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2 What are interlocking metasurfaces (ILMs)?

2

Robust
Architected

Non-Permanent
Integrated

joining technology
suitable for 

complex surfaces
dissimilar materials
extreme 
environments

(Bolmin 2023)

ILMs overcome many limitations of 
existing joining methods

(Brown 2023)
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3

• Robustness controlled by ILM’s unit cell design, constitutive material, and 
unit cell interaction 

Tailoring Mechanical Performance 

3
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4 Design Methodology Comparison 

4

• Evaluate ILM unit cell performance and capabilities of 4 distinct design 
methods 

Human Intuition
• Expertise
• Experiences
• Nature

• Geometrically 
parameterize a design

• Optimize parameters 
according to 
objectives and 
constraints 

Parametric Opt.
• Elementally Discrete 

domain (voxelized 
design)

• Evolutionary algorithm: 
Cross-populating and 
mutations

Genetic Algorithm Conditional 
Diffusion Model

• Single-shot generation

• Conditions based on 
objectives/constraints

• Thermo-mechanical 
properties

Direct design comparison in tension and 
shear, including experimental validation

Rapid unit cell generation 
with emphasis on 

generalizability
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5 Topology Comparison Methods 

Human Intuition Parametric Optimization Genetic Algorithm
• “Sliding T-slot”

• Based on designer’s 
expertise

• No additional 
optimization

• Parameterized T-slot 

• Gradient-based optimization 

• Maximize Strength: Tension, 
Shear, Weighted-sum

Feasible Designs 

• Evolutionary optimization

• 16x8 mirrored discretized 
design domain

• Single and Multi-Objective 
Optimization (Tension/Shear)

Feasible Designs 

Iterative 
Evolution

Side A

Side B

Side A

Side B

Side A

Side B
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6 Design Results 
Parametric Optimization Genetic Algorithm

• Parametrization limit uniqueness 
between topologies

• Differences in height and width 

Side B

Initial Design

Optimized Designs

MOGA: Multi-Objective Genetic Alg. 
Constrained: Mimics “infinite” unit cell tessellation

Tension Shear Weighted-Sum

• Considerable changed in topology 
corresponding to objective 

• Non-intuitive designs

• Tension: Tall, Dendritic      Shear: Short, sturdy
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7 Design Results 

Parametric Optimization Genetic Algorithm
• Parametrization limit uniqueness 

between topologies

• Differences in height and width 

• Considerable changed in topology 
corresponding to objective 

• Non-intuitive designs

• Tension: Tall, Dendritic      Shear: Short, sturdy

Side B

Initial Design

Tension Shear Weighted-Sum

Optimized Designs

MOGA: Multi-Objective Genetic Alg. 
Constrained: Mimics “infinite” unit cell tessellation

Experimental Testing

Tension Testing 

Shear Testing 

• Tested in 1x1, 1x3, and 1x1 Fully 
Constrained configurations 

• Extruded 2D surfaces
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8 Experimental Results 
• Both optimization method result in considerable strength increase 
• Effective strength increases with tessellation size  Unit Cell Interactions 

Tension Shear



10/20/2024

9 Design Methodology Comparison 

9

• Evaluate ILM unit cell performance and capabilities of 5 distinct methods 

Human Intuition
• Expertise
• Experiences
• Nature

• Geometrical 
parameterize a design

• Optimize parameters 
according to 
objectives and 
constraints 

Parametric Opt.
• Elementally Discrete 

domain (voxelized 
design)

• Evolutionary algorithm: 
Cross-populating and 
mutations

Genetic Algorithm

Direct design comparison in tension and 
shear, including experimental validation

Conclusion: The unit cells 
of ILMs can be optimized 
to achieve considerable 
increases in strength for 
various tessellation sizes

Conditional 
Diffusion Model

• Single-shot generation

• Conditions based on 
objectives/constraints

• Thermo-mechanical 
properties

Rapid unit cell generation 
with emphasis on 

generalizability



10/20/2024

10 Condition Diffusion Models (CDMs) 
• CDM: Generative AI method to generate data by iteratively refining random 

noise, guided by specific conditions or inputs, to produce highly 
realistic/practical outputs

• Commoly used for “text-to-art” generation

(MidJourney) (Gemini)

Image Description

Testing

Training

“Front facing 
photo of large 

breed dog”
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11 CDMs as an Engineering Design Tool
• Use the denoising process to go from complete noise to a viable design candidate 
• Replace “text-description” with performance criteria  Desired Thermo-mechanical 

properties

Sequentially add Gaussian  noise over T timesteps

Sequentially denoise via diffusion model over T timesteps

Model Training 

Model Testing 
Desired Thermo-

Mechanical 
Properties

Thermo-
mechanical 
properties
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12 Generating Training Data 
• Training data comprised of ILM unit cell design and corresponding thermo-mechanical 

properties
• Randomly generated ~28k designs and determine properties using finite element analysis 

