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Carbon dots “organic analog” of quantum dots
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“Arc-synthesized single-walled carbon nanotubes have been purified through
preparative electrophoresis in agarose gel and glass bead matrixes. Two
major impurities were isolated: fluorescent carbon and short tubular
carbon.”

. |
First report of carbon dots m

Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments
Xiaoyou Xu, Robert Ray, Yunlong Gu, Harry J. Ploehn, Latha Gearheart, Kyle Raker, and Walter A. Scrivens I
Journal of the American Chemical Society 2004 126 (40), 12736-12737

DOI: 10.1021/ja040082h I



Evolution of carbon dots
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Popularity of carbon dots in scientific community
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7 ‘ Carbon dots in our lab

Ambient Light

365 nm lrradiation
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Self-assembled structures with carbon dots

Terefe G. Habteyes, Eric R. Westphal, Kenneth M. Plackowski, Paul G. Kotula, Melissa L. Meyerson, Stephanie L.
White, W. Cody Corbin, Koushik Ghosh, and John K. Grey

Nano Letters 2023 23 (20), 9474-9481 I
DOI: 10.1021/acs.nanolett.3c02977 |



o | Carbon dots in our lab

Citric acid and urea (CAU) in water (1:2 w/w)
160 °C, 6 hours

RT, air
~2 weeks
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b-CAU 0-CAU




Absorption spectra
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‘ Excitation-emission maps

Emission from blue solution
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Blue solution reveals uncontrolled agglomeration while orange
solution reveals large nanowires with long-range order
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I
High-resolution AFM image of the 0-CAU wire

230 nm « Relatively uniform wire dimensional and
200 morphological characteristics
« High level of extended organization for a

150 nominally heterogeneous material
- Self-assembly is intrinsic!

100

o0
1

13 I



Hierarchical, directed self-assembly

What do we know/not know?

» Tautomerization is crucial for priming the material

- No assembly happens in b-CAU form

- Aggregates form in solution but no long-range assembly

 O-CAU aggregates is a supramolecular shape synthon
= H-bonding provides directionality

melamine = w ... H® cyanuric acid

« Something else appears to help organize o-CAU
aggregates into wire segments and regulate dimensions
- Need deeper insights!

What is acting as the ‘pied piper’ to corral
O-CAU aggregates to form large wires? I
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Optical sensors for explosive detection

I

"Influence of Carbon-Nitride Dot Emitting Species and Evolution on Fluorescence-based Sensing and Differentiation” I

Author(s): Westphal, Eric; Plackowski, Kenneth; Holzmann, Michael; Outka, Alexandra; Chen, Dongchang; Ghosh,
Koushik; Grey, John ACS Sensors, Accepted I
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Different reaction times result in different types of carbon dots
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Different regions of excitation-emission map showing different responses

to analytes
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Self-organizing map (SOM) analysis of fluorescence Excitation-
18 "Emission Map
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Toward Structure-Function Relationship

’ @
Publication in preparation



Top-down vs. Bottom-up synthesis of carbon dots
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Multi-variable synthetic space of bottom-up carbon dot synthesis

1. Nature of the
reactants

2. Ratio

Before reaction

3. Heating
method

4. Reaction time

5. Temperature

During reaction

6. Purification
7. Drying

8. Storage

After reaction

o
!



I Different fractions of Carbon Dots
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Absorbance

Excitation-dependent emission pattern of different fractions

UV-VIS Spectrum of Carbonaceous Species
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(A) 13C-NMR of Reaction Mixture (RM)/Small Molecules in D,O
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Different fractions give different particle morphology [[ml
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Optical microscopy (Aa and Ba) and corresponding XRD (Ab and Bb) of ethanol

fraction (Ab) and carbon nitride dot solid precipitate (Bb). While ethanol fraction I
consists of citrazinic acid rich crystalline structure, the solid precipitate consists

of amorphous carbon nitride structure I



Different reaction-time gives different particle morphology
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Different fractions give different responses to analytes
27
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Key takeaways
28

Heterogeneity in Synthesis
Understanding metastable structures
Opportunities for unique properties

Excitation-Dependent Emission
Varies with different regions
Customizable analyte responses

Structure-Function Insights Needed
Popularity outpaces understanding
Essential for targeted applications




