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ROBOMET.3D

Robo-Met.3D is a fully automated characterization technique for 3D
investigations of microstructure using mechanical serial sectioning
= Serial sectioning is the removal of material layer-by-layer and then optical
imaging
= RoboMet.3D provides 3D reconstructions of microstructure across volumes of
cubic centimeters at resolutions of microns.

System Components
= Automated robotic polisher and interchangeable polishing pads
= Automated high resolution inverted Zeiss microscope with montage imaging
= Dual internal ultrasonic cleaning stations
= Three internal compact chemical etching stages
= External operator station for real-time observation of data collection

Benefits

= Sectioning rates up to 10 times the baseline manual process

= Elimination of variability caused by human handling

= Precise repeatability and command over imaging

= Demonstrated repeatable sectioning thicknesses from 0.2 - 10 mm per
slice

= Documented slice rates of up to 20 slices per hour

= Applicable to high and low strength metals, thermal spray & geology
samples

= Can run continuously 24/6




ROBOMET.3D

Ultrasonic Bath Migroscope Load Montage Imaging



MECHANICAL SERIAL SECTIONING

Weave pattern consistency, voiding and

resistance to charring in fiber-reinforced- Subsurface damage in thermal spray _ _
composites coatings [3] Stress Corrosion Crack in Steel



LIMITATIONS OF OPEN-LOOP CONTROL
|

%( RoboMet.3D )y—k’

u, = input recipe, y, = measured material removal, d;, = unmeasured disturbances

- Material removal rates are inconsistent from component to component requiring a
‘calibration phase’.

= A series of test runs to identify the appropriate duration for each pad.

= Challenge: multiple ways to achieve a target slice thickness with uncertainty of the
correlation between pad times and removal rates.

* Recipe is typically fixed after the calibration phase.

 Lack of real-time feedback and adjustment, leading to inconsistencies in the material
removal process




MOTIVATION

Inconsistent slicing thickness resulting in a distorted
representation of the spring.

Serial sectioning
direction

Serial sectioning plane




RUN-TO-RUN (R2R) CONTROL

* A closed-loop R2R framework provides a

d feedback mechanism for adjusting the
l k T recipe u;, based on the slice error.
e, =1, —
Yk { RoboMet3p L2k —> e T |
K ) « Goal: Compute a sequence of physically
(S’UJ e implementable recipes u;, such that the
k k actual material removed y,, tracks the

. target removal r;, despite unmeasured
RZR'MPC)‘ disturbances d,.




REMOVAL FUNCTION

| + Historical Data Il Planar oo - Norm Fit|

« Removal function is unknown, making is difficult
to predict the outcome of a recipe.

Yk = f(uka dk)

« Unmeasured disturbances d; can affect the
removal process, introducing time-varying
uncertainty that is difficult to compensate for in
real-time.

Y [um]

* There are multiple input combinations that can
achieve the same removal, but not all are equally
efficient, robust, or consistent with the physical
system constraints.




ONE-STEP CONSTRAINED OPTIMAL CONTROL PROBLEM

+ We find the optimal recipe by solving the
optimization problem for the incremental input du,.  Optimization Problem

* Optimization problem seeks to minimize the worst Suy = arg min ey,
case error of the next slice subject to a linear T _
differential inclusion incorporating the uncertainty S.t. epy1 =€ —bjouy,j=1,...M

arameter, b.
p uk + 5uk € 'U

S T TN Incremental Input

r Target Removal Amount Uk+1 = U + Oy
Suy Change in System Input
Uy Current System Input Error
i Subsequent System Input ex =Tk — Vi = e — f(Ug, di)
ex Error of Current Slice
Cr+1 Error of Subsequent Slice
b; Uncertainty Parameter
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EXPERIMENTAL DATA - 2-PLATEN RECIPES
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Target Removal: r = 3um

« The actual removal experiences some variability on a local scale, but
demonstrates consistency on a global scale
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EXPERIMENTAL DATA - 4-PLATEN RECIPES
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Target Removal: r = 8um

Controller reached the target removal within
25 slices.

The trajectory of the actual removal track the
target removal over 800 slices despite
evidence of excessive noise.

The 6um platen experiences the most variance
in platen time.
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COMPARISON TO HISTORICAL PERFORMANCE

Relative z-height (mm)
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Open-loop Control

« Operator had to make manual adjustments
to the recipe.

* Instances of over sampling resulted in the
removal of nearly 100 slices of superfluous
data.

Closed-loop Control with R2ZR-MPC

+ Consistent removal over 900 slices with
minor deviation from the target removal.
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CONCLUSIONS

1. The R2R-MPC controller automates recipe inputs,
rejects disturbances, and adjust to changing
material, reducing the need for constant
operator supervision.

2. The controller minimizes post-processing time
by significantly decreasing the amount of data
discarded during post-processing, leading to
more accurate and consistent data collection for
3D reconstruction.

3. Overall, the R2R-MPC controller has proven to be
a robust solution for improving the consistency
and reliability of the RoboMet.3D system.

4. The implementation offers substantial time and
cost savings while ensuring high-quality data.
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INCREMENTAL ERROR DYNAMICS

* Integral-action is the classical approach in
OUE = Uks1 — Up MPC for achieving the reference tracking and
disturbance rejection control objectives

ek =Tk — Yr = Tk — fuk, di) - Afirst-order Taylor approximation is used to
describe the error in its incremental form to
eri1 = Tky1 — f(Ugky1, drs1) achieve integral action.

- We assume the disturbance is constant
dr+1= dy for simplification and because it is
unmeasurable.

N g1 — Yk — Ve (U, di)ou + Vg f (ug, di)od
ers1 = ex — Vo f (ug, di) ' duy,

« The incremental input will be computed by
our controller.
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UNCERTAINTY BOUNDS

. . . .  The gradient V,, f in the approximate
Linear Differential Inclusion: incremental error model is unknown. We
model as a linear differential inclusion.

ersi1 € Eler,0u) = {ex + b7 0ur cR:be B ,
o+ € Elew, Jux) = Lo A J - Uncertainty parameter b € B captures the

, . unknown gradient v, f =~ b as well as the
Uncertainty Set: approximation error.

+ Using thousands of hours of historical
operational data:

B={b} o c:onv{pj)l ..... [)Mi)f\l}

= The ‘center’ byis computed as an
optimal infinity norm of the date

5 HU¥
) = An algorithm is then used for each data
\/ point to determine which expansion
‘ direction b; requires the least

expansion p; to cover that data point
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ONE-STEP CONSTRAINED OPTIMAL CONTROL PROBLEM

Oup = argmin €1

N - .
s.t. ery1 > e bjbu,,J = |l v 55 580

y,

up + ou €U

% . o
Upy 1 = Uk + 0u

« We find the optimal recipe by solving the optimization problem for the incremental input
duy,.

» The optimization problem seeks to minimize the worst case error of the next slice subject
to a linear differential inclusion incorporating the uncertainty parameter, b.
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