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Outline
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• Solar thermo-chemical hydrogen production (Solar-TCH) background and the 
US DOE HydroGEN consortium

• Addressing needs for TCH community

• Identification of benchmarking metrics and applying them to exemplar 
materials

• New materials identification aided by computational discovery with 
machine learning approach



Solar Thermo-Chemical Hydrogen Production (Solar-TCH)
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• Single phase materials to avoid cycling degradation
• Oxides that “breathe” oxygen needed  non-stoichiometric oxides
• Goldilocks reduction enthalpy (Hr)
• Also use heat from other sources  Thermo-chemical hydrogen production (TCH)

Sunlight (heat) + water   Hydrogen



Department of Energy HydroGEN Consortium (H2AWSM.org)
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• National Renewable Energy Laboratory (Lead)
• Lawrence Berkeley National Laboratory
• Sandia National Laboratories
• Idaho National Laboratory
• Lawrence Livermore National Laboratory

Leverage capabilities at national laboratoriesResearch focus areas

Sandia node capabilities used for this presentation:
• Thermo-gravimetric analysis (Sean Bishop)
• TCH reactor (Tony McDaniel)
• Electron microscopy and composition analysis (Josh Sugar)

Collaboration with industry and academia seedlings 
supported by HydroGEN funding opportunities



Exemplar Material Viability Study
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• Define TCH metrics
• Benchmark exemplar materials against state of the art (CeO2)
• Identify technology gaps

Thermodynamic parameters (from 
thermo-gravimetric analysis)

Hydrogen production and kinetic 
parameter (from flow reactor)

Cycle efficiency estimation

BCM: BaCe0.25Mn0.75O3
HEPO: La1/6Pr1/6Nd1/6Gd1/6Ba1/6Sr1/6)MnO3
LSM20: La0.8Sr0.2MnO3

Exemplars
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windowLSM20
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Metrics and Exemplar Benchmarking

6

Metric Descriptor Target 
Values

Cycle 
Efficiency 

(STH)

Solar-to-hydrogen conversion efficiency derived from 
detailed cycle analysis using a thermodynamic model 

based on specific plant operational assumptions
STH > 26%

Material 
Efficiency Max  > 50%

Reduction 
Capacity

mmol O / mol atom in solid reduced @ neutral low 
condition O > 5

TCH Capacity 
(Maximum 

Yield)

mmol H2 / mol atom in solid reduced @ neutral low 
condition, oxidized in pure H2O @ optimal TOX for 

material
H2,Max > 5

TCH Capacity 
(Low Yield)

mmol H2 / mol atom in solid reduced @ neutral low 
condition, oxidized in steam-to-fuel ratio H2O/H2 = 

1000 @ optimal TOX for material
H2,Low > 2.5

TCH Capacity 
(Moderate 

Yield)

mmol H2 / mol atom in solid reduced @ neutral low 
condition, oxidized in steam-to-fuel ratio H2O/H2 = 

100  @ optimal TOX for material
H2,Mod  > 1

Kinetic 
Performance

Time to 90% of H2,Max in pure H2O at optimal TOX for 
specific material in a dispersed powder configuration  > 0.20

Metrics CeO2

Large reduction

...but H2 “consumption” in low steam/H2  only 
LSM20 competitive with CeO2

High H2 production 
in high steam/H2

Exemplars normalized to state-of-the-art CeO2
Reduction

H2 Prod. 
(Max.)

H2 Prod. (Low)

H2 Prod. (Mod.)Kinetics

Mat. Eff.

Cycle Eff.

• Evaluation framework created and metrics identified
• Weakness of exemplars in low steam/H2 ratio critical 

need for new materials



Discovery of New TCH Materials Aided by Machine Learning
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MP Screen  TCH “Base”  Ba(Fe,In)

 Identified BaFe2O4

Hr

Hypothesized

ML screens 10,000’s 
of MP structures in 
minutes that would 
take 1,000’s of DFT 

months

Expected Δᵃ� 0,d MAE 
for unseen 
compounds < 450 
meV (threshold for ML 
to be predictive).



BaFe2O4 – Oxygen Vacancies Predicted, but it Melts

8

BaFe2O4

DFT  oxygen vacancy 
preferred vs. cation defects

Orthorhombic (Bb21m) phase 

Calcined BaCO3 and Fe2O3 at 1400 oC in air in alumina crucible

Orthorhombic BaFe2O4 (Bb21m) phase with 2 wt% BaFe12O19 
hexagonal (P63/mmc) impurity

1400 oC (2 h) air
 sintering

1400 oC (2 h) 1% O2
 slight melting

1400 oC (2 h) Ar (~20 
ppm O2)
 significant melting

Alumina crucible

BaFe2O4

 TCH reduction extent limited by 
solid phase stability



Stabilize BaFe2O4 with Al
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BaAl0.4Fe1.6O4 – Hexagonal (P63) phase

1400 oC in Ar (~20 ppm O2)

BaFe2O4

BaAl0.4Fe1.6O4

 Enables higher reduction temperature 
and resistance to densification

• BaAl2O4 (hexagonal P63, 
stuffed tridymite) melting 
point ~1820 oC

• MgAl2O4 (cubic Fd-3m, spinel) 
melting point ~2130 oC

Alumina crucibles

Higher melting point 
expected with Al

BaAl0.4Fe1.6O4 stable at 1450 oC in air!
BaFe2O4 Tmelt,air~1420 oC

Melting of BFO in low pO2 mitigated by 
Al substitution!



