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OVERVIEW

Motivation: Evaluate charge trapping via ionizing radiation

Flatband voltage as measure of trapped charge
SiO, vs high k dielectrics: Al,O5 and HfO,

Single layer stacks: dosing — dielectric and thickness variation

Stacking of multiple dielectrics

Time-Series Measurement design and dosing strategy



MOTIVATION: CHARGE TRAPPING

 Dielectrics: common medium for charge trapping

lonizing radiation to probe charge trapping via:

1) Generation of electron-hole pairs

2) With bias, electrons and holes separate in opposite directions

3) Lower mobility of holes = higher probability of holes being trapped in oxide traps or interface traps
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FLATBAND VOLTAGE AS MEASURE OF CHARGE TRAPRING

+ Radiation induces oxide and interface traps

« Oxide trapped charge can provoke lateral shiftin
C-V curve

* Interface trapped charge: stretch out of C-V
curve

 Buildup of trapped charge creates electricfield
resulting in shift in flatband voltage (Vg ):
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FLATBAND VOLTAGE AS MEASURE OF CHARGE TRAPPING

Neutralization of oxide charge: tunneling or
thermal emission
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S10, VS HIGH K DIELECTRICS

Concern of leakage currents in using thin SiO, as gate
dielectric

High dielectric constant (k) materials allow for thinner
films with equivalent capacitances = Equivalent Oxide
Thickness
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Al,O, : k = 7.8 and amorphous HfO, : k =20

Charge trapping centers in high k dielectrics
= Oxygen vacancies in bulk
= Defect states

= Interface traps

Step 1: Evaluate single dielectric layers to
understand trapping possibilities of Al,O,, HfO,
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SINGLE LAYER STACKS — DOSING — DIELECTRIC AND
THICKNESS VARIATION

Extracted from multifrequency C-V pre-irradiation

Al
ALD Dielectric  Thickness [nm]
& HTO, 15.5 4.16e11

Al,O, 28.2 3.01e12



SINGLE LAYER STACKS DOSING — BIAS CONDITIONS

- Bias during irradiation separates electrons and holes, preventing recombination, maintaining
built-in potential and shift in flatband voltage
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SINGLE LAYER STACKS — DOSING — DIELECTRIC AND
THICKNESS VARIATION

Dosing under 3 bias conditions: V, calculated from 1MHz C-V sweeps between doses
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Preliminary takeaways from initial dosing and C-V measurements of single layer stacks:
* Origin of radiation-induced trapped charge (oxide vs interface states, etc.) needs to be confirmed
* Requires more examination (bias stress measurements, etc.)




TEM: SINGLE LAYER DIELECTRIC ON SILICON

What is the effect of interface quality?

Sharp interface at Al,O4/Si

Hf-Si intermixing transition layer
Hf250 2
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STACKING OF MULTIPLE DIELECTRICS

— .
* Enhance charge trapping ability by leveraging a) P =
multiple layers, varying stacking order and P $ —
thicknesses &
R
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MULTILAYER STACKS - DESIGN

Al
Top Al O,
HfO,

Bottom Al,O,

p-Si

Develop series of stacks to discretely investigate following effects
on charge trapping and AVgg

* Tunneling from Si by decreasing thickness of bottom Al,O,

« Charge generation by increasing thickness of top Al,O,

* Impact of electron well (trapping) versus charge generation by
removing top Al,O,

* Impact of thickness of HfO, on charge generation by increasing its
thickness

Goal: Distinguish role of layer stacking and thickness in long-term charge trapping
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TIME-SERIES MEASUREMENT DESIGN AND DOSING
STRATEGY

+ Plan of dosing work on multilayer stacks:

= Dose with TMHz C-V sweep between doses to observe AVg, vs dose under different
biasing conditions

= Time-series measurement: TMHz C-V sweep up to 20 days

Long-term annealing trends manifesting in 10-20 days
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SUMMARY AND IMPLICATIONS

Developing and understanding the use of high k dielectrics in a material stack for charge trapping
purposes

= |onizing radiation as probe

= Understand radiation response of high k dielectric and origin of trap states

= Understanding effect of biasing conditions on charge trapping and neutralization
= Observe charge neutralization over time

* Implications for charge trapping materials to be incorporated into wide range of devices
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