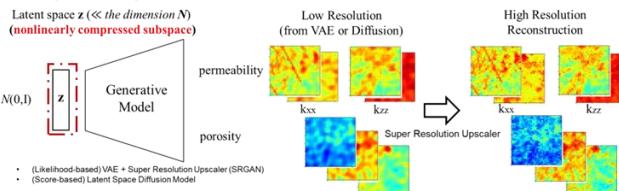
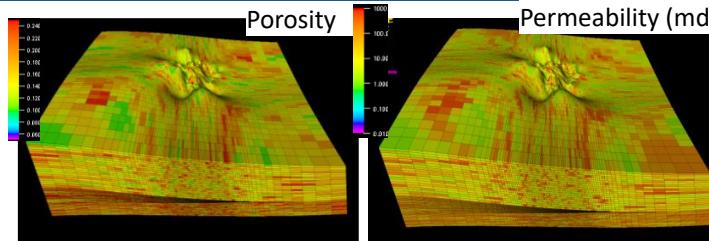


Rapid model prediction and history matching using scientific machine learning for geologic carbon storage at the Illinois Basin-Decatur Project site

Permeability & Porosity Generative Model



Hongkyu Yoon

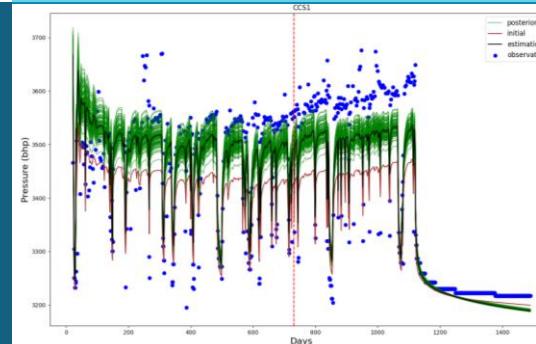
Climate Change Security Center, Sandia National Laboratories[#], NM, USA

Co-authors: Jonghyun Lee*, Jiawei Shen*, Teeratorn Kadeethum[#]

*University of Hawaii at Manoa

GHGT 2024

This work was supported by DOE Office of Fossil Energy and Carbon Management project -Science-informed Machine Learning to Accelerate Real Time (SMART) Decisions in Subsurface Applications.



SAND2024-XXXXXC

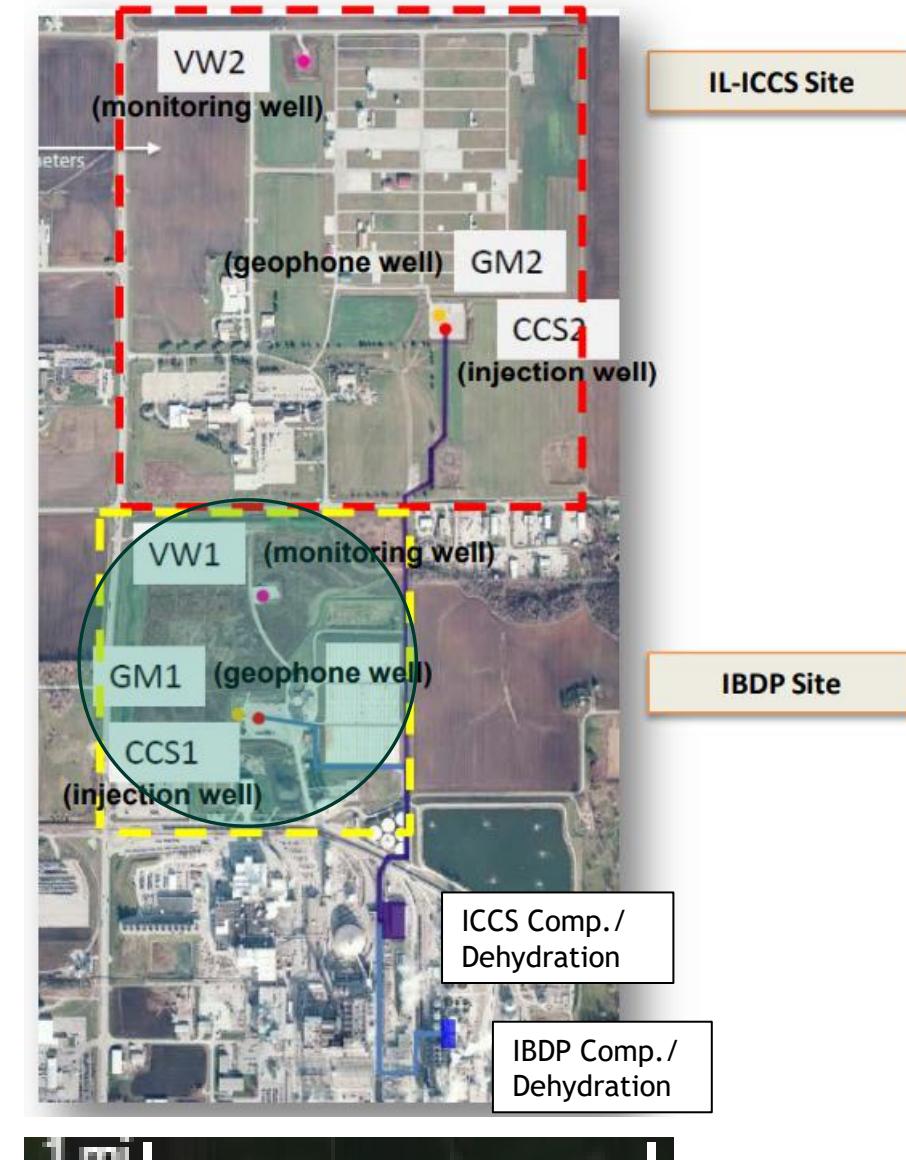
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Illinois Basin Decatur Project Site

- Carbon capture, utilization, and storage (CCUS) can play a role in reducing net carbon emissions

Illinois Basin Decatur Project (IBDP)

- Inject and store 0.33 million tonnes per year / 1 million total
- First CO₂ injection demonstration project from 2011 to 2014
- Novelty: First 1 million tonne biofuel CCS project in U.S. & microseismicity monitoring
- Variety of geologic, operational and monitoring data being collected and interpreted
- [Q] Can (near) real-time feedback be provided for operational control and optimization?
- How can ML-assisted workflows improve understanding of GCS system?

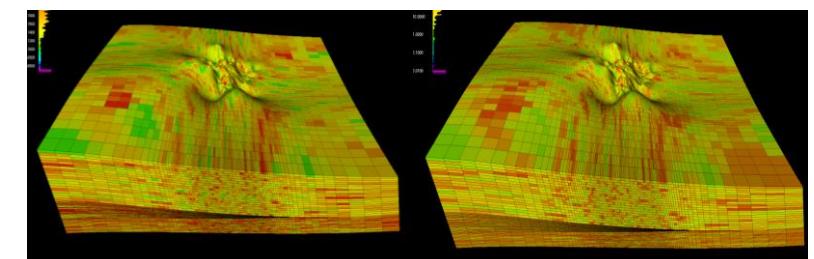


Objective & ML training data

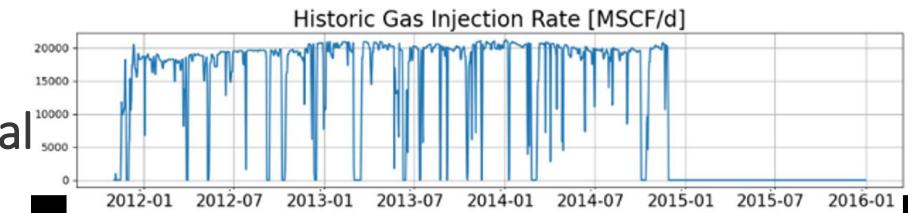
Objective: Machine learning-driven CO₂ modeling by combining **fast ML-based forward modeling** with latent space **data assimilation** (LSDA), resulting in real-time history matching of CO₂ operations and **forecasting CO₂ and pressure plume development**

ML training data at the IBDP site

- 100 Sets of 3D permeability (x,y,z), porosity, transmissivity (x,y,z) fields at 126 x 125 x 110 tartan grid (1.73M cells)
- Eclipse simulation was performed to generate training data
- Well pressure daily at injection well and monitoring well (6 depths)
- Pressure and CO₂ saturation prediction every 1 month
- CO₂ injection for 3 years + 1 yr shut in
- All input data (e.g., injection rates and locations) reflects real historical CO₂ injection data

