio of fup/flow = 1.33), a
growth rate of around 1.05 was selected that al-
lowed the main band gap to overlap for nearly
six unit cells (1.056 = 1.34). Numerical exper-
iments were conducted to determine the vibra-
tion suppression effected by this design. Alu-
minum material properties were used for these
simulations.

Contemporary with these numerical experiments, a literature search turned up some 1-D exam-
ples of various kinds, but no truly 2-D examples. The reports of the 1-D examples show the ability
to affect relatively large ranges of frequencies of surface waves using grooves with “chirped” spac-
ing3 or acoustics waves traveling through a “chirped” arrangement of cylinders.4 Radial phononic
crystals have also been explored.5 However, it appears that the abstract and ASA presentation6

associated with this POMA are the first published results for self-similar 2-D/2.5-D pseudocrys-
tals. Between the initial presentation and the release of this proceedings, further presentations and
papers have begun to explore this space.7–10

The lack of attention phononic pseudocrystals garnered prior 2023 is due in part to the modeling
challenges they pose. The band gaps and performance of canonical phononic crystals are straight-
forward to calculate because of their exact periodicity. Absent exact periodicity, band structure-
type calculations are less straightforward,11 although the same vibration suppression phenomena
and more are ultimately achieved. For example, we initially assumed suppression would follow
the band gaps associated with the approximate local unit cell. However, an Acoustics (not Solid
Mechanics) simulation of the interposer class of Fig. 1 expected by this logic to block a range
with an upper-to-lower band edge frequency rul < 1.33 × 1.0528 = 5.2, but the calculated 20+-
dB suppression range is closer to 88, 16.9 times that initially expected. With such performance
possibilities on the table, methods for predicting the performance of these structures in terms of
insertion loss are important. A discussion of the challenges and methods associated with phononic
pseudocrystal performance calculations comprise the remainder of this paper.
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2. COMPUTATIONAL CHALLENGES AND SOLUTIONS

A. SIZE OF THE UNREDUCED PROBLEM

The key performance characteristic of the phononic pseudocrystal interposer is its insertion
loss. Resolving high frequencies necessitates a sufficiently dense grid, preferably with greater than
8 points per wavelength. The solid medium being simulated is aluminum, which has longitudinal
and shear wave speeds of 6420 and 3040 m/s, respectively. The shear wave speed is the slower, so
properly resolving a given frequency requires a grid element length scale of l ≤ 3040/8f = 380/f .
If the highest frequency of interest were 30 MHz, as could very well be the case for an interposer
with a slightly smaller inner radius, the grid would need to be l ≤ 380/30×106 = 1.2667×10−5 m
which, if we start with a 10-cm by 10-cm by 3-mm-thick quarter domain as an estimate loosely
based on the case shown above, results in something like 0.1 × 0.1 × 0.003/(1.2667 × 10−5)3 =
1.476 × 1010 elements (where hex elements have been assumed for ease of calculation), without
considering any extra refinement required or savings associated with the holes. Consequently,
a direct, brute force approach quickly becomes untenable, particularly for 3-D calculations as
the frequency is increased with the associated roughly cubic increase in the required number of
elements.

Because of this rapid increase in required resources with volume at high frequency, a number
of simplifying approaches are pursued. These efforts to reduce the size of the problem often focus
on exploiting symmetries of geometry and scale. Some of these potential exploits are intuitive and
easily justified while others require further discussion and assumptions to establish their validity.

B. GEOMETRIC REDUCTIONS OF THE PROBLEM SIZE

i. Half symmetry plane

Figure 3: Example half plane
case.

Among the most easily justified simplifications is a half
symmetry plane, shown in Fig. 3. Provided the holes are ar-
ranged with a hole or gap toward the side of the planar region
receiving excitation, the problem always has at least one natu-
ral symmetry plane with regards to both a plane wave proceed-
ing from the left (signified with red arrows) and the interposer,
so cutting the domain in half and imposing symmetry on the
cut line is—at least for longitudinal waves—a natural choice, allowing immediate simplification.
A low-reflecting boundary condition may be applied on the right, with symmetry on the upper side,
and a boundary load on the left. Energy density based measures can be applied that consider the
ratio of the energy per unit area enclosed by and excluded by the interposer region (see Sec. 3), or
transmission loss can be considered (see Sec. 4), though care should be taken in defining the where
the associated integrals are evaluated.

ii. Quarter symmetry plane

Figure 4: Example
quarter plane case.

