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| Energy Security and an Expandmg Threat Space
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Hurricane Maria (2017)
« 2,975 fatalities
: « >$90B damage
oMiami o Al| of Puerto Rico (3.4M) without power
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Hurricane Beryl (2024)
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3 | Current Events in Energy Security
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4 | Even More Current Events in Energy Security
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« 25+ fatalities

» Generates as many as 38 tornadoes

» Cost of damage TBD

» ~3.5M without power, 15.6% of the
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Meeting the Needs of Grid Modernization
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6 | Power Electronic Solutions

Power electronics provide two critical functions:

1. Efficient conversion between disparate forms of electricity

2. Unprecedented control over the flow of electrical energy
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7 | Power Electronics as Utility Infrastructure

SSPS Power Electronic Building SSPS Converter Applications
Block (PEBB) within Substations
Net-Zero Buildings Integrated Generation
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g | Solid-State Power Substations - OE/TRAC Vision

o SSPS1.0 SSPS 2.0 SSPS 3.0
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GENERATION
GENERATION

HVDC
CONVERTERS ¥

FACTS
DEVICES

VIRTUAL
SYNCHRONOUS
MACHINES

CONVERTER VOLTAGE RATING

DISTRIBUTION
DISTRIBUTION

STORAGE MICROGRID
CONVERTERS - CONTROLLER

. | e
Multiple Portsand  : Integrated — B -

, Fully Autonomous | T s
Voltage and i Communications | and Global | IA | | IA
. Frequency Control |  and Coordination ! Optimization | ‘ [j Ej ‘
' ' Residential Commercial Industrial Residential Commercial Industrial Residential Commercial Industrial
FUNCTIONALITY AND LEVEL OF SOPHISTICATION B Substation with SSPS Coverter £ Eneroy Sorage T T

a3 ¢ ications and C i EV  Electric Vehicle FE Fossil Energy
== DC connections PV Photovoltaic RE  Renewable Energy




Performance Targets

2013 ONR Naval Power Systems Technology Development Roadmap

Efficiency

Power Density

Near-Term
(5-10 years)

98%

Mid-Term
(10-20 years)

Far-Term
(20-30 years)

1.25 MW/m3

2 MW/m3

3 MW/m3

2017 US DRIVE Electrical and Electronics Technical Team Roadmap

Traction Motor Drive Density

2020 Target

2025 Target

Power Inverter Module Density

On-Board Charger Efficiency

On-Board Charger Power

Density
DC-DC Converter Efficiency

DC-DC Converter Power Density

The critical path for power electronics technology development in all applications includes aggressive power density targets

4 MW/m3 33 MW/m3
13.4 MW/m3 100 MW/m3
97% 98%

3.5 MW/m3 4.6 MW/m3
>94% 98%
>3 MW/m3 4.6 MW/m3

2020 DOE/OE TRAC Program Solid State Power Substation Roadmap

SSPS 1.0 SSPS 2.0 SSPS 3.0
UP TO 34.5KV UP TO 138 KV ALL VOLTAGES
UP TO 10 MVA UP TO 100 MVA ALL POWER LEVELS
GOALS R&D Challenges Goals
< $150/kVA < $125/kVA < $100/kVA
SUBSTATION Converter System >96% . > 96.5%3 >97% ,
APPLICATION Cost and 2 MW/m i 5 MW/m 10 MW/m
Performance 10-Year Mean-Time- 20-Year MTTF 40-Year MTTF
to-Failure (MTTF)
< S20/kVA < $15/kVA < $10/kVA
ELOSCI'Z :’l"d”'e >97% > 98% > 99%
Perf 5W/cm? 10 W/cm? 20 W/em?
erformance 2-Year MTTF 4-Year MTTF 8-Year MITTF
E(:‘U‘:’i;s and 217kV 233KV 210 kv
CONVERTER | Semiconductors L] SEED 50.10/kw
BUILDING Dielectric
BLOCK Ma netic' and 160 kV/mm 600 kV/mm 2000 kV/mm
Pasfive ' 0.1 H/m 1.0H/m 2.0 H/m
6.0x107S/m 1x10% S/m 1.5x10% S/m