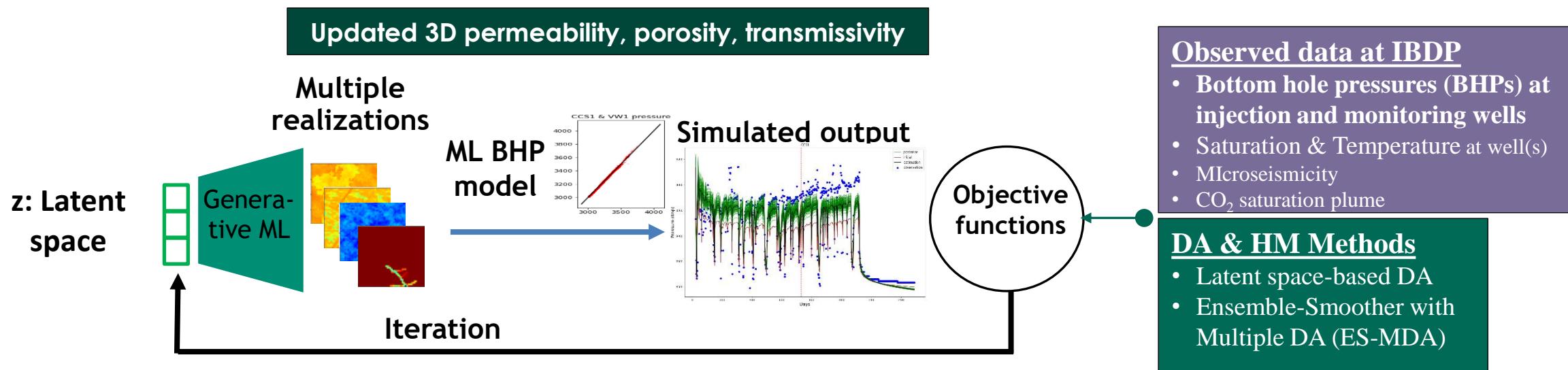


Permeability and porosity field



Latent Space-based DA (LSDA) with generative priors

- Data assimilation in **low dimensional latent space of unknown parameters with $\text{dim}(z)$**
- Forward model executions can be significantly reduced with ML-based models
- Flexible modular structure and Bayesian inference or ensemble-based methods are available

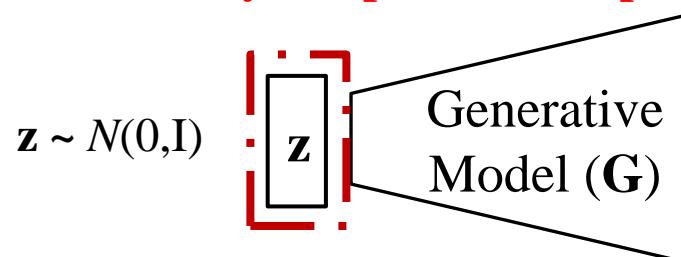


Latent space “z” obtained by generative ML models (e.g., VAE, WGAN, DM) is updated in (Ensemble or Variational) DA-based methods with various measured data

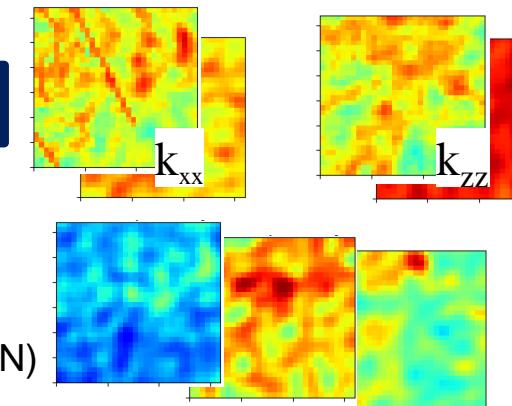
Generative Models

- Three generative models are constructed to generate ensemble samples from latent vector
- Variational autoencoder (VAE), Wasserstein generative adversarial network (WGAN-GP,) and diffusion model (DM) are all available

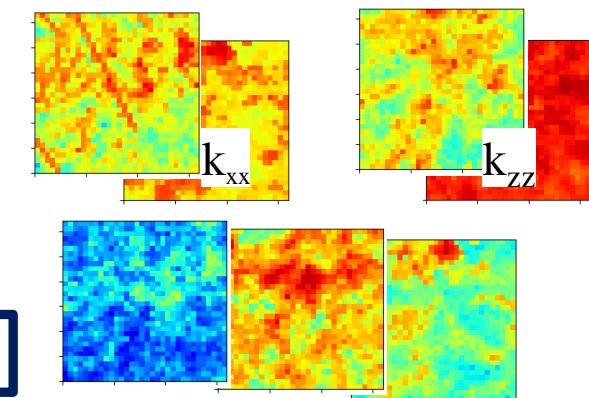
Latent space \mathbf{z} (\ll physical dimension N)
(nonlinearly compressed subspace)



Low Resolution (from generative models)



High Resolution
Reconstruction

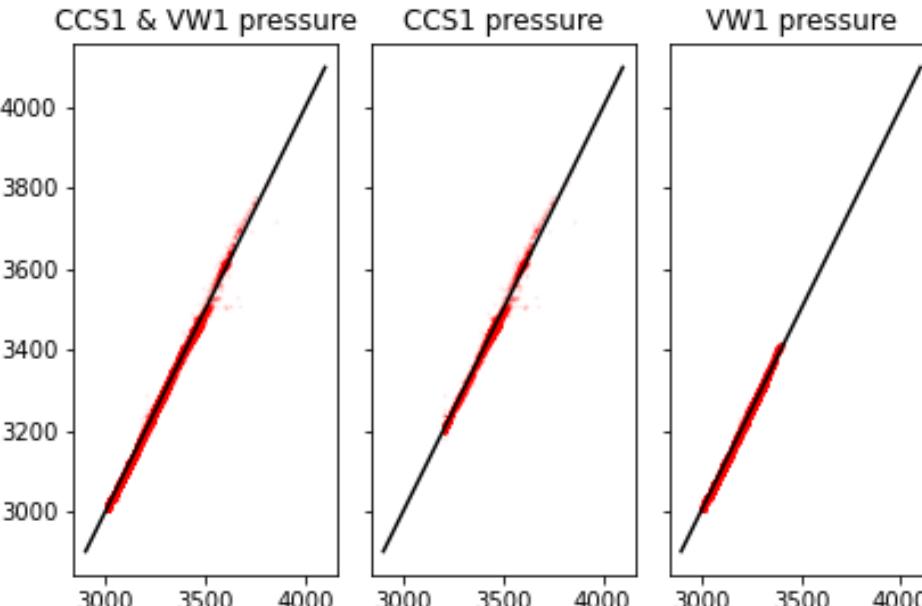
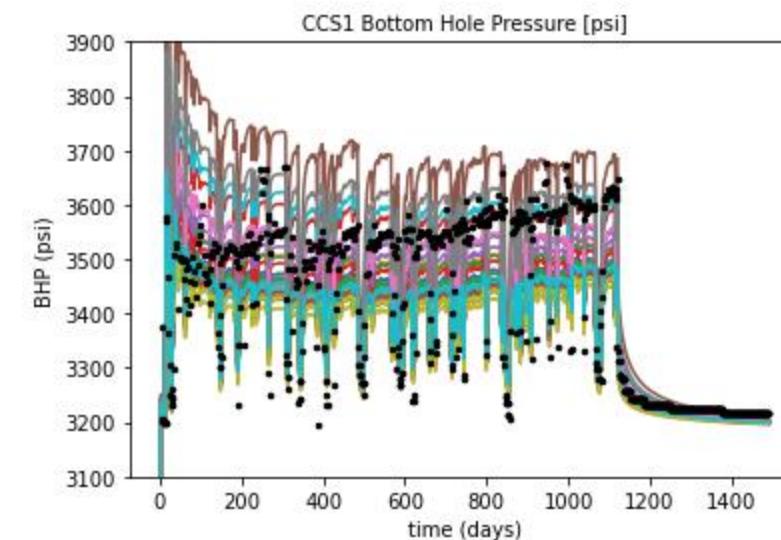
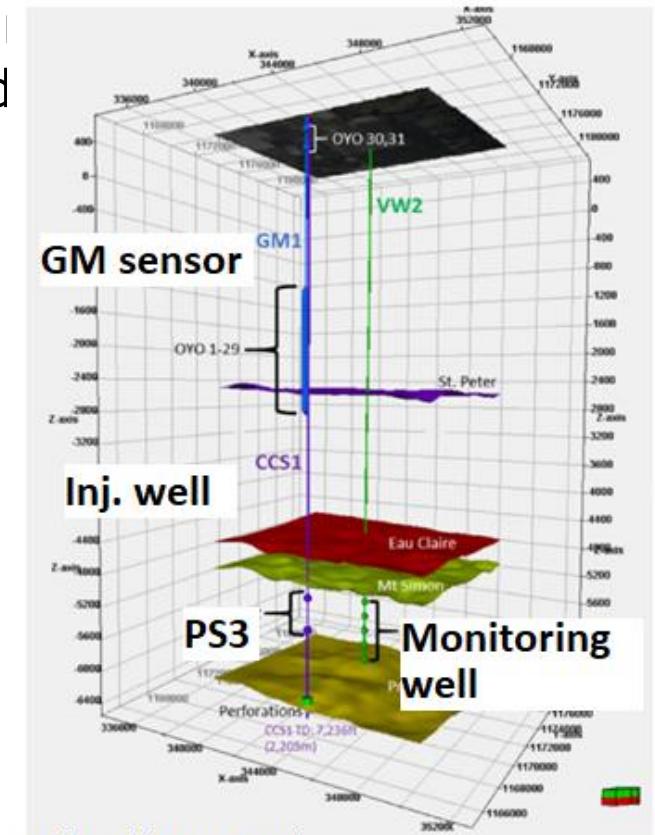


