SAND2024-14066C

Retarding Field Energy Analyzer Based Analysis of DC Sputtered
High Performance MoS2 Tribological Coatings

Alex Mings, Tomas Babuska, John Curry, Ping Lu, Steven Larson, Michael Dugger
Sandia National Laboratories

Intr jon Resul nd Di jon
. . . . x10°® 100 W DC 1 mTorr x107 -V Curves
« Sputter deposited MoS, coatings have a long history as dry lubricants for aerospace A , 1 M iorr vl 4
. . . . . . . — || .I\ J ] | —_ ° 1 . . ”
applications because of their ultra-low friction and high performance in vacuum. S L L el = The “retarding potential” represents the
» Notably, the James Webb Space Telescope (JWST) utilizes a MoS, nanocomposite in it's A T = potential on Grid 2 (ion repulsion) and the
Near Infrared Camera (NIRCam).2 5 ra e o current is measured by the collector.
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Sensor Conditions nd Data sample | ToTurb® produce higher energy ions — a well studied
* The sensor is positioned directly under the tage phenomenon.8 Figure 5: |EDF for (A) sputter pressure and (B) DC sputter
target — in line with the deposition flux _ | | . power as a function of ion energy.
Figure 2: (A) Diagram of the Ti and MoS,, sputter deposition
system and (B) an image of the MoS,, sputter process. 0.5 . . . 0.18 ———————————— . . ; .
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What Is an RFEA? (C) " Elemn and nano indentation hardness as a function of ion bombardment.
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processes across different equipment > 1/‘ Go resulting from increased accelerating voltage and amperage.
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* Measures ion ﬂUX, the ion energy Vsu:m.:p . \J | increased mean free path
distribution, deposition rate and, It B vy EERP SRR SR G,
deposition material ionization Vzll . G ) Connection To Materials Properties
* Isolates the effects of varying deposition . 3 - Figure 6C demonstrates the effect increased ion bombardment has on the hardness of
conditions on plasma behavior H—@Q—{ > - c deposited films. This is well established for ion beam assisted depositions® but has yet to be
* Allows for direct correlation between il Collector fully explored for sputter deposition.
plasma characteristics and film material Figure 3: (A) Impedans Quantum diagnostic tool (B) image of the u
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Anatomy of An RFEA (Fig. 3C) * This study successfully employed in-situ characterization of MoS, deposition plasma using an
* Grid 0 (G,) - holes less than Debye length to prevent plasma formation. Held at stage RFEA.
bias (ground) * The results provide evidence that supports well established heuristics and simulation81°,
* Grid 1 (G,) - Electron repulsion grid (-60 V)  When compared to film material properties, the hardness of studied films appear to correlate
« Grid 2 (G,) - Discriminator grid, sweeps to control ion flux based on energy with ion bombardment — more materials characterization must be completed before this
* Grid 3 (G;) - Secondary electron suppression grid (-70 V) relationship can be fully explored.
* Collector (C) - QCM and collector (-60 V) * Future work will also focus on characterization of high energy plasma that employ substrate
bias (i.e. PDC, HIPIMS etc.)
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