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Overview

« Background and motivation

— Examples of the mitigating effects of oxygen
Impurities on hydrogen embrittlement in laboratory
testing

» Experimental methods

— Long-term, constant displacement fracture tests in
high pressure gaseous hydrogen environments

— Commercial pressure vessel and pipeline steels

« Experimental results

— Comparison of subcritical crack growth in high-
pressure hydrogen and hydrogen with varying
degrees of oxygen impurities

* Conclusions and future research
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Hydrogen has a key role to play in a sustainable future N\

Hydrogen has many potential
avenues for decarbonization
across many sectors

— Energy storage, waste energy
conversion

— Transportation

— Residential/industrial heating and
appliances

— Steel, cement production

.

N

AN

N

ransportation \

Conventional Storage

T
0
& & L
4

”

Renewables ; "‘@?
Aenontal
L Fertilizer

. y X ' '-‘:Ei:

Muclear

4

Fossil
with CCUS

Power

Generation Synthetic

Fuels

Upgrading
Qil /
Biomass

Hydrogen

ol
01 J

H20 Hydrogen
Generation

Metals
Production

Electric Grid
Infrastructure

Chemical/Industrial
Processes

Heat/Distributed
Power

Gas
Infrastructure
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Hydrogen degrades fatigue and fracture resistance

« Hydrogen-assisted fracture and
fatigue is influenced by:
— Materials
» Yield/tensile strength

» Microstructure, homogeneity,
etc.

— Environment
» Partial pressure of hydrogen

» Impurities (e.g., O,)

» Temperature

— Mechanics
» Stress state
» Stress (pressure) cycling

» Residual stresses/work
hardening

Environment

Mechanics

Hydrogen embrittlement occurs in
materials under the influence of
stress in hydrogen environments
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Oxygen is known to affect measurements of fatigue N\
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Oxygen moderated hydrogen-assisted fracture

* Fracture toughness K, values decreased by over 60% in pure H,

at 2.1 MPa

* In 21 MPa mixed gas (100 ppm O,), fracture toughness decreased
by only 30% relative to air

— In pure H, at 21 MPa, relative decrease was 80%

At lower pressures (1.4-2.1 MPa) in mixed gas, no effect of

hydrogen was measured

‘Ref: Ronevich et al, PVP2018-84163

. J-R curves ASTM E1820

N

N\

400 |
[ 12 mil/hr
350 |
: Air (100mil/hr) oo
_ % F 100ppmo, S _
N [ (1.4 MPa) oo ]
£ 20F (oomilshr) (1202 Fn)np;;)oz':
- 3 i .
X 200F e E
T L .
7 sof U /
L& ; 100 ppm O, 1
100 £ / (21MpPa) ]
34
, (5.5 MPa)
0 u ] ; it e »,(21 MPa)
0 0.2 0.4 0.6 0.8 1
Aa (mm
sample IDI Environment Test Pressure|Actuator rate| da/dt | K, ( )
P MPa) | (mmmn) | (mfs) |(MPa mi2)
X100-51 Air - 25  |5.0E-7| 217
X100-52 Air - 2.5 1.4E-7 202 )
X100-5 H2 21 03 |85E7] 43 60 - 80% reduction
X100-6 H2 55 0.3 3.6E-7 47
X100-7 H2 2.1 0.3 1.7E-7 75
X100-53 |H2 + 100 ppm O2 21 0.3 1.1E-7| 151 30% reduction
X100-55 |H2 + 100 ppm O2 2.1 0.3 7.4E-8 222
X100-56 |H2 + 100 ppm O2 1.4 2.5 1.0E-7 222




Oxygen has been shown to mitigate hydrogen \\
embrittlement in laboratory tests

« Fatigue and fracture measurements can be \

) 10% T X52 Base Metal significantly impacted by oxygen impurities
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— Does trace oxygen have long term mitigation
effects on hydrogen embrittlement?

Ref.: Somerday et al, Acta Mater 61 (2013) 6153.
‘Ref.: Nibur et al, SAND2010-4633 (2010).




Sustained load testing can be executed over periods of \\
days to weeks to months to years

Pressure vessels for medium

Fixed (constant) displacement and long term experiments \

fracture tests e ——— W /
Wedge-opened loaded y £

Fatigue pre-cracked and loaded in (WOL) test sample

ambient air

Placed in pressure vessels &
pressurized up to 140 MPa gaseous
environment

— Experiments in this study were
performed at 103MPa

Instrumented reaction pins allow for
the determination of incubation time

Directly compare subcritical crack
growth in hydrogen and mixed gas

: ASTM E1681 — Threshold Stress Intensity Factor for
environments

Environment-Assisted Cracking
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Crack initiation and growth rates were measured during \\
constant displacement fracture experiments

Instrumented reaction pins allow
for determination of incubation
time and crack growth rates

— Continuous data collection
throughout the duration of the
experiments

Time between the Initial crack
propagation and arrest can range
between seconds to hours

