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Illinois Basin Decatur Project Site
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▪Carbon capture, utilization, and storage (CCUS) can play 
a role in reducing net carbon emissions

IBDP Comp./ 

Dehydration

ICCS Comp./ 

Dehydration

Illinois Basin Decatur Project (IBDP)

• Inject and store 0.33 million tonnes per year / 1 million total

• First CO2 injection demonstration project from 2011 to 2014

• Novelty: First 1 million tonne biofuel CCS project in U.S. & 

microseismicity monitoring

• Variety of geologic, operational and monitoring data being 

collected and interpreted

• [Q] Can (near) real-time feedback be provided for 

operational control and optimization? 

• How can ML-assisted workflows improve understanding of 

GCS system?  



• 100 Sets of 3D permeabiltiy (x,y,z), porosity, transmissivity (x,y,z) fields

at 126 x 125 x 110 tartan grid (1.73M cells)

• Eclipse simulation was performed to generate training data

• Well pressure daily at injection well and monitoring well (6 depths)

• Pressure and CO2 saturation prediction every 1 month 

• CO2 injection for 3 years + 1 yr shut in

• All input data (e.g., injection rates and locations) reflects real historical 
CO2 injection data

Permeability and porosity field
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Objective & ML training data

Objective: Machine learning-driven CO2 modeling by combining fast ML-

based forward modeling with latent space data assimilation (LSDA), 

resulting in real-time history matching of CO2 operations and 

forecasting CO2 and pressure plume development 

ML training data at the IBDP site



Latent Space-based DA (LSDA) with generative priors
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Latent space “z” obtained by generative ML models (e.g., VAE, 
WGAN, DM) is updated in (Ensemble or Variational) DA-based 
methods with various measured data

Bao et al. (Geoenergy Sci Eng, 2024), 

Yoon et al. (GHGT 2022 & in prep)

• Data assimilation in low dimensional latent space of unknown parameters with dim(z)

• Forward model executions can be significantly reduced with ML-based models

• Flexible modular structure and Bayesian inference or ensemble-based methods are available

z: Latent 
space

Genera-

tive ML

Multiple
realizations

ML BHP

model

Simulated output

Objective 

functions

Iteration

DA & HM Methods
• Latent space-based DA

• Ensemble-Smoother with 

Multiple DA (ES-MDA)

Updated 3D permeability, porosity, transmissivity
Observed data at IBDP
• Bottom hole pressures (BHPs) at 

injection and monitoring wells

• Saturation & Temperature at well(s)

• MIcroseismicity

• CO2 saturation plume



Generative Models
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Kang et al. (WRR 2022), Bao et al. (Geoenergy Sci 

Eng, 2024), Kim et al. (JCH 2021,Sci. Rep. 2021)

• Three generative models are constructed to generate ensemble samples from latent vector

• Variational autoencoder (VAE), Wasserstein generative adversarial network (WGAN-GP,) and 

diffusion model (DM) are all available

Generative

Model (G)

Latent space z (≪ physical dimension N)

 (nonlinearly compressed subspace)

z

• (Likelihood-based) VAE + Super Resolution Upscaler (SRGAN)

• (Score-based) Latent Space Diffusion Model

permeability 

porosity

z ~ N(0,I)

Low Resolution (from generative models)

High Resolution

Reconstruction

kxx kzz
kxx kzz

SRGAN



ML surrogate model – Well Pressure
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Testing results

• For demonstration purpose, a sub-domain (40x44x94 out of 126x125x110) is used

• ML model: CNN-LSTM (static and dynamic data are concatenated after feature vectors are 

constructed by repeating static feature vector into dynamic data over time)

• Inputs: 

▪ Static fields (7 features): 3D permeabiltiy (x,y,z), porosity, transmissivity (x,y,z) fields

▪ Dynamic data: Time, daily injection rates, cumulative injection volume

• Output: well pressures at seven sensor locations (injection (CCS1) and monitoring (VW1) wells)

RMSE = 4.4psi



Improved Neural Operator (INO): Pressure & Saturation at grid scale
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• Dramatically improved in computational efficiency with good accuracy through subsampling

• Inputs: 

▪ Static fields (7 features): 3D permeabiltiy (x,y,z), porosity, transmissivity (x,y,z) fields

▪ Dynamic data: Time, daily injection rates, cumulative injection volume

• Output: Pressure or saturation at the grid scale

Kadeethum et al. (2024, Geoenergy Sci and Eng)



INO Results for Pressure and Saturation
8

Kadeethum et al. (2024, Geoenergy Sci and Eng)



History matching with synthetic observed pressures at wells
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▪ Calibration with the first 2 yrs data and blind test with 

the rest period (VAE as generative model)

▪ With pre-trained ML models, only takes ~10min for HM



History matching with synthetic observed pressures at wells
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Obj. function Data fitting Eigen Spectrum Latent space in VAE

Distribution of parameters (prior and MAP) Examples of 7 input parameters from initial and final estimates



History matching with REAL observed pressures at wells
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▪ BHP at CCS1 tends to increase after 
~ 2yrs -> challenge to match after 2 
yrs calibration

▪ Fluctuations due to frequent shut-
ins pose a challenge to balance off 
between general BHP trend and 
low and high fluctuations during 
calibration

Training data



History matching with REAL observed pressures at wells
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Blue dots: Observation; black: the best estimate

▪ From observation data there may 
be a stronger barrier (e.g., 
baffles) than training data used

▪ Higher estimates at WB 1 
(Basement) are compensated 
with lower estimates at WB2-3 
(reservoir units)

▪ Lower uncertainty bounds may 
indicate the limit on information 
gained though calibration using 
VW1 P data



Comparison of CO2 saturation
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LSDA results

Maximum spreading (Area of Review, AoR) projected on 

the horizontal plane

Traditional HM resultsLSDA results

Traditional HM results

▪ Updated reservoir fields from LSDA are used with the INO 

model to predict CO2 saturation at the grid scale

▪ Traditional HM results using high fidelity Eclipse runs

3D CO2 plume

CO2 AoR



Comparison of Pressure
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LSDA results

Pressure profile (Area of Review, AoR) projected on the 

horizontal plane

LSDA results

Traditional HM results

▪ Updated reservoir fields from LSDA are used with the INO 

model to predict pressure at the grid scale

▪ Traditional HM results using high fidelity Eclipse runs

3D Pressure field

Pressure AoR



Summary

• Data assimilation/History matching in the latent space with deep learning 
methods (VAE, WGAN, DM) and fast deep learning-based forward modeling 
can achieve real-time history matching of CO2 operations and forecasting 
pressure plume development.

• Latent space optimization including optimal choice of the nonlinear 
dimension reduction requires further study with more realistic and various 
types of observed data.

• ML/DL with domain knowledge can lead to dramatic improvement in spatio-
temporal data analytics and decision making for mitigating potential risks and 
optimal monitoring system development. 



Summary Slide

Machine learning-driven CO2 

modeling by combining fast ML-

based forward modeling with 

latent space-based data 

assimilation (LSDA), resulting in 

real-time history matching (HM) 

of CO2 operations and 

forecasting CO2 and pressure 

plume development in an end-

to-end fashion at the Illinois 

Basin-Decatur Project site, 

Decatur, IL, USA.
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