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Motivation & Background
Increasing need for reliability and safety (Ex: Automotive, Healthcare, Aerospace)

Additive Manufacturing (AM):
«  Produces complex geometries with unprecedented design freedom and customization
« Generates non-uniform material properties, extreme anisotropy, and inherent porosity.
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Goal: Validate different failure prediction approaches given the set of experimental data.

Prediction model: Direct Numerical Simulation (DNS): Gold standard of failure prediction.



3 ‘ Experimental Data Overview

Total of 26 316L Additive Manufactured tensile samples
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4 ‘ Project workflow

Raw and Segmented Data
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Stress-Strain Data

Stress (MPa) Strain (%)
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5 ‘ Build settings impact porosity and strength

Stress (MPa)

le8

Stress-Strain Curve

Al

Normalized* Energy

*

. q
EO - (U* h* l*)
| q" = Power

v* = Velocity
[* = Layer height
h* = Hatch spacing

T
20

30
Strain Percentage

3.0

Normalized Energy

T
50

4.0

60
Thomas, M., Baxter, G. J., & Todd, I. (2016).
Normalised model-based processing diagrams
for additive layer manufacture of engineering
alloys. Acta Materialia, Vol. 108, pp. 26-35



+ |1 ldentifying fracture location from experimental data 0

Fracture location was manually identified with Image) using inherent porosity as fiducials

2D cross section Reconstruction
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Predicting fracture with direct numerical simulation (DNS)

Mesh creation - Sierra Solid Mechanics Different simulation

voxel size simulation workflow conditions

/Hill plasticity model: \
« Anisotropic/rate dependent yield

 Plasticity captured via Voce
hardening
+ Scalar damage model
» Material properties
* Build input deck

Material Property Variable Value Units
Young’s Modul E 200e9 Pa
Poisson’s Ratio v 0.27 -
Density p 7920 Kg/m?
Material Parameter Variable Value Units
Rate independent yield Yo 453.3e6 Pa
constant
Hill transverse yield ratio Riy = Ra3 1.124
Remaining Hill yield Ry = Ri2 = Ri3 = Ry3 1.0
ratios
Voce hardening coef A 883.6e6 Pa 500
Voce hardening b 139 -
exponential coef
Yield rate coef f 21012 1/s E 400
Yield rate exponent n 10.06 - s
w
g
: r Lo 200
guisir) Wi «  Run simulations

e AU DIRONIKit .
5] K- Calibrate parameters / : : I — s




8 ‘ Mesh size limits voxel
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o | Direct Numerical Simulation Results
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10 ‘ DNS agrees with experimental observations

Experimental result
80 pm voxel 40 pm voxel 20 pym voxel (least Porous)

44»\; S A
gy o 2 E
pi 4
Gl f +2
A
+ & o
,‘f
von Mises (MPa) von Mises (MPa) von Mises (MPa) o Fait !“h +
800402 8.0e+02 8.0e+02 A
[700 [700 [700 + N
600 W
600 600 JEdL
— 500 — 500 _ 500 RS
3 ot - o, 1 AT
400 — 400 400 S St E L
— 300 _ 300 | 500 2k '- -_.'
oo 200 200 i T i
100 100 T
100 JERL
0.0e+00 0.0e+00 0.0e+00 e e
ot 3 +2
i SN +
: t
| “Ground truth”
T
E

~10k ~100k ~800k
elements elements elements



1" ‘ Comparing Fracture Locations

Least Porous Porous Most Porous

Direct
Numerical
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» | Conclusion

View A-A

« Preliminary results successfully predict ductile
failure in additively manufactured 316L tensile bars
with digital twin using Direct Numerical Simulation
(DNS) via Sierra Solid Mechanics. ' i

Future work

« Compare failure prediction from light-weight,
analytical, Void Descriptor Function (VDF) that uses
quantitative descriptors of pore geometry and
localization effects.

Erickson, J. M., Rahman, A., & Spear, A. D. (2020). A void descriptor function to uniquely
characterize pore networks and predict ductile-metal failure properties. In International
Journal of Fracture (Vol. 225, Issue 1, pp. 47-67).

