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Z's inner MITL experiences current loss from charged particle
cross-gap flow of expected e~ densities of 103 - 107 cm™3

inner MITL
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Power Flow Physics of a MITL (Specifically P3 at Mykonos)
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An existing platform on Mykonos provides diagnostically accessible
A-K gap geometry scaled to match Z's inner MITL field strengths

Cross Section: B

Typical Mykonos Current Pulse

L | | . ‘
25 50 75 100 125 150
Time [ns]

I gap & |E| (electric field)
— |E|~0.5-5 MV /cm

1/Tmajorf 1/Tminor X |j| X |§|

-7, —
pnode o |B|~50-500 T

[5] D.Lamppa, S. Simpson, B. Hutsel, M. Cuneo, G. Laity, and D. Rose, "Assessment of Electrode Contamination Mitigation at 0.5 MA Scale," Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2021.

Parallel Plgte Section 1/d




Second-Harmonic Orthogonally Polarized Dispersion Interferometer
(SHOP-DI) diagnostic design for Mykonos
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P3 Hardware Geometric Effects on the Plasma Initiation Time

= Several P2 geometries were
utilized, varying the Cathode

circumference and A-K gap Plasma Initiation Time vs Geometrical Parameters
spacing: (Plasma Threshold Areal Density, n, = 1 X 1010 cm*Q)
» Larger Cathode circumferences Pearson correlation coeflicient, r = 0.7729
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Standard (400 °C) Thermal Emission vs.

Enhanced E-Field (240 kV/cm) Explosive Emission

= We can account for the variation
in geometric effects by

subtracting the expected thermal

desorption initiation time. Pearson correlation coefficient, » = 0.6120
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» A moderate correlation is shown
between the 10 cm™2 Cathode
plasma detection time as a
function of expected 400 °C
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Why is There an A-K Gap Dependent Delay Between Plasma
Initiation and Plasma Detection?

* Perhaps the plasma cross-gap
expansion velocity is reduced
as the Electric field strength is
reduced.

~ A-K gaps expansion velocities
would then vary between
0.1 < v, <0.5cm/ps.

= Maybe ultra high E-field
sources ions that bombard the
Cathode, creating the cathode
plasma that expands at faster
velocities.

~ Backtrack formation time
assuming a faster cathode
plasma expansion velocity and
known probing location.

» Find that plasma initiation
consistently potentially occurred
at Electric fields of ~ 1.87 +
0.66 MV /cm.

~ This matches the expected ultra
high field strengths from [6]

What is sourcing the cathode surface plasma?

Hypothesis #1: The surface plasma’s
expansion velocity is gap dependent

Hypotheses #2: Fast expansion velocity
suggests ultra high E-field sourcing
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The P3 Vacuum Pressure Does Not Effect the Plasma Initiation

= Are the later than expected plasma formations caused due to less surface contaminates via a longer pump
down duration (i.e. a lower downline vacuum pressure)?
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Conclusions

* Thereis a need to better understand Power Flow physics and Current Loss contributors.

= The SHOP-DI diagnostic at SNL can measure electrode plasma free electron effective areal
densities that are expected to form in the inner MITL and convolute regions of TW-class
accelerators like the Z machine.

» (neL)min = 6.3 X103 [cm™2] (4.11 [mrad] sensitivity)
» An,L)max = 4.8 X 101® [cm™2/ns] (2 [GHz] bandwidth)
= Preliminary experimental studies of Cathode plasma formation were conducted.

» Variety of Ohmic heating rates and E-field strengths.

< Perhaps the cathode plasma expansion velocity is lower than thought and is inversely related to A-K gap.

< Or maybe plasma expansion velocity is higher and ultra high E-field cathode plasma initiation is occurring.

» Mid- to high- 107> Torr vacuum pressure variances do not play a significantrole.
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Conclusion

» The areal density is considered “free electron effective” since it's calculated assuming the
plasma’s refractive index is solely affected by free electrons.

o There may in fact be substantial bound electrons that are affecting (positively) the detected
phase change, thus affecting (negatively) the calculated electron areal density below reality.
So, this is really a minimum free electron areal density measurement.
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Interferometer’s Detected

Interferometer’s Detected

SUPPLEMENTARY PLOTS OF PARAMETER

RELATIONSHIPS
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SECOND HARMONIC GENERATION EFFICIENCY IS FUNCTION
OF TEMPERATURE, BEAM FOCUSING PARAMETERS, AND
POLARIZATION
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Phase Control Windows
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CHICAGO & ALEGRA simulations

Cathode: 1.50 x 1.00 mm, Gap: 1.21 mm

CHICAGO Simulation Arcal Density Countours (0.2 ns Moving Average)
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SHOP Interferometer Install on the UNM HelCat Plasma Device
Verified Functionality for Low Density Measurements

113505, November 2022.
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