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• Increasing need for reliability and safety (Ex: Automotive, Healthcare, Aerospace)

• Additive Manufacturing (AM):
• Produces complex geometries with unprecedented design freedom and customization
• Generates non-uniform material properties, extreme anisotropy, and inherent porosity.

Goal: Validate different failure prediction approaches given the set of experimental data.

• Prediction model: Direct Numerical Simulation (DNS): Gold standard of failure prediction.
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Experimental Data Overview3

Laser Powder Bed FusionCAD file 

Various Fabrication Parameters Normalized Energy Calculations

Tensile Testing

As-Built Samples
Grayscale Segmented

Fractured Samples
Grayscale Segmented

Micro-CT before and after 
Fracture

Total of 26 316L Additive Manufactured tensile samples 3D Characterization & Mechanical Testing

Data Reconstruction

316L SS specimens (26)

6 mm



Project workflow4

Raw and Segmented Data

recon3d
GitLab Repository

Binary to Semantic

Instance Analysis
Pore Processing

Downscale

npy to Mesh

Image and data Pre-processing

Crop Data

Experimental Data Analysis

Direct Numerical Simulations (DNS)

Stress (MPa) Strain (%)

26.8918 -0.00402
27.11515 0.001831
27.47726 0.00209
27.78574 0.001993
28.35874 0.001997

Stress-Strain Data

Sierra Solid Mechanics

Stress-Strain 
normalization

Final Results



Build settings impact porosity and strength5

𝐸!∗ =
𝑞∗

(𝑣∗	ℎ∗	𝑙∗)

𝑞∗ = 𝑃𝑜𝑤𝑒𝑟
𝑣∗ = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑙∗ = 𝐿𝑎𝑦𝑒𝑟	ℎ𝑒𝑖𝑔ℎ𝑡	
ℎ∗ = 𝐻𝑎𝑡𝑐ℎ	𝑠𝑝𝑎𝑐𝑖𝑛𝑔

Normalized* Energy

Thomas, M., Baxter, G. J., & Todd, I. (2016). 
Normalised model-based processing diagrams 
for additive layer manufacture of engineering 
alloys. Acta Materialia, Vol. 108, pp. 26–35



Identifying fracture location from experimental data

Fracture location was manually identified with ImageJ using inherent porosity as fiducials
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Predicting fracture with direct numerical simulation (DNS)7

Mesh creation – 
voxel size

Different simulation 
conditions

Sierra Solid Mechanics 
simulation workflow

• Hill plasticity model:
• Anisotropic/rate dependent yield
• Plasticity captured via Voce 

hardening
• Scalar damage model

• Material properties
• Build input deck

• Run simulations
• Calibrate parameters



Mesh size limits voxel resolution8

• CUBIT was utilized to add node 
sets to be used for boundary 
conditions and remove pore 
elements.

80 µm voxel
~13k elements

40 µm voxel
~100k elements

20 µm voxel
~800k elements
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Experimental CT data
4 µm voxel

>5 million elements
(Impractical to simulate)

vs.



Direct Numerical Simulation Results9

40 µm voxel 20 µm voxel80 µm voxel

Least Porous

~13k elements
20 processors

0.25 hr wall time

~100k elements
40 processors

1.4 hr wall time

~800k elements
330 processors

2.46 hr wall time



DNS agrees with experimental observations10

40 µm voxel 20 µm voxel80 µm voxel

~10k 
elements

~100k 
elements

~800k 
elements

Experimental result 
(least Porous)

“Ground truth”



Comparing Fracture Locations  11

Least Porous Porous Most Porous

Direct 
Numerical 
Simulation

Experiment



Conclusion

• Preliminary results successfully predict ductile 
failure in additively manufactured 316L tensile bars 
with digital twin using Direct Numerical Simulation 
(DNS) via Sierra Solid Mechanics.
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Future work

• Compare failure prediction from light-weight, 
analytical, Void Descriptor Function (VDF) that uses 
quantitative descriptors of pore geometry and 
localization effects.

Erickson, J. M., Rahman, A., & Spear, A. D. (2020). A void descriptor function to uniquely 
characterize pore networks and predict ductile-metal failure properties. In International 
Journal of Fracture (Vol. 225, Issue 1, pp. 47–67). 

Watring, D. S., Benzing, J. T., Kafka, O. L., Liew, L.-A., Moser, N. H., Erickson, J., Hrabe, N., & 
Spear, A. D. (2022). Evaluation of a modified void descriptor function to uniquely 
characterize pore networks and predict fracture-related properties in additively 
manufactured metals. In Acta Materialia (Vol. 223, p. 117464). 
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AM 316L SS property specification16

• Hill plasticity model:
• Anisotropic/rate dependent 

yield
• Plasticity captured via Voce 

hardening
• Scalar damage model

[4, 8-9]

Hill plasticity

Yield Fitting 
constant

Fitting exp

Damaged Cauchy stress

Void volume 
fraction

Voce Hardening



Predicting fracture with Void Descriptor Function (VDF)17

• Identifies positions along gauge section highly populated by critical pore structures 
• Signals where fracture is likely to occur

• Quantifies the inter-relationships of pores to quickly predict failure 
• Factors: pore location, size, and distance to free surface

Crop Data Obtain Geometries Calculate Pore Metrics



Pre-processing (Image Analysis)18

binary_to_semantic instance_analysis downscale npy_to_mesh

• Identifies air, pores, and 
metal independently.

• Converts segmented 
data (air = 0 & metal = 1) 
into semantic data, 
creating three classes:

• air = 0
• metal = 1
• pores = 2

• Output: semantic 
segmentation tiff 
images.

• Identifies each pore 
individually

• Provides different pore 
metrics using semantic 
data as input. 

• Output: h5 file with all 
the information 
collected from each pore

• Pads an image stack at a 
given resolution until it 
is evenly divisible by a 
target resolution before 
downscaling to the 
target resolution.

• Output: downscaled tiff 
images, a .vtr file, and an 
.npy file.

Resolution = 4 µm

Resolution = 20 µm

recon3d
GitLab Repository

• Input: .npy file

• Intermediate outputs: 
Creates a Sculpt (.i) input 
file

• Output: Runs Sculpt to 
create an Exodus (.e) 
mesh file 



Pore Statistics19



Least Porous Tensile Bar20

Fracture Location ≈ 4.692 mmMetal

Pores

Least Porous

Necking

Scale is in mm

Fracture

Equivalent diameter 0.22% increase



Porous Tensile Bar21

Fracture Location ≈ 2.048 mmMetal

Pores

Porous

Scale is in mm

Fracture

Equivalent diameter 4.36% increase



Most Porous Tensile Bar22

Fracture Location ≈ 4.184 mmMetal

Pores

Most Porous

Scale is in mm

Fracture

Equivalent diameter 2.29% increase



Stress-strain response – different damage exponent (m)23

40 µm voxel sizem ∝ damage

[4]



Cropping volume24



Mesh size effect: porous tensile bar25

40 µm voxel 20 µm voxel80 µm voxel

~13k elements
20 processors

0.25 hr wall time

~100k elements
40 processors

1.4 hr wall time

~800k elements
330 processors

2.46 hr wall time

Porous



Mesh size effect: most porous tensile bar26

40 µm voxel 20 µm voxel80 µm voxel

~10k elements ~100k elements ~800k elements

Most Porous


