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• Background and motivation

– Examples of the mitigating effects of oxygen 
impurities on hydrogen embrittlement in laboratory 
testing

• Experimental methods

– Long-term, constant displacement fracture tests in 
high pressure gaseous hydrogen environments

– Commercial pressure vessel and pipeline steels

• Experimental results

– Comparison of subcritical crack growth in high-
pressure hydrogen and hydrogen with varying 
degrees of oxygen impurities

• Conclusions and future research

Overview
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• Hydrogen has many potential 

avenues for decarbonization 

across many sectors

– Energy storage, waste energy 

conversion

– Transportation

– Residential/industrial heating and 

appliances

– Steel, cement production

Hydrogen has a key role to play in a sustainable future

Source: U.S. DOE Hydrogen and Fuel Cell Technologies Office https://www.energy.gov/eere/fuelcells/h2scale  

https://www.energy.gov/eere/fuelcells/h2scale
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• Hydrogen-assisted fracture and 

fatigue is influenced by:

– Materials

➢ Yield/tensile strength

➢ Microstructure, homogeneity, 

etc.

– Environment

➢ Partial pressure of hydrogen

➢ Impurities (e.g., O2)

➢ Temperature

– Mechanics

➢ Stress state

➢ Stress (pressure) cycling

➢ Residual stresses/work 

hardening

Hydrogen degrades fatigue and fracture resistance

Environment

MechanicsMaterials

Hydrogen embrittlement occurs in 

materials under the influence of 

stress in hydrogen environments



Oxygen is known to affect measurements of fatigue
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• Numerous examples of trace 

gases mitigating fatigue crack 

growth rate (FCGR) in laboratory 

conditions

• Example:

– (1) Oxygen reduces FCGR 

comparable to air

– (2) Oxygen has no effect on FCGR 

in H2
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Refs.: Somerday et al, Acta Mater 61 (2013) 6153. Nibur et al, SAND2010-4633 (2010).
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Oxygen moderated hydrogen-assisted fracture

Sample ID Environment 
Test Pressure

(MPa)

Actuator rate

(mm/hr)

da/dt

(m/s)

KJQH

(MPa m1/2)
X100-51 Air - 2.5 5.0E-7 217
X100-52 Air - 2.5 1.4E-7 202
X100-5 H2 21 0.3 8.5E-7 43
X100-6 H2 5.5 0.3 3.6E-7 47
X100-7 H2 2.1 0.3 1.7E-7 75

X100-53 H2 + 100 ppm O2 21 0.3 1.1E-7 151
X100-55 H2 + 100 ppm O2 2.1 0.3 7.4E-8 222
X100-56 H2 + 100 ppm O2 1.4 2.5 1.0E-7 222

• Fracture toughness KJQH values decreased by over 60% in pure H2 
at 2.1 MPa 

• In 21 MPa mixed gas (100 ppm O2), fracture toughness decreased 
by only 30% relative to air

– In pure H2 at 21 MPa, relative decrease was 80% 

• At lower pressures (1.4-2.1 MPa) in mixed gas, no effect of 
hydrogen was measured

J-R curves ASTM E1820

60 - 80% reduction 

30% reduction 

Ref: Ronevich et al, PVP2018-84163



Oxygen has been shown to mitigate hydrogen 
embrittlement in laboratory tests
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• Fatigue and fracture measurements can be 

significantly impacted by oxygen impurities

• Fatigue crack growth tests are typically 

performed at 1 Hz (±decade)

– da/dN = 10-5 mm/cycle

– Time for ∆a = 1mm: ~1 day 

– 1 day = 0.02% of 10 year life

• Are the time scales of a typical laboratory 

fatigue test sufficient to demonstrate kinetics 

over decades?
– More accurately simulate the 

mechanical/environmental conditions that 

components see when in use

– Does trace oxygen have long term mitigation 

effects on hydrogen embrittlement?

Ref.: Somerday et al, Acta Mater 61 (2013) 6153.

Ref.: Nibur et al, SAND2010-4633 (2010).



