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Tin displays complex behavior femperaty
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* Used in plating, soldering, and alloying =
* Low melting temperature (505 K) and low % 40
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Experimental characterization of B-Tin

« Characterize temperature and strain-rate

dependencies

« Compression tests
* Experiments done at Sandia

* Temperature: 200 ~ 400 K
« Strain-rate: 107* ~ 10% s~

« Split-Hopkinson Pressure Bar (SHPB) tests

« Experiments done at Los Alamos
* Temperature: 190 ~ 375K

« Strain-rate: 3175~ 3900s!
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Traditional strength models 0 = f (¢, ¢, T)

 Traditional model limitations
* Fixed form
- Difficult to extrapolate
* Multiple parameters to fit
* Assumption-based
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Jonnson-CookK (JC): o
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o= (A+Be")(1+ Clné)(1 —T*™)
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Zerilli-Armstrong (ZA): 6
parameters

o = Cy + Cy exp(—CsT + C,Tlné) + Cse™
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Physics-informed genetic programming (GP) model
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Physics-informed GP strength model (i)
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Benefits of the physics-informed GP strength model

Stresses at £ = 1% Taylor impact

. est ,
« Simple and robust technique to
study dynamic behaviors

« Strain-rates: 107% ~ 10* s71

= 107} » Experiments done at Los Alamos
I » Impact velocity: 96 ~ 141 m/s
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 Analytical model allows for extrapolation and
easy implementation into finite element codes
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Modeling the Taylor impact test

D=7.6mm o
Physics-informed
. GP

A

* Implemented within Sandia’s
multiphysics code (ALEGRA)

* Material definition:
H=1382 « Equation of State:

mm ¢ Sesame 2101
* Yield model:

Tin
projectile

Vo = 96
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Modeling the Taylor impact test

D=7.6mm
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Quantitative comparison with experiment and traditional models
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Conclusions

* Genetic programming (GP) is a novel, useful, and
easy way to generate strength models for complex
materials at a wide range of temperatures and

strain-rates

* Developed strength model conforms to data better

than traditional strength models

* Future work

 Incorporate Taylor impact results into the framework to

improve proposed strength models
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Genetic programming without physical constraints

Predicted Stress [MPa]
o

Incipient plasticity

Stresses extracted af strain = 0.01 |
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