- (Likelihood-based) VAE + Super Resolution Upscaler (SRGAN)
- (Score-based) Latent Space Diffusion Model

ML surrogate model – Well Pressure

- For demonstration purpose, a sub-domain (40x44x94 out of 126x125x110) is used
- ML model: CNN-LSTM (static and dynamic data are concatenated after feature vectors are constructed by repeating static feature vector into dynamic data over time)
- Inputs:
 - Static fields (7 features): 3D permeability (x,y,z), porosity, transmissivity (x,y,z) fields
 - Dynamic data: Time, daily injection rates, cumulative injection volume
- Output: well pressures at seven sensor locations (injection (CCS1) and

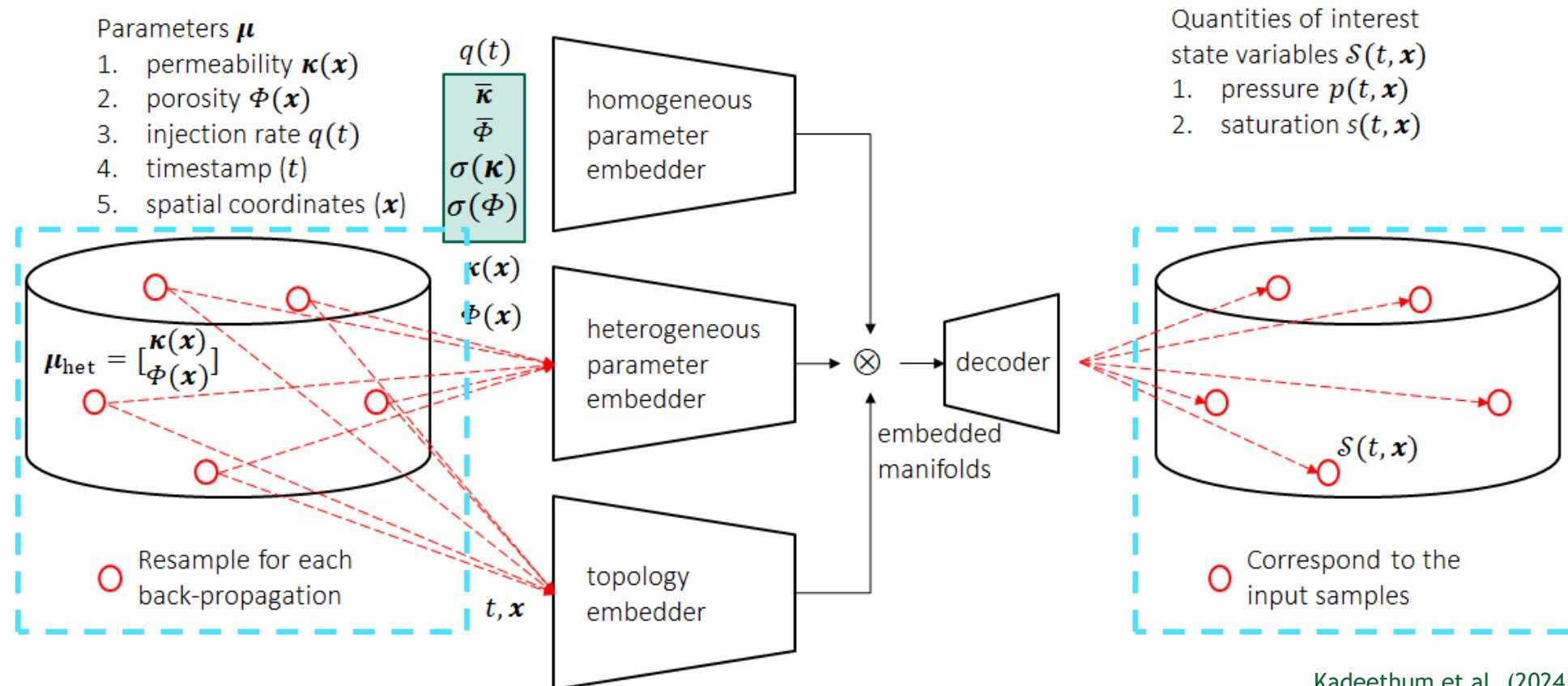
Testing results RMSE = 4.4psi



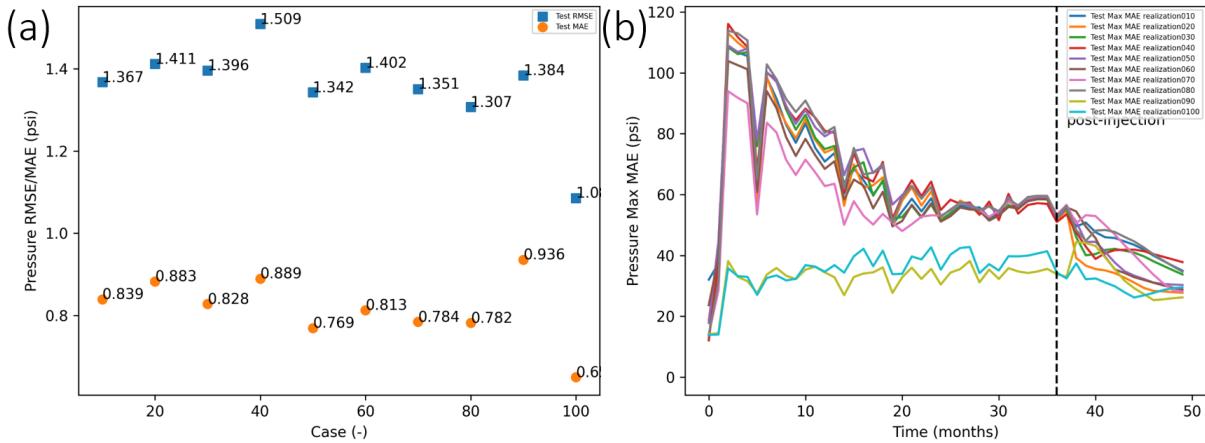
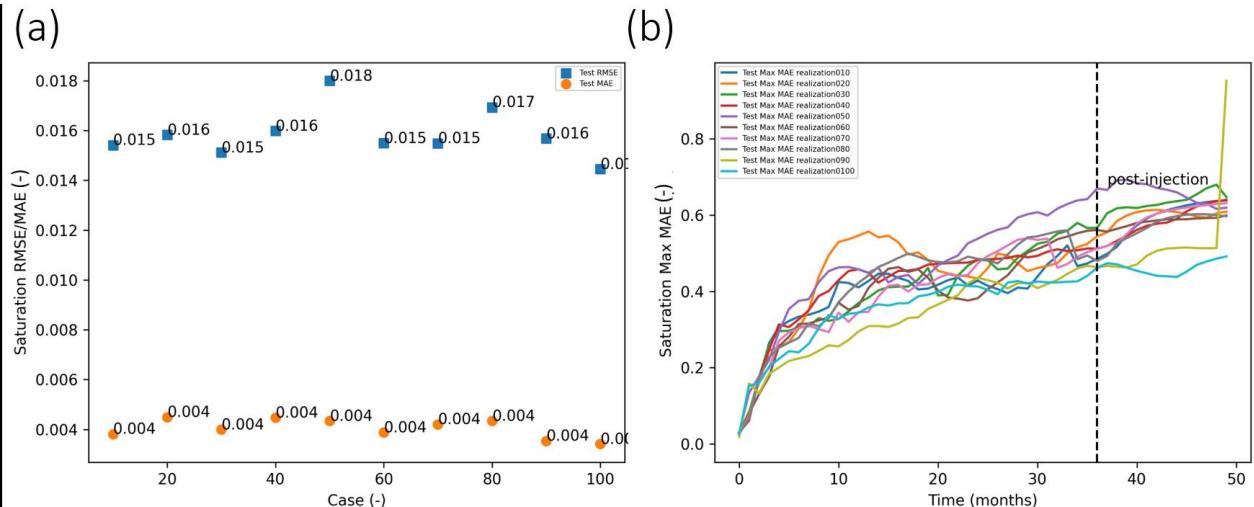
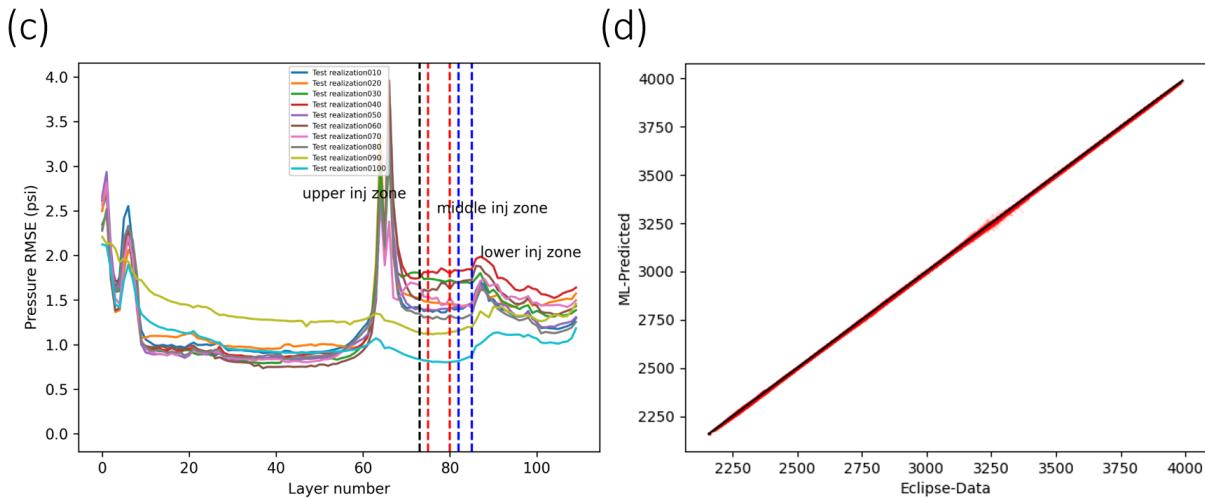
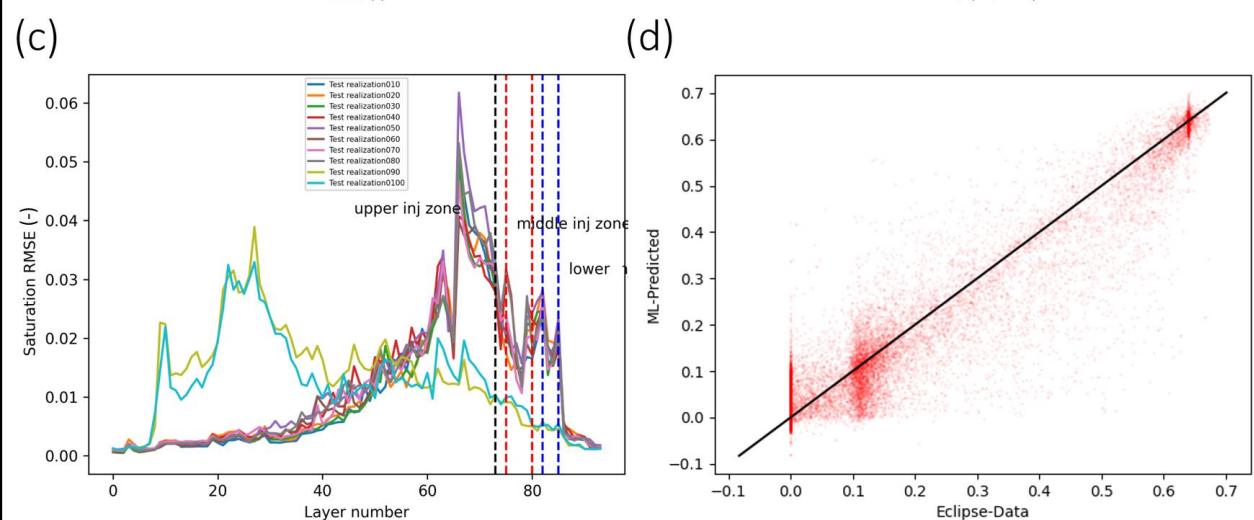
Will et al. (IJGGC 2016)
Fig. 1. Subsurface array configuration. Distance units are feet, Z axis is referenced to mean sea level.