Sustained load testing can be executed over periods of  
days to weeks to months to years
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• Fixed (constant) displacement 

fracture tests

• Fatigue pre-cracked and loaded in 

ambient air

• Placed in pressure vessels & 

pressurized up to 140 MPa gaseous 

environment

– Experiments in this study were 

performed at 103MPa

• Instrumented reaction pins allow for 

the determination of incubation time

• Directly compare subcritical crack 

growth in hydrogen and mixed gas 

environments

Wedge-opened loaded

(WOL) test sample

ASTM E1681 – Threshold Stress Intensity Factor for 

Environment-Assisted Cracking 

Pressure vessels for medium 

and long term experiments



Crack initiation and growth rates were measured during 
constant displacement fracture experiments
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• Instrumented reaction pins allow 
for determination of incubation 
time and crack growth rates

– Continuous data collection 
throughout the duration of the 
experiments

• Time between the initial crack 
propagation and arrest can range 
between seconds to hours

– With a constant displacement, the 
crack growth rates can be 
determined from the load on the 
reaction pin

• Post-test fatigue and heat tinting 
are used to mark fracture 
surfaces
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Material selection and fracture surfaces 

Grade L Grade J

X100 13-8

• SA372 Grade J steel

– Heat A: YS = 700 MPa

– Heat B: YS = 750 MPa

•  SA372 Grade L steel

– YS = 730 MPa

• X100 pipeline steel

– YS = 760 MPa

• Precipitation Hardened 13-8 

stainless steel

– YS = 1480 MPa 
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• The Grade J material showed delays of 15x at a higher preload (Kapp =  145 MPa m) and a 2.2x increase at a 
lower preload (Kapp =  135 MPa m)

• K thresholds were within ±5 MPa m of average for both the pure and mixed gas conditions

82
81

Grade J: 100PPM & 1000PPM O2 delay incubation time
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Grade L 

Kapp = 34MPa m
YS = 730 MPa

Pressure = 103 MPa
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Grade L: 100PPM & 1000PPM O2 delay incubation time

22

24

12

• Grade L had a 5x delay at higher preload (Kapp =  60 MPa m) and a 1.5x delay at lower preload (Kapp =  34 
MPa m)

• Similar crack arrest thresholds for all test conditions
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100PPM O2 delays incubation time for X100, 
but 13-8 fractured immediately
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• X100 also saw a significant delay with 

the addition of 100PPM O2

X100
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13-8 Stainless

YS = 1480 MPa

Pressure = 34.5 MPa

100PPM O2 delays incubation time for X100, 
but 13-8 fractured immediately
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• Both 13-8 samples fractured (a/W > 97%) 

within seconds of exposure to H2 + 100PPM 

O2

– At reduced pressures (< 40 MPa)
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• Constant displacement fracture tests 

were carried out in pure hydrogen and 

mixed gas (100 and 1000PPM oxygen) 

environments at 103MPa (15ksi)

• Karrest appears to be independent from 

oxygen content

– All tests with pure hydrogen and oxygen 

impurities fall within an apx. 10MPa m 

range

Grade J Heat A & B

X100

Grade L

Summary and Conclusions

Grade J Heat B H2 + 1000PPM O2
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• Introducing 100PPM oxygen increased the 

incubation time by factors between 1.5x 

and 15x, but did not prevent crack 

propagation

• For the Grade L and Grade J, increasing 

the oxygen content from 100PPM to 

1000PPM further delayed the incubation 

time, but had a smaller relative effect 

compared to the delay from pure 

hydrogen to hydrogen + 100PPM oxygen

Summary and Conclusions 
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Summary and Conclusions
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• Crack growth rates (da/dt) fall within the 
expected ranges from previous tests in 
pure hydrogen at similar pressures

• For many commonly used, laboratory 
testing rates, oxygen impurities can appear 
to mitigate hydrogen embrittlement

– Oxygen impurities compete for surface sites 
with hydrogen, but only slow the uptake of 
hydrogen and delay the embrittlement 
(reduction of material properties)

• Based on this data, low oxygen impurities 
should not be relied upon for long-term 
mitigation of hydrogen embrittlement

– Both the gas purity and testing rate are 
critical in order to determine representative 
and conservative material properties for the 
design of gaseous hydrogen infrastructure 1.E-11
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Broader Research – Mechanisms
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• Ongoing research is looking at determining the mechanisms 

behind the delay of hydrogen embrittlement in the presence 

of oxygen impurities

• Surface experiments:

– Oxides form rapidly on clean steel surfaces (XPS)

– Hydroxyls form rapidly when oxide surfaces are exposed to 

hydrogen (XPS) 

• Modeling:

– First principle calculations suggest hydrogen atoms can diffuse 

through oxides (DFT simulations, right)

• Experimental and computational observations consistently 

show oxides can impede but not prevent hydrogen-assisted 

fracture, especially on long time scales (> hours)

to metal interface

H atom diffusing into Fe3O4 

from a hydroxylated surface
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