Hydrogen Production Measurement – Flow Reactor
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Sample

Laser heating
>1300 oC reduction
<1000 oC oxidation

Reduction: Low pO2

Oxidation: Steam/H2

O2 release

H2 production
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BaAl0.4Fe1.6O4: Water Splitter, even in Low Steam/H2!
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• Reduction at 1425 oC in ~1 
ppm O2

• Oxidation at 850 oC in steam 
or 1% H2 in steam

H2

O2

H2 production measurement using flow reactor

H2O/H2 H2O/H2 H2O/H2

H2 production even in 1% H2 environment!

Some continued H2 production in pure steam

Reduction largely reproducible after cycle

H2 production in steam



H2 Production Over 20 Cycles
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• Reduction at 1425 oC in ~1 
ppm O2

• Oxidation at 850 oC in steam

Comparable H2 production 
performance to CeO2 retained for 20 
cycles!



Severe Change in Morphology and Phase After Cycling
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Initial powder After 20 redox cycles

Post-cycled sample initial diffraction analysis at SLAC

• BaAl2O4 (P63) is 20.34 wt%  starting phase
• BaFe2O4 (Cmc21) is 75.17 wt% 
• BaFeO3 (P63/mmc) is 4.48 wt%

Decomposition 
products • Purple phase  ~BaAlFeO4 (expected P63 

structure)
• Yellow phase  ~BaFe2O4, with possible melting
• Red phase  ~BaFeO3 (or Ba2Fe2O5), with 

possible melting

EDS map of post-20 cycled sample



Decomposition Evidence with in situ TEM 
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Initial, RT

Fe-rich particles formed

In situ reduction in TEM  evolution of decomposition

FIB cross-section of BaAl0.4Fe1.6O4 

700 oC

vacuum 1 μm



Identify most TCH active BaFe2O4 Decomposition Phase
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Fabricated decomposition products estimated from EDS

EDS Composition Nominal Composition Fabricated Structure Prototype
BaAl0.02Fe0.99Ox BaFeO3 or Ba2Fe2O5 Ba2Fe2O5

BaAl0.1Fe1.6Ox BaFe2O4 BaFe2O4 with some BaFeO3

BaAlFeOx BaAlFeO4 BaAl2O4

• BaFe2O4, BaAlFeO4, and BaFeO3 observed in post-cycled XRD
• BaFeO3 impurity in “BaFe2O4” consistent with (Al+Fe)/Ba<2
• Ba2Fe2O5 unexpected from post-cycled XRD  possible 

sample size and detection limit challenge

 Measure reduction oxygen capacity to compare TCH activity



Oxygen Non-Stoichiometry in TCH Cycling
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netzsch.com

Netzsch STA 449 F1 
thermo-gravimetric analyzer

Zirox oxygen sensor  pO2

zirox.de

Gas out

BaAlFeO4(1-δ)

Oxidation (air) Reduction (200 ppm O2 )
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Oxygen Non-Stoichiometry Comparison
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Oxidation (air) Reduction (200 ppm O2 )
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2 
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Ba2Fe2O5(1-δ)

BaFe2O4(1-δ)

BaAlFeO4(1-δ)

CeO2(1-δ)

• Ba2Fe2O5  most oxygen release, 
indicating attractive TCH activity

• BaFe2O4  least oxygen release, 
possibly lowest TCH activity

• After test, only BaFe2O4 showed partial 
decomposition to BaFe2O4, Ba2Fe2O5, 
and BaFeO3

• All three composition have more 
oxygen release than state-of-the-art 
CeO2  Ba ferrite is a strong hydrogen 
production contender



Increasing Oxygen Release at Higher Temperature with BaAlFeO 4
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BaAlFeO4(1-δ)

CeO2(1-δ)

• BaAlFeO4 high temperature stability  greater reduction
• Oxygen release exceeds state-of-the-art CeO2
• BaAlFeO4 mitigates oxygen loss instability and decomposition 

compared to BaAl0.4Fe0.6O4

Future work: Evaluate hydrogen production with flow reactor (are 
some of the compositions too reducible?)

Oxidation (air) Reduction (200 ppm O2 )

Oxygen release instability



Summary
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• Presented exemplar Solar-TCH materials and key Solar-TCH metrics

• Identified significant gap in H2 production in low steam/H2 ratio materials 

• Demonstrated successful water splitting with ML predicted compound BaFe2O4

• Improved thermal stability with Al addition

• Competitive H2 production to CeO2 in low steam/H2

• Despite severe morphological and phase changes, maintains H2 production after many 
cycles

• Demonstrated attractive oxygen release for decomposition products, with greater 
stability at high temperature
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