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ROBOMET.3D

System Components
 Automated robotic polisher and interchangeable polishing pads
 Automated high resolution inverted Zeiss microscope with montage imaging
 Dual internal ultrasonic cleaning stations
 Three internal compact chemical etching stages
 External operator station for real-time observation of data collection

Benefits
 Sectioning rates up to 10 times the baseline manual process
 Elimination of variability caused by human handling
 Precise repeatability and command over imaging
 Demonstrated repeatable sectioning thicknesses from 0.2 – 10 mm per 

slice
 Documented slice rates of up to 20 slices per hour
 Applicable to high and low strength metals, thermal spray & geology 

samples
 Can run continuously 24/6

Robo-Met.3D is a fully automated characterization technique for 3D 
investigations of microstructure using mechanical serial sectioning
 Serial sectioning is the removal of material layer-by-layer and then optical 

imaging
 RoboMet.3D provides 3D reconstructions of microstructure across volumes of 

cubic centimeters at resolutions of microns.



ROBOMET.3D
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MECHANICAL SERIAL SECTIONING
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Subsurface damage in thermal spray 
coatings [3] 

Weave pattern consistency, voiding and 
resistance to charring in fiber-reinforced-
composites



𝒖𝒌 = input recipe, 𝒚𝒌 = measured material removal, 𝒅𝒌 = unmeasured disturbances

• Material removal rates are inconsistent from component to component requiring a 
‘calibration phase’.

 A series of test runs to identify the appropriate duration for each pad.

 Challenge: multiple ways to achieve a target slice thickness with uncertainty of the 
correlation between pad times and removal rates.

• Recipe is typically fixed after the calibration phase.

• Lack of real-time feedback and adjustment, leading to inconsistencies in the material 
removal process

5

LIMITATIONS OF OPEN-LOOP CONTROL
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MOTIVATION

Serial sectioning 
direction

Serial sectioning plane

Inconsistent slicing thickness resulting in a distorted
representation of the spring.
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RUN-TO-RUN (R2R) CONTROL

• A closed-loop R2R framework provides a 
feedback mechanism for adjusting the 
recipe 𝑢௞ based on the slice error.

𝑒௞ = 𝑟௞ − 𝑦௞

• Goal: Compute a sequence of physically 
implementable recipes 𝑢௞ such that the 
actual material removed 𝑦௞ tracks the 
target removal 𝑟௞ despite unmeasured 
disturbances 𝑑௞.



REMOVAL FUNCTION

• Removal function is unknown, making is difficult 
to predict the outcome of a recipe.

• Unmeasured disturbances 𝑑௞ can affect the 
removal process, introducing time-varying 
uncertainty that is difficult to compensate for in 
real-time.

• There are multiple input combinations that can 
achieve the same removal, but not all are equally 
efficient, robust, or consistent with the physical 
system constraints.
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Real World ValueVariable

Target Removal Amount𝑟

Change in System Input𝛿𝑢௞

Current System Input𝑢௞

Subsequent System Input𝑢௞ାଵ

Error of Current Slice𝑒௞

Error of Subsequent Slice𝑒௞ାଵ

Uncertainty Parameter𝑏௝
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ONE-STEP CONSTRAINED OPTIMAL CONTROL PROBLEM

𝑢௞ାଵ
∗ = 𝑢௞ + 𝛿𝑢௞

∗

Optimization Problem

Incremental Input

Error

• We find the optimal recipe by solving the 
optimization problem for the incremental input 𝛿𝑢௞

∗ .

• Optimization problem seeks to minimize the worst 
case error of the next slice subject to a linear 
differential inclusion incorporating the uncertainty 
parameter, 𝑏. 

𝛿𝑢௞
∗ = arg min 𝑒௞ାଵ

s. t.  𝑒௞ାଵ ≥ 𝑒௞ − 𝑏௝
்𝛿𝑢௞, 𝑗 = 1, … , 𝑀

𝑢௞ + 𝛿𝑢௞ ∈ 𝒰

𝑒௞ = 𝑟௞ − 𝑦௞ = 𝑟௞ − 𝑓(𝑢௞, 𝑑௞)
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EXPERIMENTAL DATA – 2-PLATEN RECIPES 

Target Removal: 𝑟 = 3𝜇𝑚

• The actual removal experiences some variability on a local scale, but 
demonstrates consistency on a global scale
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EXPERIMENTAL DATA – 4-PLATEN RECIPES

• Target Removal: 𝑟 = 8𝜇𝑚

• Controller reached the target removal within 
25 slices.

• The trajectory of the actual removal track the 
target removal over 800 slices despite 
evidence of excessive noise.

• The 6𝜇𝑚 platen experiences the most variance 
in platen time.



Open-loop Control

• Operator had to make manual adjustments 
to the recipe.

• Instances of over sampling resulted in the 
removal of nearly 100 slices of superfluous 
data.

Closed-loop Control with R2R-MPC

• Consistent removal over 900 slices with 
minor deviation from the target removal.
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COMPARISON TO HISTORICAL PERFORMANCE



CONCLUSIONS

1. The R2R-MPC controller automates recipe inputs, 
rejects disturbances, and adjust to changing 
material, reducing the need for constant 
operator supervision.

2. The controller minimizes post-processing time 
by significantly decreasing the amount of data 
discarded during post-processing, leading to 
more accurate and consistent data collection for 
3D reconstruction.

3. Overall, the R2R-MPC controller has proven to be 
a robust solution for improving the consistency 
and reliability of the RoboMet.3D system.

4. The implementation offers substantial time and 
cost savings while ensuring high-quality data.
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QUESTIONS

17



• Integral-action is the classical approach in 
MPC for achieving the reference tracking and 
disturbance rejection control objectives

• A first-order Taylor approximation is used to 
describe the error in its incremental form to 
achieve integral action.

• We assume the disturbance is constant 
 𝑑௞ାଵ= 𝑑௞ for simplification and because it is 
unmeasurable.

• The incremental input will be computed by 
our controller.
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INCREMENTAL ERROR DYNAMICS



• The gradient ∇௨𝑓 in the approximate 
incremental error model is unknown. We 
model as a linear differential inclusion.

• Uncertainty parameter 𝑏 ∈ ℬ captures the 
unknown gradient ∇௨𝑓 ≈ 𝑏 as well as the 
approximation error. 

• Using thousands of hours of historical 
operational data:
 The ‘center’ 𝑏଴is computed as an 

optimal infinity norm of the date
 An algorithm is then used for each data 

point to determine which expansion 
direction 𝑏෠௝ requires the least 
expansion 𝜌௝ to cover that data point 
𝛿𝑦௜ = 𝑏଴ + 𝜌௝𝑏෠௝

୘
δ𝑢௜
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UNCERTAINTY BOUNDS

Linear Differential Inclusion:

Uncertainty  Set:



• We find the optimal recipe by solving the optimization problem for the incremental input 
𝛿𝑢௞

∗ .

• The optimization problem seeks to minimize the worst case error of the next slice subject 
to a linear differential inclusion incorporating the uncertainty parameter, 𝑏. 
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ONE-STEP CONSTRAINED OPTIMAL CONTROL PROBLEM