The quarter-domain shown above requires a bit more justification as it
is a more artificial choice. If waves are entering the domain from the left,
then waves affecting the back (right) half of Fig. 3 already had a better
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opportunity to enter through the front (left) half. The shadowed side would not be expected to
transmit anything that the first half blocked as the first half already encompasses the range of wave
directions encountered in the full geometry; it thus remains a reasonably representative approach
that captures all of the possible incoming plane waves that could impinge upon the interposer. We
typically imposed a low reflecting boundary condition on the wall on the shadowed side (right
side in Fig. 4) to avoid the possible creation of an artificial edge transmission state or trapping
vibration within the domain. A cyclic boundary could also be appropriate if the symmetry of the
structure supports this (as it does in our case). The cyclic condition would ensure that waves exiting
at the lower right corner would re-enter at the upper left going downward instead of rightward,
effectively modeling a complete square domain with a complete interposer as in Fig. 1 with plane
waves entering from half of each side.

iii. Wedge or channel calculations

Waves that travel within the interposer could be expressed as a family with a radial and cir-
cumferential wavenumber on the outer boundary. While the radial wavenumber could assume
any desired value, the circumferential wavenumber must be quantized to satisfy cyclic periodicity.
Some fraction of the interposer can be modeled and, for allowed circumferential wavenumbers, the
result can tessellate the interposer. This would yield a representative set of non-radial waves while
reducing the geometry of the problem.

iv. Single-channel calculation

Figure 5: Example single channel case.
Further assumptions enable further reduc-

tions. As the outer/inner radius ratio grows,
ro/ri >> 1, the set of initial incoming wave angles that reach the interior shrinks. In the limit,
only radial waves need be considered. Consequently, a single channel of holes (as shown in Fig. 5)
increasingly becomes a reasonable representative geometry. Cyclic boundary conditions are im-
posed on the “pie slice cuts”, a boundary load is applied on the “crust” end with a low-reflecting
boundary condition on the “bite” end. Wave displacements can still be in the radial direction (lon-
gitudinal) or in the vertical or circumferential directions (shear modes) when only a single channel
is modeled. However, element size limitations remain quite severe during 3-D modeling.

v. Half-channel calculation

The problem can be reduced still further by modeling a half channel and imposing appropriate
boundary conditions on both of the sides; however the boundary conditions differ depending on the
particular waves being modeled. For longitudinal and vertically polarized shear waves, symmetry
boundary conditions, which effectively freeze degrees of freedom normal to the boundary but
leave tangential degrees of freedom free, will yield solutions identical to the full channel. For
horizontally polarized shear modes, the degrees of freedom normal to the boundary plane need
to be left free, while those tangent to the boundary plane need to be frozen. Tangent positions
can be frozen using a prescribed displacement in COMSOL referenced to the boundary coordinate
system. Consequently, these two groups of waves cannot be calculated with the same boundary
conditions. However, the advantage in geometric reduction gained by using a half-channel model
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easily leads to scenarios where the reduction in memory and processing requirements would justify
the modest hassle of running two different boundary conditions.

vi. Dimensional reduction of the problem

One of the most effective means of reducing the problem size is by calculating performance
in 2-D rather than in 3-D. By eliminating thickness as concern, the problem is effectively made
infinitely thick in terms of its physical analogue, but 1-element thick in terms of its computational
costs. However, 2-D models do not capture all of the relevant physics and, in particular, neglect
surface modes, and the effect of thickness on propagation speeds. Nevertheless, this approach
can be very useful for analyzing relatively thick interposers where bulk modes would be expected
to dominate propagation of energy, and where the propagation direction of incoming waves in
precisely known.