Improved Neural Operator (INO): Pressure & Saturation at grid scale

- Dramatically improved in computational efficiency with good accuracy through subsampling
- Inputs:
 - Static fields (7 features): 3D permeability (x, y, z), porosity, transmissivity (x, y, z) fields
 - Dynamic data: Time, daily injection rates, cumulative injection volume
- Output: Pressure or saturation at the grid scale

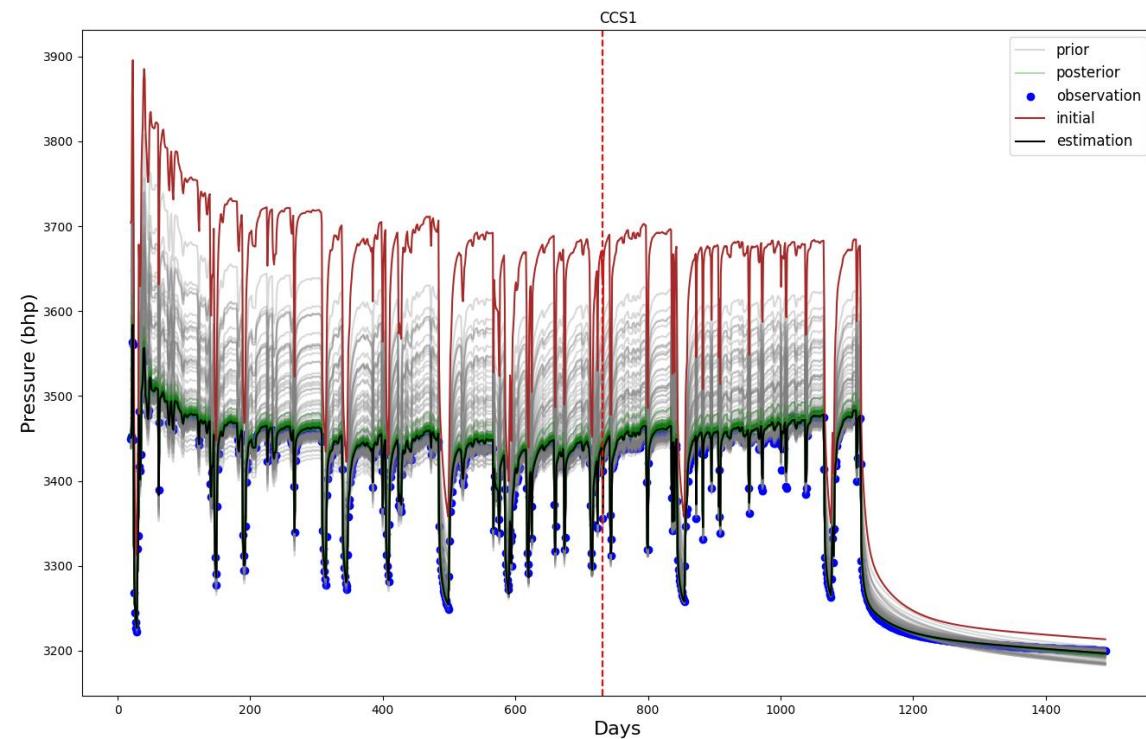
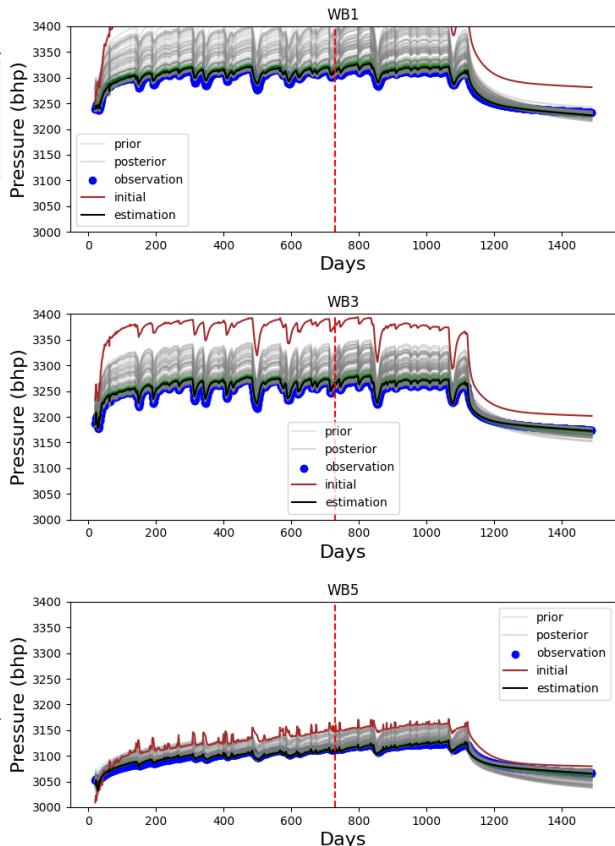


