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using scientific machine learning for geologic

carbon storage at the lllinois Basin-Decatur
Project site
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lllinois Basin Decatur Project Site

=Carbon capture, utilization, and storage (CCUS) can play mpeE——

a role in reducing net carbon emissions

lllinois Basin Decatur Project (IBDP)

* Inject and store 0.33 million tonnes per year / 1 million total

« First CO, injection demonstration project from 2011 to 2014

* Novelty: First 1 million tonne biofuel CCS projectin U.S. &
microseismicity monitoring

- Variety of geologic, operational and monitoring data being
collected and interpreted

IBDP Site

* [Q] Can (near) real-time feedback be provided for
operational control and optimization?

. . ) PN ICCSComp/
« How can ML-assisted workflows improve understanding of < Neat
GCS system? O b g
{ : IBDP Comp./
f | Dehydration




Objective & ML training data

based forward modeling with latent space data assimilation (LSDA),
resulting in real-time history matching of CO, operations and

I
Objective: Machine learning-driven CO, modeling by combining fast ML- |
forecasting CO, and pressure plume development ‘

ML training data at the IBDP site

100 Sets of 3D permeabiltiy (x,y,z), porosity, transmissivity (x,y,z) fields
at 126 x 125 x 110 tartan grid (1.73M cells)
Eclipse simulation was performed to generate training data

Well pressure daily at injection well and monitoring well (6 depths)

Permeability and porosity field

Pressure and CO, saturation prediction every 1 month
CO, injection for 3 years + 1 yr shut in -

All input data (e.g., injection rates and locations) reflects real historical ... WW” ” H ' N ll ‘H |

L] L] .
COZ |nJeCt|0n data -o 2012-01 2012-07 2013-01 2013-07 2014-01 2014-07 2015-01 2015-07 2016-01 |

Historic Gas Injection Rate [MSCF/d] ‘



Latent Space-based DA (LSDA) with generative priors

« Data assimilation in low dimensional latent space of unknown parameters with dim(z)
« Forward model executions can be significantly reduced with ML-based models
» Flexible modular structure and Bayesian inference or ensemble-based methods are available

Updated 3D permeability, porosity, transmissivity

Observed data at IBDP
Multiple « Bottom hole pressures (BHPs) at
realizations > injection and monitoring wells

. ML BHP = * Saturation & Temperature at well(s)
z: Latent t‘ & model =/
wrace -

* Milcroseismicity
Iteration

Objective
functions

* CO, saturation plume

DA & HM Methods
* Latent space-based DA

* Ensemble-Smoother with
Multiple DA (ES-MDA)

owu”n
Z

Latent space obtained by generative ML models (e.g., VAE,
WGAN, DM) is updated in (Ensemble or Variational) DA-based
methods with various measured data

Bao et al. (Geoenergy Sci Eng, 2024),
Yoon et al. (GHGT 2022 & in prep)




Generative Models

» Three generative models are constructed to generate ensemble samples from latent vector
 Variational autoencoder (VAE), Wasserstein generative adversarial network (WGAN-GP,) and

diffusion model (DM) are all available

Latent space z (< physical dimension N) Low Resolution (from generative models)

(nonlinearly compressed subspace)

Generative

2=NOD 1zl Model (@)

(Likelihood-based) VAE + Super Resolution Upscaler (SRGAN)
(Score-based) Latent Space Diffusion Model

Kang et al. (WRR 2022), Bao et al. (Geoenergy Sci
Eng, 2024), Kim et al. (JCH 2021,Sci. Rep. 2021)
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High Resolution
Reconstruction




ML surrogate model — Well Pressure

e For demonstration purpose, a sub-domain (40x44x94 out of 126x125x110) is used
« ML model: CNN-LSTM (static and dynamic data are concatenated after feature vectors are
constructed by repeating static feature vector into dynamic data over time)

e Inputs:
= Static fields (7 features): 3D permeabiltiy (x,y,z), porosity, transmissivity (X,y,z) fields
= Dynamic data: Time, daily injection rates, cumulative injection volu o

» Output: well pressures at seven sensor locations (injection (CC51) and . = il

i
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Improved Neural Operator (INO): Pressure & Saturation at grid scale

« Dramatically improved in computational efficiency with good accuracy through subsampling
e Inputs:

= Static fields (7 features): 3D permeabiltiy (x,y,z), porosity, transmissivity (x,y,z) fields

= Dynamic data: Time, daily injection rates, cumulative injection volume
e Output: Pressure or saturation at the grid scale

Parameters i Quantities of interest

1. permeability x(x) a(t) state variables S (¢, x) i
2. porosity ¢(x) K homogeneous 1. pressure p(t, x)

3. injection rate q(t) P parameter 2. saturation s(t, x)

4. timestamp (t) o(k) embedder

5. spatial coordinates (x) |o (@)

heterogeneous
parameter
embedder

L _
Y decoder| <=2 __

A uh-:'::o T ____"O
embedded >~ S(t, x)
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back-propagation
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Kadeethum et al. (2024, Geoenergy Sci and Eng)



‘ INO Results for Pressure and Saturation
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Pressure RMSE/MAE (psi)

Pressure RMSE (psi)