3. ASSESSING EXTINCTION THROUGH ENERGY DENSITY

When assessing propagation through a phononic pseudocrystal, it is worth considering which
quantity one should calculate in order to assess whether a given wave has been effectively blocked.
Certainly amplitude is a popular choice; however, when scattering is present the amplitude may
vary strongly in space as standing waves can introduce nodal planes as contributions from incoming
and reflected waves cancel one another, and these purely local nodal planes do not imply actual
extinction as the amplitude will often recover to its prior heights immediately after such a location.
One solution that has been suggested for such effectively reverberant environments is a target state
formulated in terms of energy density.12 At the amplitude nodal plane referenced earlier, there is
likely to still be an abundance of motion, so including both the potential (V ) and kinetic (T ) energy
terms effectively assesses whether extinction or something more transitory has occurred.

For the present class of radially self-similar pseudocrystals a further complication can arise
when acoustic or elastic energy is concentrated as the radius r decreases because the channel width

is shrinking. Inclusion of an
(

r
r0

)2
multiplier can account for the shrinking channel; consequently,

for the 3-D acoustic case assessing extinction, the energy-based quantity expressed for a time-
harmonic field is

E = T + V =
1

2ρ0c2

[
1

k2

(∣∣∣∣∂p∂x
∣∣∣∣2 + ∣∣∣∣∂p∂y

∣∣∣∣2 + ∣∣∣∣∂p∂z
∣∣∣∣2
)

+ |p|2
](

r

r0

)2

, (1)

where p is acoustic pressure, r is distance from the center, and r0 is some reference distance with
reference to which results are compared.

A similar expression exists for a 2-D linear elastic material; if u⃗ = uêx+vêy+zêz is the elastic
particle displacement, Y the Young’s modulus, ν the Poisson’s ratio, and

λ =
Y ν

(1 + ν)(1− ν)
, µ =

Y

2(1 + ν)
(2)

are the Lamé parameters, then the comparable elastodynamic expression for a time-harmonic field
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is

E = T + V = (
ρ0ω

2|u⃗|2

2
+

λ|∇ · u⃗|2

2
+

µ

{∣∣∣∣∂u∂x
∣∣∣∣2 + ∣∣∣∣∂v∂y

∣∣∣∣2 + ∣∣∣∣∂w∂z
∣∣∣∣2 + 1

2

[∣∣∣∣∂u∂y +
∂v

∂x

∣∣∣∣2 + ∣∣∣∣∂u∂z +
∂w

∂x

∣∣∣∣2 + ∣∣∣∣∂v∂z +
∂w

∂y

∣∣∣∣2
]})(

r

r0

)2

.

(3)

While the radial term mentioned earlier can help in assessing extinction within the phononic
crystal, and differentiating this from, e.g., standard radial attenuation effects, the presence of holes
effectively alters the the channel width independently and can slightly complicate attenuation as-
sessment. This can be handled by averaging the values on the evaluation line spatially over the
local unit pseudocell extent.

In COMSOL, expressions implementing Eqs. 2 and 1 are given, respectively, as

0.5*(solid.rho*(2*pi*solid.freq)ˆ2)*(abs(u)ˆ2+abs(v)ˆ2+abs(w)ˆ2)
+solid.lambLame/2*abs(d(u,x)+d(v,y)+d(w,z))ˆ2
+solid.muLame*(abs(d(u,x))ˆ2+abs(d(v,y))ˆ2+abs(d(w,z))ˆ2

+0.5*(abs(d(u,y)+d(v,x))ˆ2+abs(d(u,z)+d(w,x))ˆ2+abs(d(v,z)+d(w,y))ˆ2))

*(xˆ2+yˆ2)/r0ˆ2

for Solid Mechanics calculations, and

(abs(p)ˆ2+1/(2*pi*freq/acpr.c)ˆ2*(abs(px)ˆ2+abs(py)ˆ2+abs(pz)ˆ2))

*(xˆ2+yˆ2)/r0ˆ2

for Acoustics calculations within COMSOL; in each case the terms in orange may be omitted for 2-
D geometry, but should be retained for 3-D geometry. The radial term is given with the assumption
that the shape is centered at (x, y) = (0, 0). To energy density values across frequency, a 1D Plot
Group containing a Line Graph with a cut line along which to evaluate the expressions can be
employed.