INO Results for Pressure and Saturation



History matching with synthetic observed pressures at wells

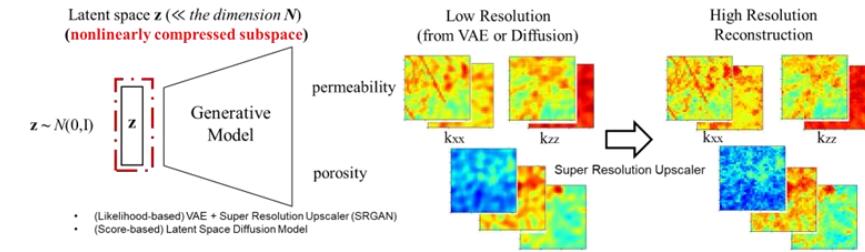
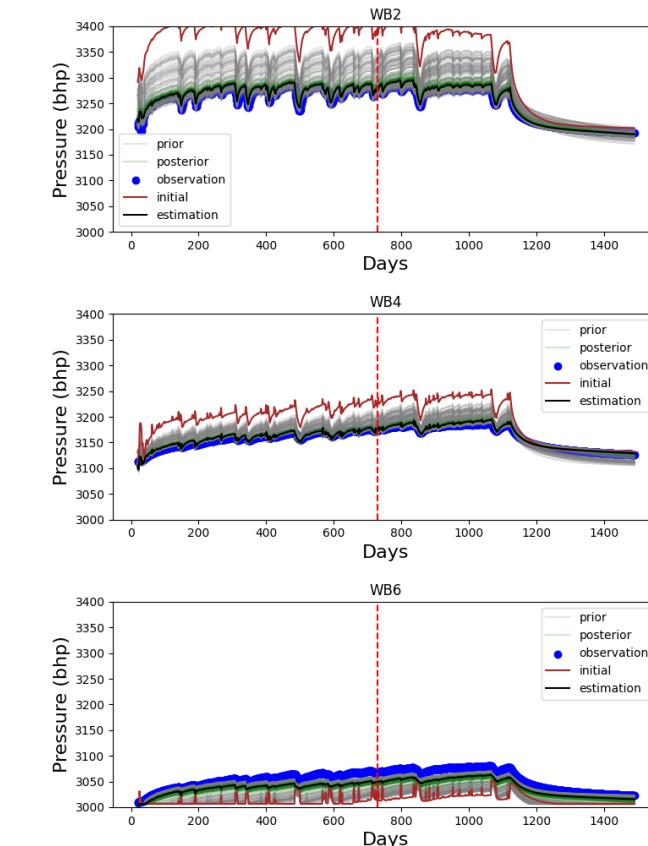
- Calibration with the first 2 yrs data and blind test with the rest period (VAE as generative model)
- With pre-trained ML models, only takes ~10min for HM



Permeability & Porosity Generative Model

Latent space z (\ll the dimension N)
(nonlinearly compressed subspace)

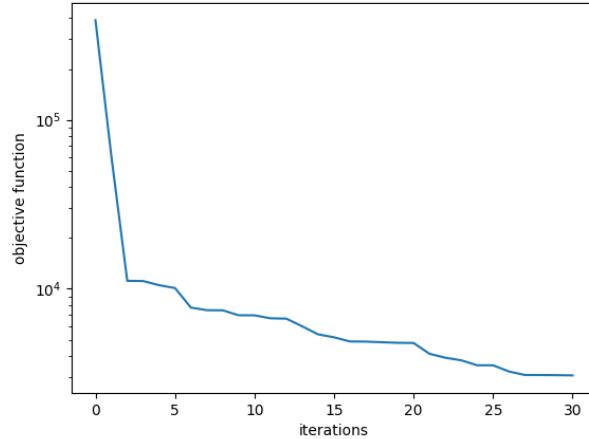
$z \sim N(0, I)$
Generative Model
• (Likelihood-based) VAE + Super Resolution Upscaler (SRGAN)
• (Score-based) Latent Space Diffusion Model



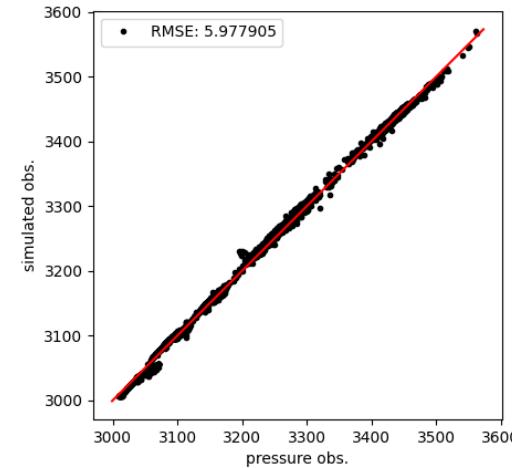
History matching with synthetic observed pressures at wells