— With a constant displacement, the
crack growth rates can be
determined from the load on the
reaction pin

Post-test fatigue and heat tinting
are used to mark fracture
surfaces
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Material selection and fracture surfaces

« SA372 Grade J steel
— Heat A: YS = 700 MPa
— Heat B: YS = 750 MPa

Grade L Grade J

« SA372 Grade L steel
— YS =730 MPa

« X100 pipeline steel
— YS =760 MPa

* Precipitation Hardened 13-8
stainless steel

— YS = 1480 MPa
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Grade J: 100P
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Grade L: 100PPM & 1000PPM O, delay incubation time
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* Similar crack arrest thresholds for all test conditions
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100PPM O, delays incubation time for X100,
but 13-8 fractured immediately

)élOO_ 120 MPass « X100 also saw a significant delay with
400 | Dare e 50 the addition of 1200PPM O,
350 | Pressure =103 MPa

= Values = Ky, (MPa m??)

~2.3x delay

m Pure H2 = 100PPM

13




100PPM O, delays incubation time for X100, AN

but 13-8 fractured immediately N\
N\
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Summary and Conclusions

. Crack arrest threshold vs. applied preload
- Constant displacement fracture tests 190 - pplied p

were carried out in pure hydrogen and
mixed gas (100 and 1000PPM oxygen) 100
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Summary and Conclusions

* Introducing 100PPM oxygen increased the
incubation time by factors between 1.5x
and 15x, but did not prevent crack
propagation

* For the Grade L and Grade J, increasing
the oxygen content from 100PPM to
1000PPM further delayed the incubation
time, but had a smaller relative effect
compared to the delay from pure
hydrogen to hydrogen + 100PPM oxygen
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Summary and Conclusions

* Crack growth rates (da/dt) fall within the
expected ranges from previous tests in
pure hydrogen at similar pressures

* For many commonly used, laboratory
testing rates, oxygen impurities can appear
to mitigate hydrogen embrittlement

— Oxygen impurities compete for surface sites
with hydrogen, but only slow the uptake of
hydrogen and delay the embrittlement
(reduction of material properties)

« Based on this data, low oxygen impurities
should not be relied upon for long-term
mitigation of hydrogen embrittlement

— Both the gas purity and testing rate are
critical in order to determine representative
and conservative material properties for the
design of gaseous hydrogen infrastructure
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Broader Research — Mechanisms rom s hvtronicted smes N\

* Ongoing research is looking at determining the mechanisms
behind the delay of hydrogen embrittlement in the presence
of oxygen impurities

« Surface experiments:

— Oxides form rapidly on clean steel surfaces (XPS)

— Hydroxyls form rapidly when oxide surfaces are exposed to
hydrogen (XPS)

* Modeling:

— First principle calculations suggest hydrogen atoms can diffuse
through oxides (DFT simulations, right)

« Experimental and computational observations consistently
show oxides can impede but not prevent hydrogen-assisted
fracture, especially on long time scales (> hours)

to metal interface
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Thank you for your attention!

Norman Bartelt

Farid El Gabaly

Milan Agnani

Fernando Leon-Cazares

Rob Wheeler - rwwheel@sandia.qov
Chris San Marchi
Joe Ronevich

We would like to acknowledge the Hydrogen Effects on Materials Laboratory (HEML)
— James McNair
— Brendan Davis
— Keri McArthur
— Tanner McDonnell
— Jeff Campbell

Acknowledgement:

Sandia’s Hydrogen Effects on Materials Laboratory (HEML) gratefully acknowledges sustained support from the
Office of Energy Efficiency and Renewable Energy’s (EERE) Hydrogen and Fuel Cell Technologies Office (HFTO)
within the U.S. Department of Energy (DOE). Any subjective views or opinions that might be expressed in the
presentation do not necessarily represent the views of the U.S. Department of Energy or the United States
Government.



mailto:rwheel@sandia.gov

	Default Section
	Slide 1: Effects of Oxygen Impurities on Long-Term Gaseous Hydrogen Embrittlement of Structural Steels
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Oxygen is known to affect measurements of fatigue
	Slide 6: Oxygen moderated hydrogen-assisted fracture
	Slide 7: Oxygen has been shown to mitigate hydrogen embrittlement in laboratory tests
	Slide 8: Sustained load testing can be executed over periods of  days to weeks to months to years
	Slide 9: Crack initiation and growth rates were measured during constant displacement fracture experiments
	Slide 10: Material selection and fracture surfaces 
	Slide 11
	Slide 12
	Slide 13: 100PPM O2 delays incubation time for X100,  but 13-8 fractured immediately
	Slide 14: 100PPM O2 delays incubation time for X100,  but 13-8 fractured immediately
	Slide 15
	Slide 16: Summary and Conclusions 
	Slide 17: Summary and Conclusions
	Slide 18: Broader Research – Mechanisms
	Slide 19: Thank you for your attention!