Components

Packaging and
Thermal
Management

> 500 W/(m2°C)

> 1000 W/(m?°C)

> 10,000 W/(m®C)

Current trend is higher voltage + higher power capacity + smaller physical size

For grid applications, scalability is king; no upper limit on power and voltage targets for utility-scale power conversion




10 | Power Electronics R&D at Sandia

g Topologies
o
' 5 Modularization
s
&

Thermal Management

Packaging Techniques
Semiconductor Devices
(IGBT, MOSFET, IGCT, etc.)
Capacitors, Inductors, Transformers

Advanced Magnetics and Dielectrics
Advanced Conductors and Insulators
Wide Bandgap Semiconductor Materials

Power Electronics Lab Spaces
Focused on Grid Modernization

Medium Voltage Power
Conversion Facility

DETL: Distributed Energy Mm T Ll

Technologies Laboratory

APEX: Advanced Power
Electronic Conversion
Systems Laboratory

ESCAL: Energy Storage
Control and Analytics Lab

PEAK: Power Electronics
Advanced Packaging Lab

Various Device/Material
Characterization Labs




| Power Electronics at Medium Voltage (and Beyond)

Power Component Innovations Advanced Circuits and Topologies Modular System Architectures
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Medium Voltage Semiconductors

3.3kV SiC MOSFETs are now commercially
available from a fair variety of manufacturers

Questions remain regarding device reliability in
practical field conditions

Accelerated Lifetime Testing via H3TRB
— 85°C, 85% rH, 1100 hours

— 20%/40%/60%/80% of rated voltage

— Full electrical characterization performed
att =10, 100, 300, 700, 1100] hours

Device population includes discrete and power
module form factors from 5 manufacturers

Reliability evaluation is part of the Medium
Voltage Resource Integration Technologies
(MERIT) project sponsored by the Grid
Modernization Lab Consortium

SCM Imaging

Discrete Device
TO-247, TO-263

25mm

Bare Die

-

5mm

Power Module
XHP3, LV100, LM3, LinPak

60mm




| Explaining Differences in Degradation
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|
‘ Solid-State DC Circuit Breaker m

1.7 kV SiC JFETs JFET Gate

e Cascaded JFET switch topology with passive Driver Cascaded JFET Circuit

balancing network to distribute voltage stress

+90 Drain
. . A e N s g e e ey Viss 1 irs
* Normally-On JFETs with low on-resistance LH . B e Re i oo TR
and low auxiliary drive loss ' e o o Wy l =R
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semiconductor switch (PCSS) that triggers o lie i
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Js g6 86 16 Gs
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* Capacitor for absorbing + dissipating energy ) " w | kp Lo =n
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Performance Targets ; o 1 Y R R Y
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; St + L Rgs i
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G 3 + 14 ZRgz i L
Efficiency 99.97% ’ fmeeerre—y |
2.5 Ugs2 L
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I
‘ Modular Power Conversion Systems for MV Storage m

* Challenge: Inherently low-voltage/high-current storage devices must interface B -=s
with high-voltage/low-current power systems ;'I: aY
* Power electronics must provide voltage scaling, isolation, and individual control AY
P g g " )
over energy storage assets
* Higher working voltage means lower power loss (P = I?R) 2 Multilevel inverter with
* Conventional grid-tied storage is limited to working voltages on the order of T y transformerless MV grid
1000V DC and 480V AC connection
Hybrid mix of energy . .
storage resources * *
* Goal: Connect low-voltage storage resources directly into medium voltage grids
using modular power electronics; eliminate line-frequency transformer - - Isolated DC-DC Module
* Isolated DC-DC converter building blocks modules connected in series/parallel T

arrangements for exceptionally high voltage gain
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| Direct AC-AC Solid State Transformer
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Rack-Based Converter Module

VCS

Monolithic 1.2kV SiC Bidirectional
Field Effect Transistors (BiDFETS)
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Thanks For Your Attention

This work was supported by the US DOE
Ottice of Electricity Energy Storage Program
and the Grid Modernization Lab Consortium

For further information, please contact:

Jake Mueller

imuelle@sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LI.C, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
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