10

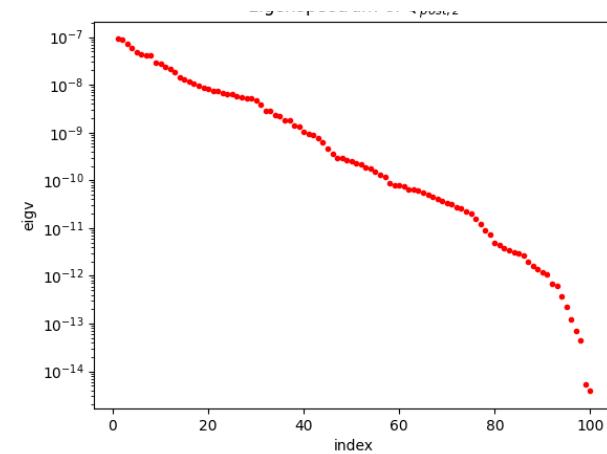
Obj. function



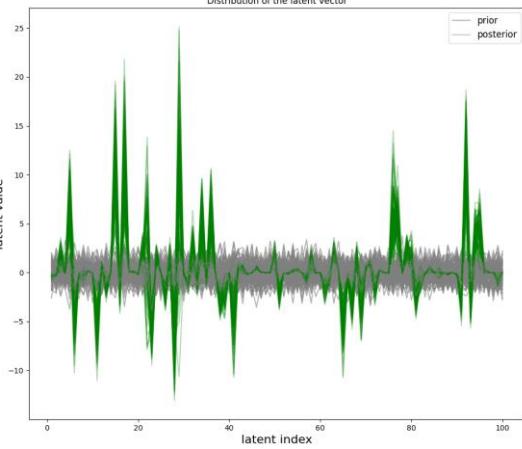
Data fitting



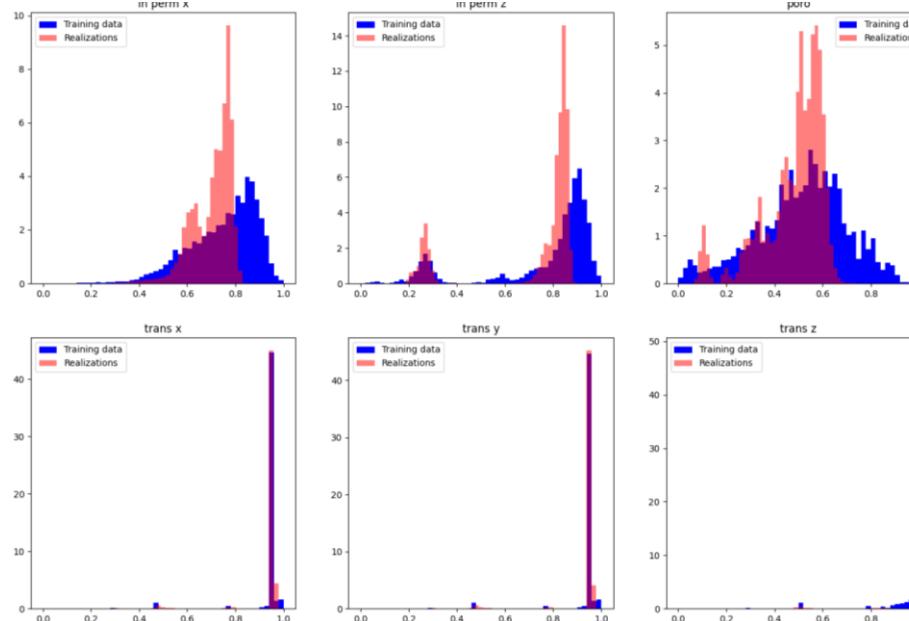
Eigen Spectrum



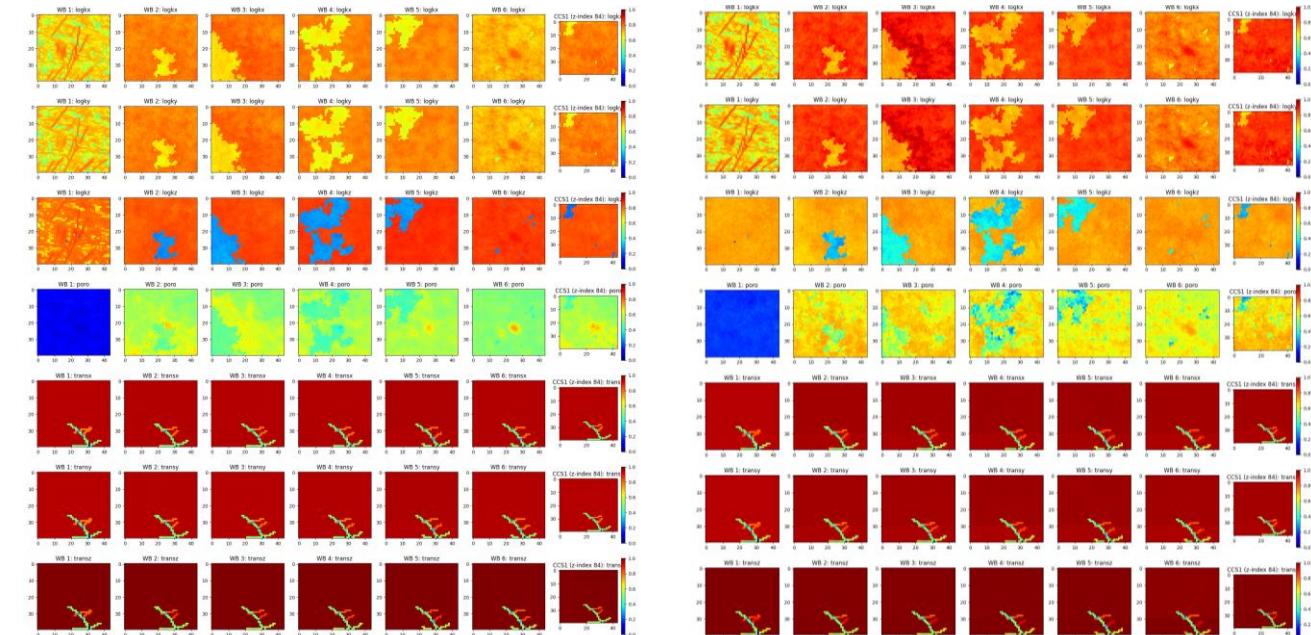
Latent space in VAE



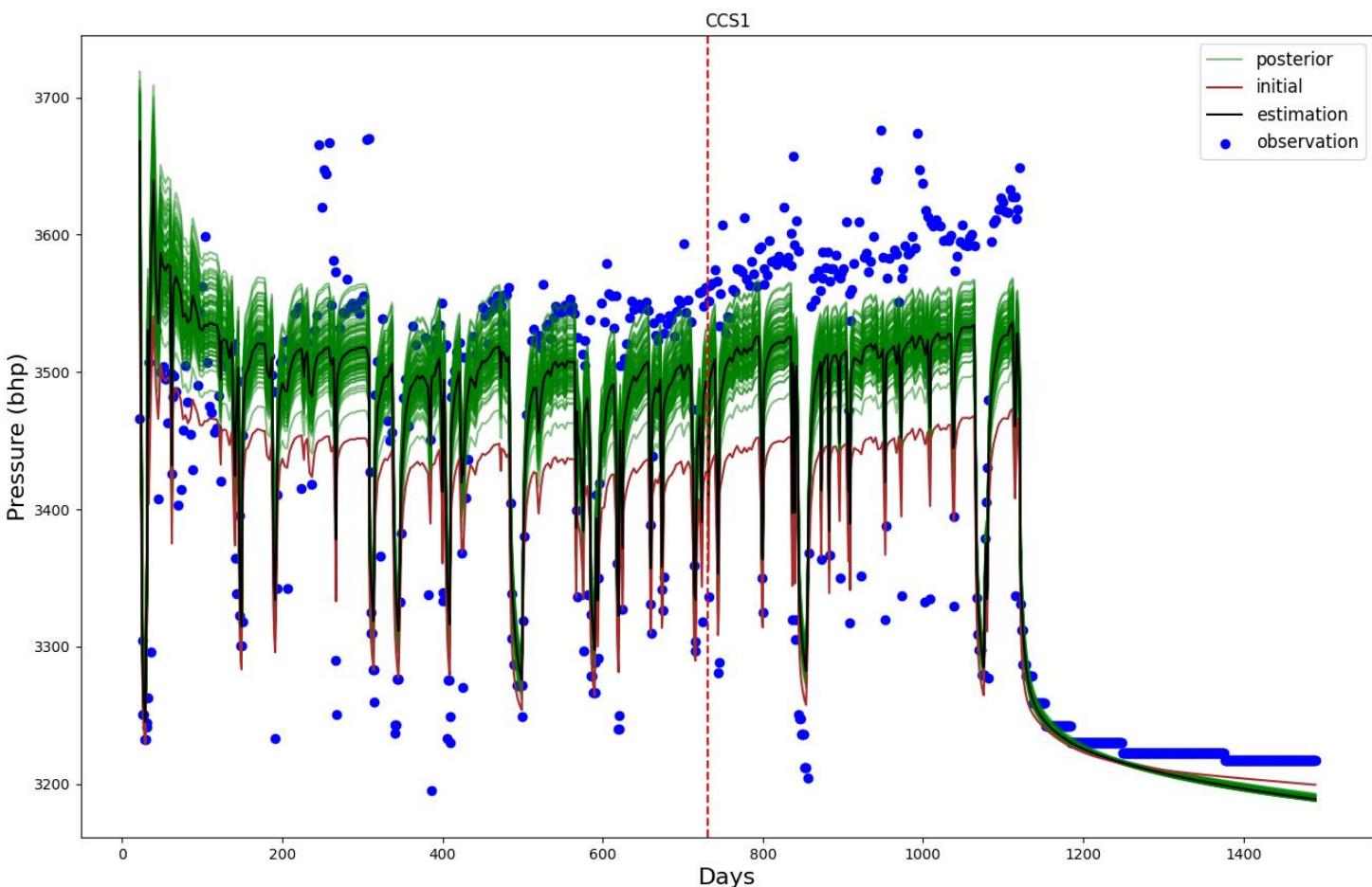
Distribution of parameters (prior and MAP)



Examples of 7 input parameters from initial and final estimates

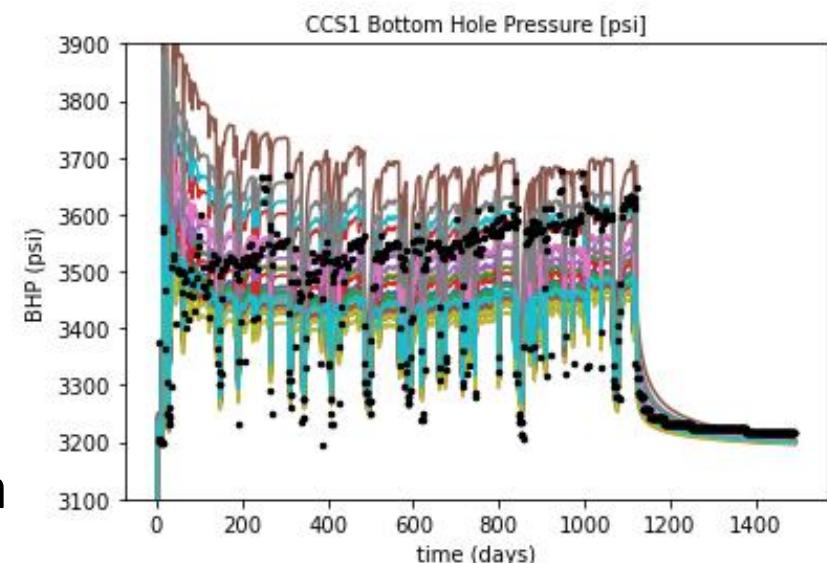


History matching with REAL observed pressures at wells



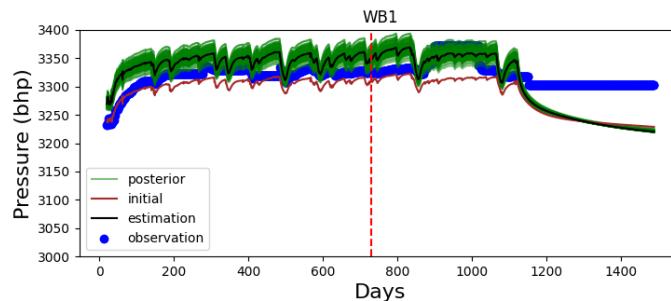
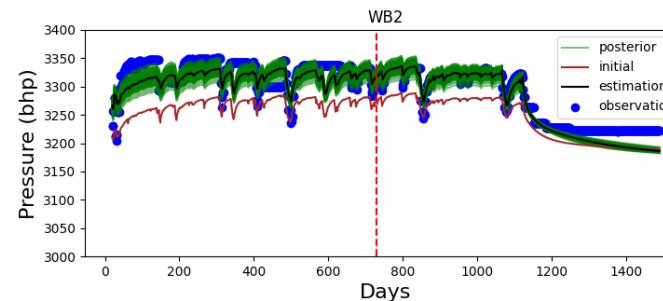
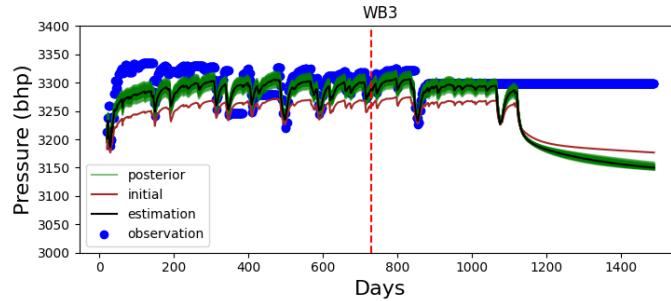
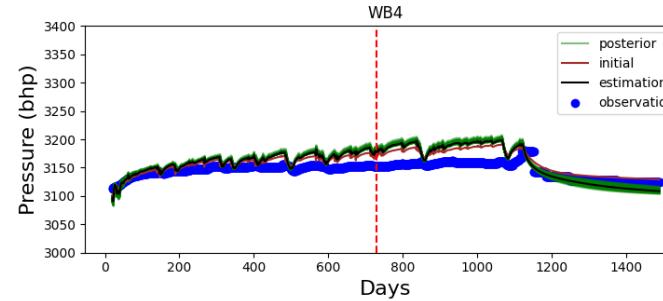
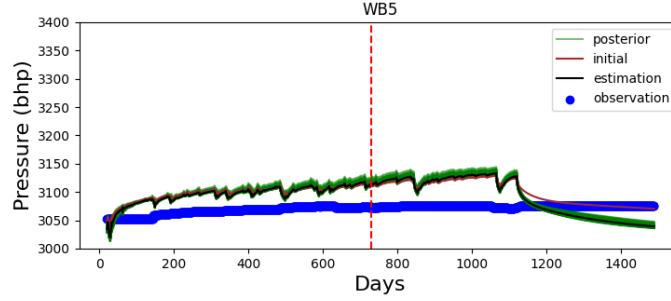
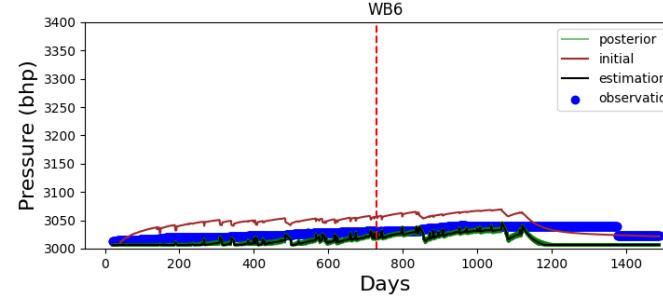
Training data

