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2 1 What are interlocking metasurfaces (ILMs)?

Robust
joining technolog
suitable for

complex surfaces
dissimilar materials

extreme
environments
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Non-Permanent
Integrated

ILMs overcome many limitations of
existing joining methods
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Tailoring Mechanical Performance

* Robustness controlled by ILM’s unit cell design, constitutive material, and

unit cell interaction
Remateability

Failure Criteria
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Design Methodology Comparison

« Evaluate ILM unit cell performance and capabilities of 4 distinct design
methods

| 10/20/2024
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5‘ Topology Comparison Methods
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‘ Design Results
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~~ Parametric Optimization Genetic Algorithm
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* Parametrization limit uniqueness L

. Considerable changed in topology \
between topologies

corresponding to objective

Differences in height and width

Non-intuitive designs
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: ‘ Design Results
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/" Parametric Optimization Genetic Algorithm 7 Experimental Testing ™

/ \ /

-

~.
-’
~
-

e Parametrization limit uniqueness
between topologies

/* Considerable changed in topology

corresponding to objective e Tested in 1x1, 1x3, and 1x1 Fully

* Non-intuitive designs Constrained configurations

* Tension: Tall, Dendritic ~ Shear: Short, sturdy e Extruded 2D surfaces

* Differences in height and width
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. | Experimental Results

* Both optimization method result in considerable strength increase
 Effective strength increases with tessellation size - Unit Cell Interactions
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Design Methodology Comparison

» Evaluate ILM unit cell performance and capabilities of 5 distinct methods
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Diffusion Model
* Single-shot generation

* Conditions based on
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» 1 Condition Diffusion Models (CDMs)

« CDM: Generative Al method to generate data by iteratively refining random
noise, guided by specific conditions or inputs, to produce highly
realistic/practical outputs -~

« Commoly used for “text-to-art” generatiorn—
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.1 CDMs as an Engineering Design Tool

» Use the denoising process to go from complete noise to a viable design candidate

* Replace “text-description” with performance criteria - Desired Thermo-mechanical
properties

*‘ Model Training

Thermo-
mechanical

properties Sequentially add Gaussian noise over T timesteps

Model Testing




2 I Generating Training Data

* Training data comprised of ILM unit cell design and corresponding thermo-mechanical
properties

 Randomly generated ~28k designs and determine properties using finite element analysis
(FEA)

* Voxelized 12x12 (mirrored) design domain, each element either Macor, AI6GO61, or void

Thermo-Mechanical Properties

1. Tensile Resultant Force 2. Shear Resultant Force 3. Heat Mitigation
Top surface resultant force at material * Top surface resultant force at material * Average bottom surface nodal temperature
yielding yielding

Heat to 500 °C
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13‘ Putting the “"Conditional” in CDM

*40 individual conditions numbers determined based on thermo-mechanical responses of 28k training
samples

*Based on magnittbde. ang, EgHg ﬂ‘; tggfile and shear resultant force paiig@3 ¢cage Retham surface nodal
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14‘ Putting the "Conditional” in CDM

*40 individual conditions numbers determined based on thermo-mechanical responses of 28k training

samples
*Based on magnitude and ratio of tensile and shear resultant force and average bottom surface nodal
temperature
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CDMs as an Engineering Design Tool

* Feed the 28k unit cell designs and accompanying condition number through the noising
and denoising process

15

Model Training w/ 28k randomly Model Testing
_ ge ne ratec' un |t Cel IS *  Pick condition # based on desired thermo-mechanical properties
Condition Condition
Number Sequentially add Gaussian noise over T timesteps Number= 34

Condition
Number= 2
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Number= 39




«1 Generalized Design Generation

*The model was prompted to generate designs based on 1000 random condition numbers
* Generate design via CDM - Tested Design via FEA - Compare FEA result to condition bounds

All Conditions 73.3%
Angle 86.0%
Magnitude 88.2%
Thermal 95.6%

*The ability to achieve desired properties does not appear to be condition number
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-1 "Pareto Front” Approach — 40 conditions

*Testing the model to produce extremes results in plethora of high performing design
solutions
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18 I Design Methodology Comparison

» Evaluate ILM unit cell performance and capabilities of 5 distinct methods

"t ) ( N
generation with

L N
emphasis on
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-1 Conclusions

 Interlocking metasurfaces (ILMs) are a mechanically
robust, non-permanent, environmentally durable
alternative to traditional joining technologies

« ILMs’ mechanical (and thermal) properties are
dependent on feature topology

* ILMs can be optimized using a host of design
methodologies
* Human intuition: Fastest

 GA and PO: Well established methods to achieve high
performing solutions

« CDM: Serve as generalizable tools for complex desian
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Thank you!

Questions?

Nathan Brown — nkbrown@sandia.gov