4. ASSESSING TRANSMISSION LOSS

Transmission loss (TL) characterizes the difference in acoustic or elastic power that result
from an obstruction. While imperfect—e.g., no attempt is made to untangle left- and right-going
waves, or near-field effects between the boundary and patterned structure—our measure involved
the division of integrals over input and output boundaries or regions with an energy-like argument;
specifically,

TL = 10 log10

∫
in
|f |2dA∫

out
|f |2dA

, (4)

where f is displacement, and the integral is taken over the input and output boundaries. TL Mea-
sures based on energy density could also be used; however, we defer further discussion of this idea
and other potential issues involved in TL due to space constraints. Our 2-D COMSOL simulations
typically implemented a TL measurement in the Definitions area under Variables:
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PX_in intop1_in(solid.uAmpX*conj(solid.uAmpX)) m³
PX_out intop2_out(solid.uAmpX*conj(solid.uAmpX)) m³
PY_in intop1_in(solid.uAmpY*conj(solid.uAmpY)) m³
PY_out intop2_out(solid.uAmpY*conj(solid.uAmpY)) m³
TL_X 10*log10(PX_in/PX_out)
TL_Y 10*log10(PY_in/PY_out)

5. DEMONSTRATIONS

A. 2-D SINGLE-CHANNEL EXAMPLE

A two-dimensional 43-hole channel was modeled using the COMSOL Solid Mechanics in-
terface with holes ranging from a minimum to a maximum radius of 0.2436 mm to 2.0858 mm,
respectively, as shown in Fig. 6. Aluminum was modeled as a linear elastic material with longitudi-
nal and shear waves speeds of 6420 m/s and 3040 m/s, respectively, and a density of 2,710 kg/m3.
A free triangular mesh was used. The maximum element growth rate, curvature factor, and res-

Figure 6: Single-channel geometry with 43 radial holes.

olution of narrow regions parameters were 1.25, 0.3, and 1, respectively. The maximum element
size was chosen to be 0.00002 m, which placed some limitations on the frequencies that could be
confidently resolved. The total number of (triangular) domain element was 645,844 and boundary
elements was 20,320, and the total number of degrees of freedom solved for was 2,623,932.

i. Pseudocrystal transmission loss calculation

The transmission loss was evaluated using the expressions from Section 4, and is shown in
Fig. 7. The frequencies at which particular minimum numbers of elements per wavelength may be
expected based on the designated maximum element size are marked on the plot as vertical lines.
The 20-dB suppression line is also marked for visual reference as a dashed red line. For excitation
with longitudinal waves, the suppression associated with this design remains above 20 dB (our
self-defined suppression target) up to higher frequencies than we can conveniently calculate at even
4 elements per wavelength (the highest frequency shown in the plot). It should be noted that the
minimum number of elements per wavelength points are calculated based on the shear wave speed,
which is slower than the longitudinal wave speed; this means that for x-direction (longitudinal)
excitation, the number of elements per wavelength will be greater than advertised. For excitation
with horizontally polarized shear waves, the suppression associated with our design again remains
above 20 dB except at 19.53 MHz, when it briefly dips down to 19.6 dB suppression. It is possible
that larger dips exist at neighboring or other frequencies. The frequencies evaluated for this study
were those between 500,000 Hz and 38,000,000 Hz spaced at 10,000 Hz intervals leaving plenty
of possible finer grained variation in transmission overlooked; however, the frequency spacing—
rough though it may be in some respects—seems an adequate sampling to characterize the typical
suppression produced by this type of design.
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Figure 7: The transmission loss is shown for longitudinal (X), and transverse (Y) excitation of
the channel. The frequencies at which particular numbers of finite elements per wavelength are
guaranteed based on the designated maximum element size are marked for reference.

ii. Extinction assessment using energy density

Figure 8: (top) Peak von Mises stress. (middle) Log of peak von Mises stress. (bottom) Log of
energy density. Tracking the log of energy density works better for assessing extinction: because
it assesses both potential and kinetic energy, energy density is less sensitive to the nulls and peaks
produced by local wave interference, enabling greater insight into extinction location.