- BHP at CCS1 tends to increase after ~ 2yrs -> challenge to match after 2 yrs calibration
- Fluctuations due to frequent shut-ins pose a challenge to balance off between general BHP trend and low and high fluctuations during calibration

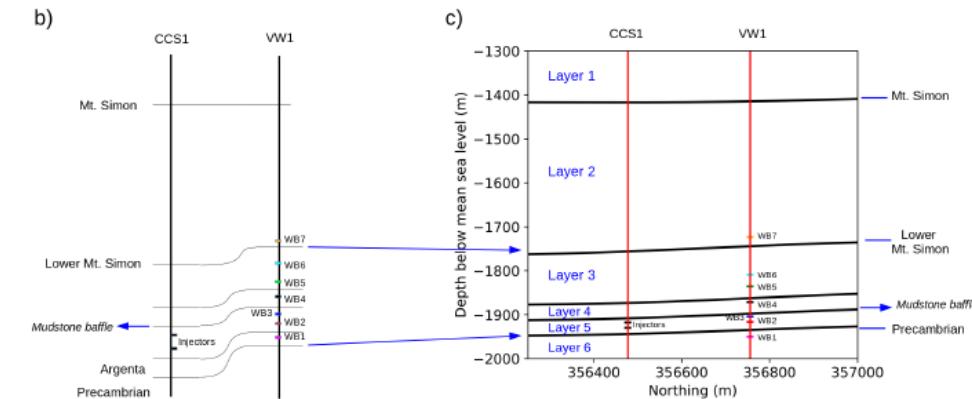


History matching with REAL observed pressures at wells

Blue dots: Observation; black: the best estimate



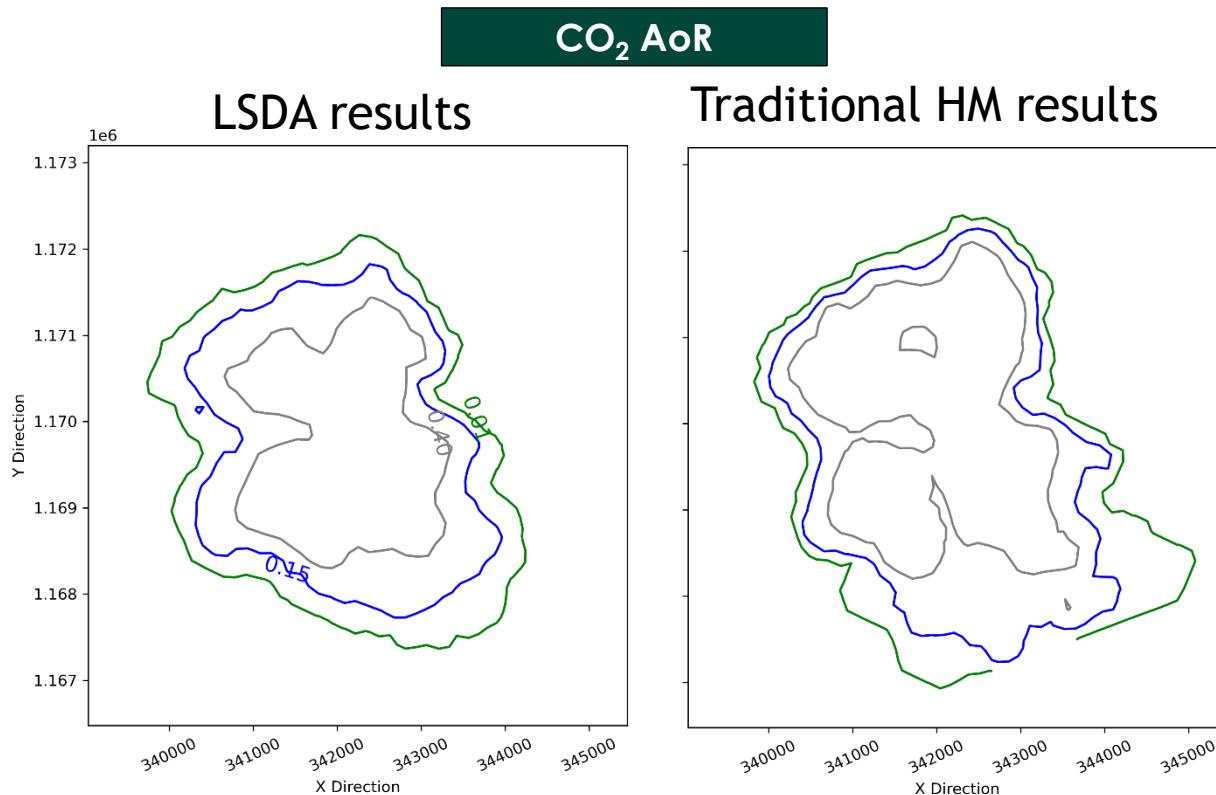
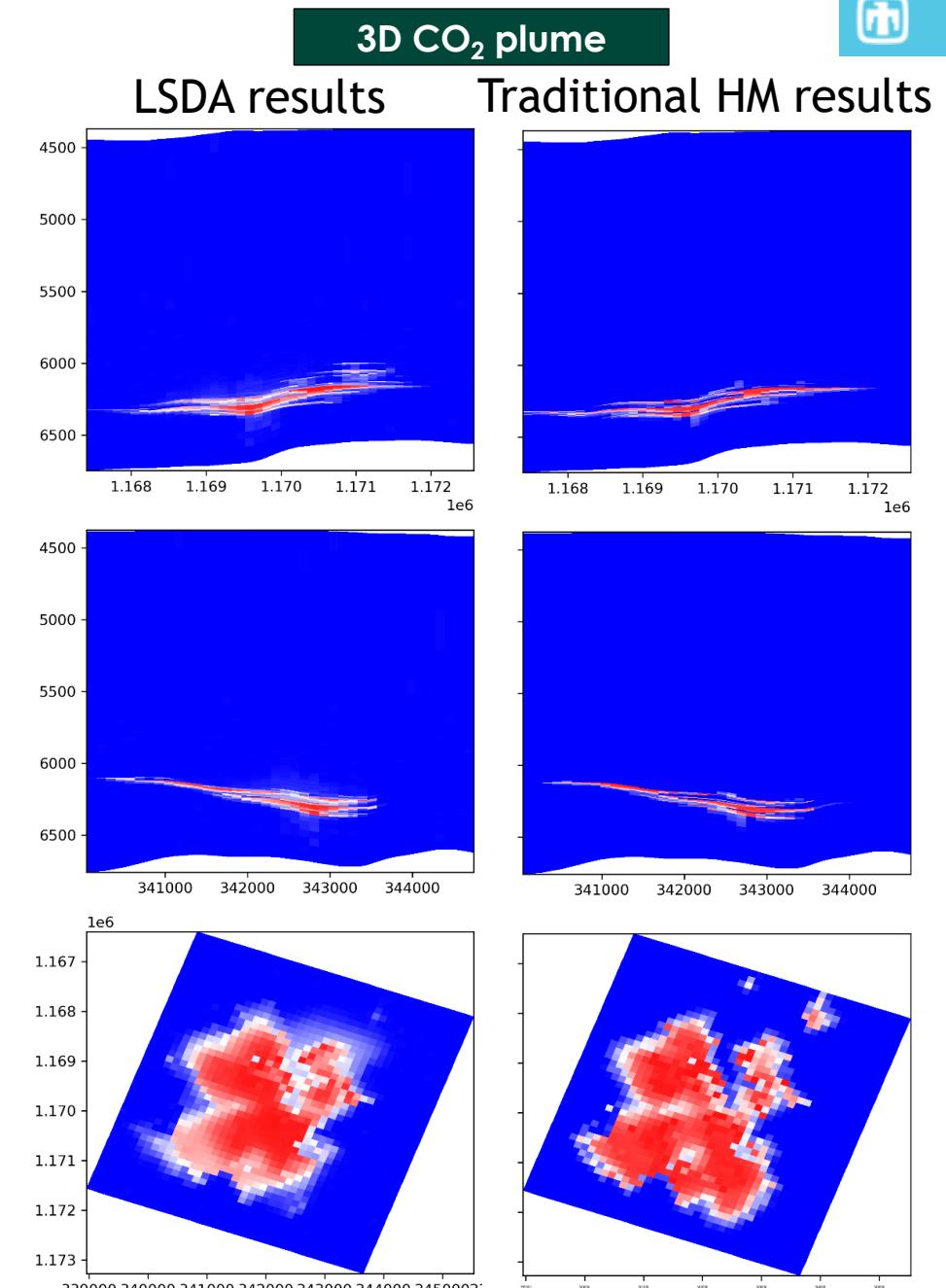
- From observation data there may be a stronger barrier (e.g., baffles) than training data used
- Higher estimates at WB 1 (Basement) are compensated with lower estimates at WB2-3 (reservoir units)
- Lower uncertainty bounds may indicate the limit on information gained through calibration using VW1 P data