Watring, D. S., Benzing, J. T., Kafka, O. L., Liew, L.-A., Moser, N. H., Erickson, J., Hrabe, N., & THE

Spear, A. D. (2022). Evaluation of a modified void descriptor function to uniquely U UN IVE RS ITY
characterize pore networks and predict fracture-related properties in additively

manufactured metals. In Acta Materialia (Vol. 223, p. 117464). O F UTAH
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16 ‘ AM 316L SS property specification

« Hill plasticity model:

« Anisotropic/rate dependent
yield

- Plasticity captured via Voce
hardening

« Scalar damage model

Hill plasticity
0%(6ij) = F(622 — 633)> + G(633 — 611 )
+H(61) — 622)* +2L63,
+2Mé&3, +2N6%

Material Property Variable Value Units
Young’s Modulus E 200e9 Pa
Poisson’s Ratio v 0.27 -
Density p 7920 Kg/m®
Material Parameter Variable Value Units
Rate independent yield Yo 453.3e6 Pa
constant
Hill transverse yield ratio Ri1 = R3a 1.124 -
Remaining Hill yield Ry3 = Ri2 = Ri3 = Ry3 1.0 -
ratios
Voce hardening coef A 883.6e6 Pa
Voce hardening b 1.39 -
exponential coef
Yield rate coef f 21012 1/s
Yield rate exponent 10.06 -

Damaged Cauchy stress

6ij=0ij/(1—9)

|

Void volume
fraction

/

Yield

Voce Hardening

¢ 1/n
Cf = Yo{l +sinh_l [(71))

}

+A((1—exp(bgp))

l Fitting ex
Fitting gexp
constant

B

[4, 8-9]



> | Predicting fracture with Void Descriptor Function (VDF)

 ldentifies positions along gauge section highly populated by critical pore structures

« Signals where fracture is likely to occur

« Quantifies the inter-relationships of pores to quickly predict failure
Factors: pore location, size, and distance to free surface

Crop Data Obtain Geometries > Calculate Pore Metrics
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& axis_vectors
& centroids
@ ellipsoid_surface_areas
@ ellipsoid_volumes
@ equivalent_sphere_diameters
& nearest_neighbor_IDs
& nearest_neighbor_distances
& num_voxels
@ semi-axis_lengths
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s | Pre-processing (Image Analysis)

recon3d
GitLab Repository

binary_to_semantic 2

K Identifies air, pores, anh

metal independently.

» Converts segmented
data (air =0 & metal = 1)
into semantic data,
creating three classes:

* air=0
* metal=1
* pores=2

* Output: semantic
segmentation tiff

N J

B Vvetal =1
. Air/Pores =0

instance_analysis

4 N

+ ldentifies each pore
individually

 Provides different pore
metrics using semantic
data as input.

+ Output: h5 file with all
the information
collected from each pore

o /

@ pores
@ axis_vectors
& centroids
@ ellipsoid_surface_areas
@ ellipsoid_volumes
& equivalent_sphere_diameters
& nearest_neighbor_IDs
@ nearest_neighbor_distances
& num_voxels

& semi-axis_lengths

=

downscale

4 N

+ Pads an image stack at a
given resolution until it
is evenly divisible by a
target resolution before
downscaling to the
target resolution.

« Output: downscaled tiff
images, a .vtr file, and an
.npy file.

npy_to_mesh

¢ Input: .npy file

+ Intermediate outputs:
Creates a Sculpt (.i) input
file

+ Output: Runs Sculpt to
create an Exodus (.e)
mesh file

o /

Resolution =4 pym

Resolution = 20 pm

o /




19 ‘ Pore Statistics
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20 ‘ Least Porous Tensile Bar
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21 ‘ Porous Tensile Bar
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2 ‘ Most Porous Tensile Bar
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23 ‘ Stress-strain response - different damage exponent (m) Eﬂi
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2« 1 Cropping volume
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Porous
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20 processors
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s | Mesh size effect: porous tensile bar
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s | Mesh size effect:

Most Porous
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