The procedure described in Section 3 was followed, and energy density was calculated both
on a surface for a single frequency for demonstration purposes, and along a cut line at multiple
frequencies to provide insight into extinction locations in the present 2-D phononic pseudocrystal
model. To show why energy density may be beneficial for tracking the location at which waves
become extinct (or evanesce) we here compare with another popular means of visualizing wave
phenomenon, the von Mises stress. In Fig. 8 (top), the peak von Mises stress varies a great deal
locally while also varying in amplitude over the radius of the channel. The large range of the peak
von Mises stress can be visualized more easily by taking the log of this quantity (middle); however,
the local variations remain both visible and substantial. The log energy density on the other hand
(bottom), because its consideration of both potential and kinetic energy contributions is not as
beholden to interference effects as the von Mises stress, can more easily show where particular
frequencies are going extinct.

We next consider the extinction of multiple frequencies together using a Line Graph within a
1-D plot group. The approach followed is that outlined in Section 3 toward the end. The cut line is
drawn as shown in Fig. 9.
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Figure 9: The cut line ran near the upper edge of the channel.

Figure 10: 10 log10 energy density relative to
the first (input end) measured cut line station
showing extinction of different frequency com-
ponents as a function of position.

Looking across the collection of frequen-
cies explored and across position along the cut
line in Fig. 10, virtually all frequencies of vi-
bration considered experience some attenua-
tion during propagation through the simulated
interposer wedge. Some modulation of the
energy density by the hole structure is visi-
ble as a relatively rapid oscillation with posi-
tion. Clear frontiers are visible (curved, with
increases in frequency with position) at which
amplitudes peak and then rapidly decline. The
peaking behavior appears to be due to the re-
flection and consequent constructive interfer-
ence of waves traveling in the forward and
backward directions, after which the portion of
the wave within the structure rapidly evanesces.

B. 2-D HALF-CHANNEL EXAMPLE

Figure 11: Half-channel geometry with 43 radial holes.

Figure 12: A fragment of
the mesh surrounding the
largest hole in the half-
channel case.

Following the procedure outlined in section 2.2.5, we repeat the
analysis using the half channel shown in Fig. 11. For this example,
only the x-direction excitation is considered. Because the excitation
and geometry are mirror symmetrical across the x axis, either half may
be used in the calculation with symmetry boundary conditions, which
fix y-direction displacements while leaving free x-direction displace-
ments. The half channel simulation again uses a maximum element
size of 0.00002 m, a minimum element size of 1 × 10−6 m, a maxi-
mum element growth rate of 1.25, a curvature factor of 0.3, and res-
olution of narrow regions parameter of 1. 324,164 domain elements
and 10,768 boundary elements are used for a total of 1,318,194 de-
grees of freedom. These same values held for both the longitudinal and shear excitation cases
despite their differing boundary conditions. A piece of the mesh used for this calculation from
around the largest hole is shown in Fig. 12; the longitudinal wave transmission loss (evaluated in
terms of the x-direction squared amplitudes at the input and output ends of the channel) for the full
and half channel cases is shown together in Fig. 13. The input parameters are otherwise the same
as in the previous section where a full channel was considered. In order to maximize generality,
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no effort was made to ensure that the symmetry boundary was respected in the full channel case.
Consequently, minor numerical differences exist in calculated results, but these are typically of
small magnitude provided the number of elements per wavelength is large.

Figure 13: Longitudinal transmission loss
with full-channel and half-channel simulation
domains.