4509 o ( b )120 1 e 0.018 - ®.018 B R !
— Test Max MAE realization030 (5= Text Hax MAE reallcationta0;
2an b e e oo 0.017 — Tt Mo restzaionoao !
o ok WA reslontSt o e WA retzto
1.4 - T @396 402 o384 100 4 1 2 Tost M I reaization0s 0.016 4 #.016 ®.016 016 . Test Max WAE realzation060 1
2.367 a3z @3st | = et #0157 5015 00159015 o e |
i .307 | = Test Max MAE realization090 0.0 e Test Max MAE realization090 1
. || —— Test Max MAE reaiization0100 - | e Test Max MAE realization0100 1
E_ 804 : pUSLIjeCuunt : 0.014 3
1.2 o ' g % 0.6 1
g ! T 0.012 s
29 > 601 [ E 3
g | 4 =
1.0 g ! § 00107 S 0.4 E
> < =]
0936 2 40 ' E © !
[0 "
£.883 ©-889 £ | 2 0.008 2 !
£.839 .828 0813 : @ ¢ 0.2 4 :
087 £.769 0784 0.782 201 ! 0.006 - : !
]
I
1 £.004 ©.004 0,004 004 £.004 !
. .004 : o : 1
L.6 0 ! 0.004 4 0.004 Ry &.004 0004 9.0 004 1
. : :
20 40 c 60 80 100 12_0 " 40 50 20 40 60 80 100 0 10 20 30 40 50
ase (-) ime (months) Case (-) Time (months)
e etz 4000 - — Test realization010 R
= Tarimon 0.06 o maksaicnom A
et restzmiontd Tt eszatinti
— Test reaiization060 3750 - — Test realization050 (A LU
—— Test realization070 —— Test realization060 e
T et 005 B e o
e Test realization0100. % e Test realization
e 3500 4 i) o
upper inj Zghe . G
| B b upper inj zon (R
© 3250 1 = 0.04 1 11 mjddte inj zon -
Q2 2] 1 [N Q
201 g ) i :
£ 3000 - i H s
% < 0.03 | 2
1.5 = 2 g
2750 1 £ s
1.0 4 § 0.02 4
2500 A
0.5 0.014
2250
0.0
T T T T T T T T 000 4
0 20 40 60 2250 2500 2750 3000 3250 3500 3750 4000 . i i i . ; i i i
Layer number Eclipse-Data -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Layer number Eclipse-Data

Kadeethum et al. (2024, Geoenergy Sci and Eng)



Pressure (bhp)

‘ History matching with synthetic observed pressures at wells
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Permeability & Porosity Generative Model

Latent space z (K the dimension N) Low Resolution High Resolution
(nonlinearly compressed subspace) (from VAE or Diffusion) Reconstruction
= Calibration with the first 2 yrs data and blind test with - e DD IR

L §

the rest period (VAE as generative model) e R
= With pre-trained ML models, only takes ~10min for HM - B ﬁ

*  (Score-based) Latent Space Diffusion Model
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objective function

105 4

104 4

‘ History matching with synthetic observed pressures at wells

Obj. function
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3700
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Pressure (bhp)
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History matching with REAL observed pressures at wells
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I
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[

Fluctuations due to frequent shut-
ins pose a challenge to balance off
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low and high fluctuations during
calibration
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. History matching with REAL observed pressures at wells

" From observation data there may

Blue dots: Observation; black: the best estimate be a stronger barrier (e.g.,

baffles) than training data used
= Higher estimates at WB 1

(Basement) are compensated |
: with lower estimates at WB2-3
R (reservoir units)
—=~ | = Lower uncertainty bounds may
indicate the limit on information

f‘m gained though calibration using
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Comparison of CO, saturation

3D CO, plume

LSDA results

13
Traditional HM results I

4500

= Updated reservoir fields from LSDA are used with the INO
model to predict CO, saturation at the grid scale
= Traditional HM results using high fidelity Eclipse runs
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= Updated reservoir fields from LSDA are used with the INO

Comparison of Pressure

model to predict pressure at the grid scale

= Traditional HM results using high fidelity Eclipse runs

Pressure profile (Area of Review, AoR) projected on the
horizontal plane
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Summary

« Data assimilation/History matching in the latent space with deep learning
methods (VAE, WGAN, DM) and fast deep learning-based forward modeling
can achieve real-time history matching of CO, operations and forecasting
pressure plume development.

« Latent space optimization including optimal choice of the nonlinear
dimension reduction requires further study with more realistic and various
types of observed data.

 ML/DL with domain knowledge can lead to dramatic improvement in spatio-
temporal data analytics and decision making for mitigating potential risks and
optimal monitoring system development.



Summary Slide

Machine learning-driven CO,
modeling by combining fast ML-
based forward modeling with
latent space-based data
assimilation (LSDA), resulting in
real-time history matching (HM)
of CO, operations and
forecasting CO, and pressure
plume development in an end-
to-end fashion at the Illinois
Basin-Decatur Project site,
Decatur, IL, USA.
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Objective
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obtained by a generative ML model is
updatedin LSDA with various measured data

DA & HM Methods

* Latent space-based DA

* Ensemble-Smoother with
Multiple DA (ES-MDA)

LSDA results

Traditional HM results
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Observed data at IBDP

Bottom hole pres

sures (BHPs) at

injection and monitoring wells
Saturation & Temperature at well(s)
* Mlcroseismicity

* CO; saturation phime

3D CO, plume

LSDA results
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