Comparison of CO₂ saturation

- Updated reservoir fields from LSDA are used with the INO model to predict CO₂ saturation at the grid scale
- Traditional HM results using high fidelity Eclipse runs

Maximum spreading (Area of Review, AoR) projected on the horizontal plane

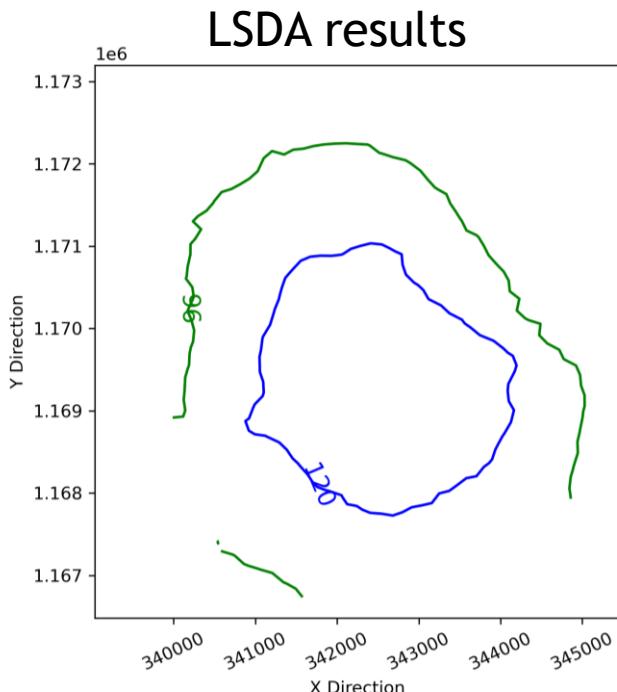
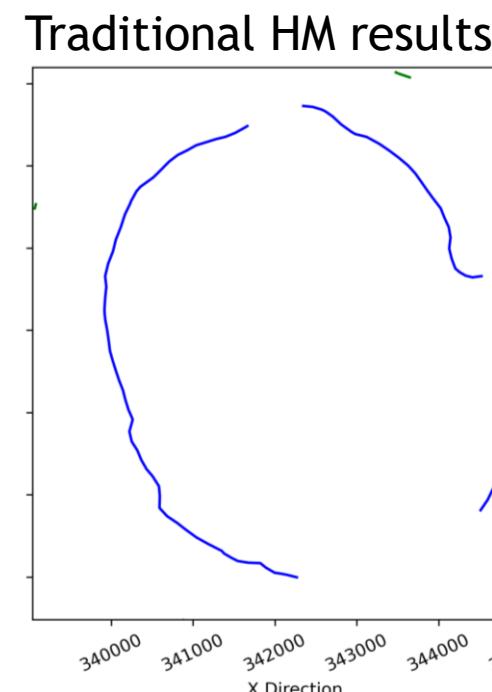


Comparison of Pressure

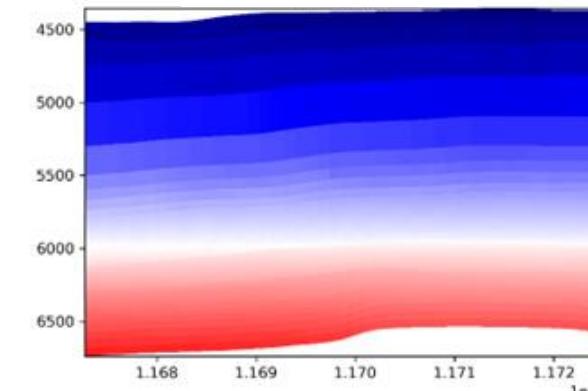
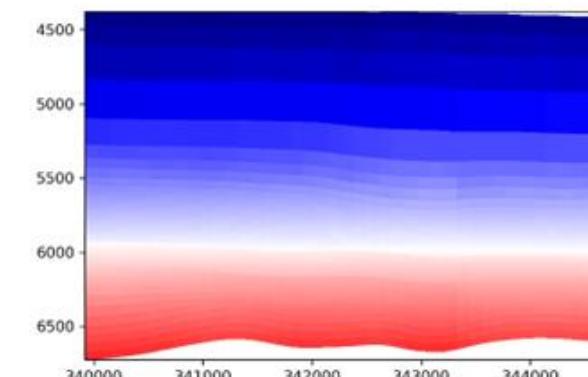
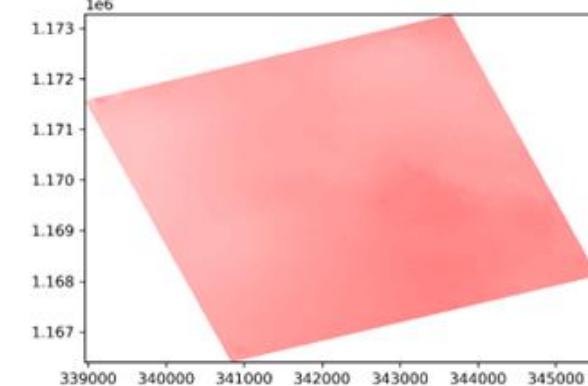
- Updated reservoir fields from LSDA are used with the INO model to predict pressure at the grid scale
- Traditional HM results using high fidelity Eclipse runs

Pressure profile (Area of Review, AoR) projected on the horizontal plane

Pressure AoR



3D Pressure field
LSDA results



Summary

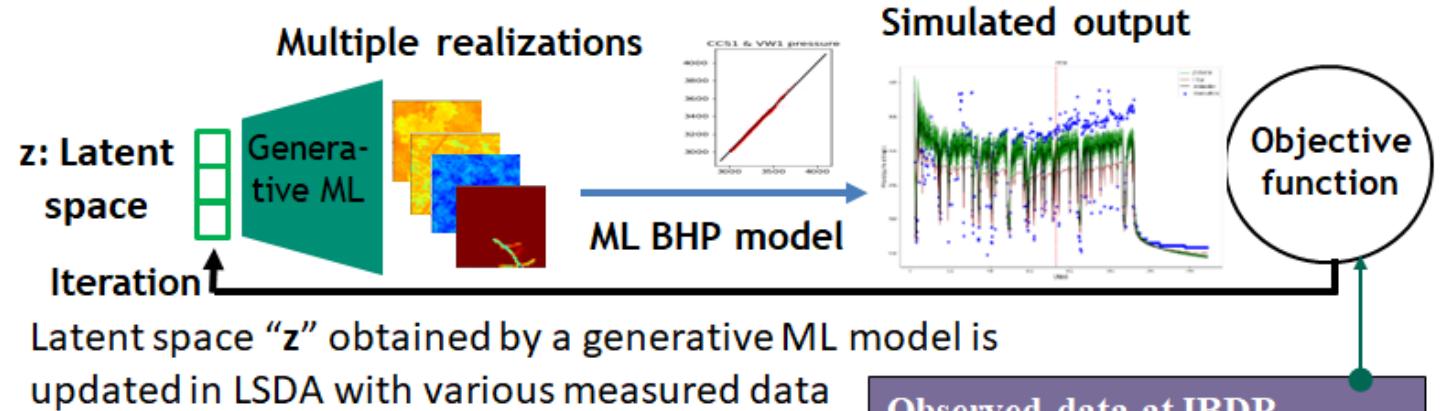
- Data assimilation/History matching in the latent space with deep learning methods (VAE, WGAN, DM) and fast deep learning-based forward modeling can achieve real-time history matching of CO₂ operations and forecasting pressure plume development.
- Latent space optimization including optimal choice of the nonlinear dimension reduction requires further study with more realistic and various types of observed data.
- ML/DL with domain knowledge can lead to dramatic improvement in spatio-temporal data analytics and decision making for mitigating potential risks and optimal monitoring system development.

Summary Slide

Machine learning-driven CO₂ modeling by combining fast ML-based forward modeling with latent space-based data assimilation (LSDA), resulting in real-time history matching (HM) of CO₂ operations and forecasting CO₂ and pressure plume development in an end-to-end fashion at the Illinois Basin-Decatur Project site, Decatur, IL, USA.

Latent Space-based DA (LSDA)

Updated 3D permeability, porosity, transmissivity



DA & HM Methods

- Latent space-based DA
- Ensemble-Smoother with Multiple DA (ES-MDA)

Observed data at IBDP

- Bottom hole pressures (BHPs) at injection and monitoring wells
- Saturation & Temperature at well(s)
- Microseismicity
- CO₂ saturation plume

