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Outline

« Solar thermo-chemical hydrogen production (Solar-TCH) background and the
US DOE HydroGEN consortium

« Addressing needs for TCH community

 |dentification of benchmarking metrics and applying them to exemplar
materials

« New materials identification aided by computational discovery with
machine learning approach




Solar Thermo-Chemical Hydrogen Production (Solar-TCH) h
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Single phase materials to avoid cycling degradation

Oxides that “breathe” oxygen needed - non-stoichiometric oxides

Goldilocks reduction enthalpy (H,)

Also use heat from other sources = Thermo-chemical hydrogen production (TCH)




Department of Energy HydroGEN Consortium (H2ZAWSM.org)

Research focus areas

&

Photoelectrochemical
Water Splitting

@4,
Low- and High-Temperature Solar Thermochemical
Advanced Electrolysis Water Splitting

Leverage capabilities at national laboratories

« National Renewable Energy Laboratory (Lead)
« Lawrence Berkeley National Laboratory

« Sandia National Laboratories

« |daho National Laboratory

* Lawrence Livermore National Laboratory

Collaboration with industry and academia seedlings
supported by HydroGEN funding opportunities

Sandia node capabilities used for this presentation:
« Thermo-gravimetric analysis (Sean Bishop)
« TCH reactor (Tony McDaniel)
 Electron microscopy and composition analysis (Josh Sugar)




Hydrogen production and kinetic \\
Exemplar Material Viability Study parameter (from flow reactor)
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Metrics and Exemplar Benchmarking o
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Discovery of New TCH Materials Aided by Machine Learning

First-principles DFT workflow is robust but costly (using NRELMatDb hosts)
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BaFe,O, - Oxygen Vacancies Predicted, but it Melts

BaFe,O,
Orthorhombic (Bb21m) phase

DFT = oxygen vacancy
preferred vs. cation defects

hexagonal (Pgs/mmc) impurity
BaFe,O,

| 1400 °C (2 h) air
- sintering

| 1400°C(2N)1% O,
' > slight melting

1400 °C (2 h) Ar (=20

ppm O,)
- significant melting

Alumina crucible
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Calcined BaCO; and Fe,O5 at 1400 °C in air in alumina crucible \
—>Orthorhombic BaFe,O, (Bb21m) phase with 2 wt% BaFe,,0,q
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- TCH reduction extent limited by
solid phase stability




Stabilize BaFe, 0, with Al

Melting of BFO in low pO, mitigated by
Al substitution!

1400 °C in Ar (=20 ppm O 5)
' BaAMFe1 0, &

BaAIMFe1 60 — Hexagonal (P63) phase

- Enables higher reduction temperature
and resistance to densification

Higher melting point
expected with Al

« BaAlLO, (hexagonal P6;,
stuffed tridymite) melting
point ~1820 °C

« MgAlLO, (cubic Fd-3m, spinel)
melting point ~2130 °C

BaAl, ,Fe, (O, stable at 1450 °C in air!
BOF€204 Tme/t,a/r~7420 OC




Hydrogen Production Measurement - Flow Reactor

. Reduction
Laser heating

>1300 °C reduction O,
<1000 °C oxidation

Oxidation
H,

VANAY

Time

Reduction: Low pO, O, release

Oxidation: Steam/H production

H, or O, moles
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BaAl, ,Fe, ;O,: Water Splitter, even in Low Steam/H,!

H, production measurement using flow reactor

02
0.18 f
0.16 f

0.14 |

s71)

1
alom

<
[—

S
[}
oo

n(mmol mol

0.04

002}

012}
0.06 |

ol

T T T T 1600
Hz O Temperature
] ] ™ 11400
11200
11000
1\ N n _
O, [H,0/H, H,0/H,  H,0/H, 1800
r= oo r=100 r= oo
1600
H, |
1400
4/:
{K 1200
Lty \ 1 [ 1 N -1...1\ L ; 4—-—'—"—??’0
0 /20 40 60 30 100

H, production in steam

¢ (min)

(Do) I

Reduction at 1425 °C in ~1
ppm O,

Oxidation at 850 °C in steam
or 1% H, in steam

| _—— Reduction largely reproducible after cycle

—— Some continued H, production in pure steam

H, proauction even in 1% H, environment!
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H, Production Over 20 Cycles

* Reduction at 1425 °Cin ~1
ppm O,
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Severe Change in Morphology and Phase After Cycling

Initial powder  After 20 redox cycles

Post-cycled sample initial diffraction analysis at SLAC

« BaAlLO, (P65) is 20.34 wt% -> starting phase

« BaFe,0O, (Cmc21)is 75.17 wt%
* BaFeO5 (Poy/mmc) is 4.48 wth

Decomposition
products

EDS map of post-20 cycled sample

Purple phase - ~BaAlFeO, (expected P6,
structure)

Red phase - ~BaFeO; (or Ba,Fe,O.), with
possible melting
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Decomposition Evidence with in situ TEM

In situ reduction in TEM = evolution of decomposition

FIB cross-section of BaAl, ,Fe, O,

lhitial RT 700 °C

Vacuum

T um

Fe-rich particles formed
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Identify most TCH active BaFe, 0, Decomposition Phase

Fabricated decomposition products estimated from EDS

EDS Composition Nominal Composition | Fabricated Structure Prototype

BaAl; g5F€5 650, BaFeO; or Ba,Fe,O.  Ba,Fe,O¢
BaAl,Fe, O, BaFe,O, BaFe,O, with some BaFeO;
BaAlFeO, BaAlFeO, BaAl,O,

« BaFe,O,, BaAlFeOQ,, and BaFeO; observed in post-cycled XRD
« BaFeO; impurity in “BaFe,O," consistent with (Al+Fe)/Ba<2

« Ba,Fe,O: unexpected from post-cycled XRD = possible
sample size and detection limit challenge

> Measure reduction oxygen capacity to compare TCH activity
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Oxygen Non-Stoichiometry in TCH Cycling

Netzsch STA 449 F1
thermo-gravimetric analyzer
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Oxygen Non-Stoichiometry Comparison
Oxidation (air) Reduction (200 ppm O, )
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Ba,Fe,O: > most oxygen release,
indicating attractive TCH activity
BaFe,O, = least oxygen release,
possibly lowest TCH activity

After test, only BaFe,O, showed partial
decomposition to BaFe,O,, Ba,Fe,O,
and BaFeO,

All three composition have more
oxygen release than state-of-the-art
CeO, > Baferrite is a strong hydrogen
production contender
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Increasing Oxygen Release at Higher Temperature with BaAlFeO ,

Oxidation (air)
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Time [h]

» Oxygen release exceeds state-of-the-art CeQ,
BaAlFeO, mitigates oxygen loss instability and decomposition
compared to BaAl, ,Fe, O,

Future work Evaluate hydrogen production with flow reactor (are
some of the compositions too reducible?)
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Summary

* Presented exemplar Solar-TCH materials and key Solar-TCH metrics
 |dentified significant gap in H, production in low steam/H, ratio materials

« Demonstrated successful water splitting with ML predicted compound BaFe, O,
« Improved thermal stability with Al addition
« Competitive H, production to CeO, in low steam/H,

« Despite severe morphological and phase changes, maintains H, production after many
cycles

« Demonstrated attractive oxygen release for decomposition products, with greater
stability at high temperature
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