Differences in the depth and frequency at
which characteristic features occur result from
minor differences in meshing, and tend to in-
crease in severity as the number of elements per
wavelength decreases. At low frequencies dis-
crepancies tend to be minor. To further illustrate
the degree of fidelity between the half-channel
and full-channel simulations, we here display the
von Mises stress present for a 1 MHz longitudi-
nal excitation through a portion of the structure
encompassing the first 8 holes. In each case the
half channel result is shown on top adjacent to
the bottom of the full channel; below this the full
channel is shown intact for visual reference. For

Figure 14: von Mises stress from a 1-MHz longitudinal (left) and a transverse/shear (right) load
applied on the left hand side in simulation using a half channel domain (top) and a full channel
domain (middle and bottom). Both capture the physics with expected differences only on the
level of numerical precision.

both the longitudinal and the horizontally polarized transverse (shear) excitation case, shown in
Fig. 14, the half-channel and full-channel calculations yield visually identical results, providing
confirmation for our claims regarding the appropriateness of the proposed half-channel boundary
conditions.

i. 3-D single-channel example

Because many of the analyses that can be performed for 3-D cases are similar those already
shown for 2-D, we will not repeat all of them here. The main challenge with 3-D cases is the size of
the mesh which scales as the reciprocal cube of the maximum element size.

Figure 15: 3-D tapered half-channel geometry.

Consequently, the case we highlight here will
utilize a 39-hole half channel (shown in Fig. 15
as this effectively allows us to resolve a fre-
quency a factor of 3

√
2 of that which we can

achieve in a full channel calculation for the
same computational expense.
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Figure 16: Transmission loss as a function of
frequency for our tapered channel.

Our mesh has a maximum element size of
∆xmax−el = 0.00015 m, and contains 870,023
domain elements, 84,520 boundary elements, and
5,053 edge elements, resulting in a model with
3,736,872 degrees of freedom. The highest fre-
quency considered in this model is 3×106 Hz, and
the modeled material is aluminum with the low-
est (shear) wave speed 3100 m/s. Consequently,
λmin = 3100

3×106
= 0.00103̄, and we are guaran-

teed to have λmin

∆xmax−el
= 0.00103̄

0.00015
= 6.8̄ points

per minimum wavelength. The longitudinal wave
speed, which is the more important for the longitudinal excitation considered here is consider-
ably higher, at 5790 m/s, resulting in a λ = 5790

3×106
= 0.0019 m wavelength and, consequently,

0.0019
0.00015

= 12.9 elements per longitudinal wavelength. The transmission loss is evaluated between
45 kHz and 3 MHz and the results are shown in Fig. 16 where it can be seen that, in 3D also,
pseudocrystals with cyclic symmetry and radial self similarity can produce suppressed transmis-
sion over relatively large frequency ranges. The maximum frequency in the simulation is 3 MHz
and the lowest 20-dB-suppressed frequency was 275 kHz; this result implies that suppression
over larger ranges (fup/flow > 10.91) than those implied by the translation of expected band gap
(fup/flow < 1.33 × 1.0533 = 8.92) applies in 3D as well as 2D, and that cyclically symmetrical
and radially self-similar phononic pseudocrystals and other structures built along similar principles
can be used to create extreme broadband vibration isolation.

6. CONCLUSIONS

This paper (and its associated presentation) introduced a class of phononic pseudocrystals ex-
hibiting cyclical symmetry and radial self-similarity, noted some of their unusual properties such
as extreme broadband vibration isolation, and discussed methods for their efficient computation
modeling. Boundary conditions were described enabling the modeling of radial longitudinal and
both polarizations of shear waves using only half of a radial channel as the computational domain;
these boundary conditions differ depending on which group of waves are modeled. Energy density
methods were also introduced for the purpose of characterizing the extinction (or evanescing) lo-
cation of particular frequencies waves within the pseudocrystal domain. Energy density methods
are less susceptible to local variations in strain than other common indications of wave motion
such as von Mises stress, and as such are helpful for easily visualizing the extinction process.
Phononic pseudocrystal isolators exhibit vibration suppression phenomena that extend far beyond
the suppression associated with canonical phononic crystals and as such deserve further study.
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