(FEA)
• Voxelized 12x12 (mirrored) design domain, each element either Macor, Al6061, or void

Thermo-Mechanical Properties
1. Tensile Resultant Force 3. Heat Mitigation 

• Top surface resultant force at material 
yielding

• Top surface resultant force at material 
yielding

• Average bottom surface nodal temperature

Macor

Al6061

Macor

Al6061

Macor

Al6061

2. Shear Resultant Force 

Heat to 500 °C

Free Convection
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13
•40 individual conditions numbers  determined based on thermo-mechanical responses of 28k training 
samples 

•Based on magnitude and ratio of tensile and shear resultant force and average bottom surface nodal 
temperature 

Putting the “Conditional” in CDM

Macor

Al6061

Macor

Al6061

Macor

Al6061

Macor

Al6061

Macor

Al6061

Design 2 (Cond. No. 39)
TRF: 1745 N  SRF:566N  Temp: 401

Design 1 (Cond. No. 18)
TRF: 1487 N  SRF:515N  Temp: 294

Design 5 (Cond. No. 7)
TRF: 384 N  SRF:1789N  Temp: 281

Design 4 (Cond. No. 27)
TRF: 491 N  SRF:1659N  Temp: 365

Design 3 (Cond. No. 14)
TRF: 1050 N  SRF:965N  Temp: 315

Al6061
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14
•40 individual conditions numbers  determined based on thermo-mechanical responses of 28k training 
samples 

•Based on magnitude and ratio of tensile and shear resultant force and average bottom surface nodal 
temperature 

Putting the “Conditional” in CDM

Macor

Al6061

Macor

Al6061

Macor

Al6061

Macor

Al6061

Al6061
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15 CDMs as an Engineering Design Tool
• Feed the 28k unit cell designs and accompanying condition number through the noising 

and denoising process 

Sequentially add Gaussian  noise over T timesteps

Sequentially denoise via diffusion model over T timesteps

Model Training w/ 28k randomly 
generated unit cells 

Model Testing 

Condition 
Number= 34

Condition 
Number

Condition 
Number= 2

Condition 
Number= 39

Denoising 
Model

Denoising 
Model

Denoising 
Model

• Pick condition # based on desired thermo-mechanical properties 
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16

•The ability to achieve desired properties does not appear to be condition number  
dependent!

•The model was prompted to generate designs based on 1000 random condition numbers 
• Generate design via CDM  Tested Design via FEA  Compare FEA result to condition bounds

Generalized Design Generation

Conditions Avg. Success Rate

All Conditions 73.3%

Angle 86.0%

Magnitude 88.2%

Thermal 95.6%

All Conditions

Heat Transfer

AngleMagnitude
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17

•Testing the model to produce extremes results in plethora of high performing design 
solutions 

•Able to produce designs with high mechanical strength while achieving varying thermal 
responses 

“Pareto Front” Approach – 40 conditions 

17
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18 Design Methodology Comparison 

18

• Evaluate ILM unit cell performance and capabilities of 5 distinct methods 

Human Intuition
• Expertise
• Experiences
• Nature

• Geometrical 
parameterize a design

• Optimize parameters 
according to 
objectives and 
constraints 

Parametric Opt.
• Elementally Discrete 

domain (voxelized 
design)

• Evolutionary algorithm: 
Cross-populating and 
mutations

Genetic Algorithm
Conditional 

Diffusion Model
• Single-shot generation

• Conditions based on 
objectives/constraints

• Vertically 
Engage/Disengage

Direct design comparison in tension and 
shear, including experimental validation

Rapid unit cell 
generation with 
emphasis on 
rematability

Conclusion: The unit cells 
of ILMs can be optimized 
to achieve considerable 
increases in strength for 
various tessellation sizes

Conclusion: 
Conditional 

Diffusion Models 
can serve as a 

generalized 
engineering design 

tool, 
accommodating 

design rules.
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19 Conclusions
• Interlocking metasurfaces (ILMs) are a mechanically 

robust, non-permanent, environmentally durable 
alternative to traditional joining technologies 

• ILMs’ mechanical (and thermal) properties are 
dependent on feature topology

• ILMs can be optimized using a host of design 
methodologies

• Human intuition: Fastest
• GA and PO: Well established methods to achieve high 

performing solutions 
• CDM: Serve as generalizable tools for complex design 

requirements 
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20 Thank you!

Questions?

Nathan Brown – nkbrown@sandia.gov


