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Objective

e Evaluate Conventional Diesel
Combustion (CDC), Cooled
Spray (CS), & Ducted Fuel
Injection (DFI) technologies for
locomotive applications
— Emissions & efficiency perfor-
mance for each strategy

— Effects of scaling duct diameter
for larger injector orifice
diameter

— Elucidate underlying reasons
for observations




New engine components

e New optical piston
— Titanium alloy
— Req’d for 20 MPa peak
cylinder pressure (PCP)

e New cylinder head
— Also for 20 MPa PCP

e CSinserts
e Duct modules

e Fuel injectors



]
pa ramete rs Condition
2290 mm x 155°
e Mode 4 of EPA SET 144.2 mg/stroke 152.2 mg/stroke
o lond. mid. 220 MPa 150 MPa
eroad, 4.5 mm
speed condition 2125 mm x 140 mm
: 1500 RPM
® 2-hole nozzle with 2002.5,3.01L1262.5
large orifices 2D[2.5,3.0,3.5]L12G36
— To simulate larger 2103 mm x 9 mm deep
(locomotive) engine 17.0mol% 20,95 mol%
Swept
® MatChing Intake manifold abs. press. (IMAP) 4.00 bar 3.50 bar

— Orifice diameter, Motored cylinder pressure at TDC 133 bar 123 bar
engine speed, Pinj' Intake manifold temperature (IMT) 83 °C 71°C
on’ TDCP&T Motored bulk in-cyl. temperature at TDC 890 K 860 K

Off-road No. 2 diesel




DFI duct-diameter study: EGR
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e DFI D2.5 performs ~same or better than D3.0 for all plotted parameters
— Particularly fuel-conversion efficiency (1 ;, = work output / chem. energy input)
— Performance improves for retarded timings



DFI duct-diameter study: Non-EGR
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e Similar trends as EGR condition: DFI D2.5 seems to have best performance
— NO, is slightly higher for D2.5, maybe due to higher T,

e Need a way to quantify & evaluate performance for different SOC, strategy, ...



Cost function

__ ISSoot; — min(ISSoot) ISNO,; — min(ISNO,) ISEC; — min(ISEC)

C; = + -
' min(ISSoot) min(ISNO,,) max(ISEC) — min(ISEC)

e [ = index unique to given combustion strategy & operating condition

e ISSoot & ISNO,, = indicated-specific soot & NOx, respectively

e ISEC = indicated-specific energy consumption = 71)7}9

e Min. & max. values for each parameter are taken from all combustion
strategies & all operating conditions at the same EGR level

e C;isalways 20

e Best performance is achieved when C; is minimized

e (; is sensitive to small changes in ISEC (different normalization)



Cost-function evaluation of DFI config’s: EGR
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e Minimum cost-function values decrease consistently with duct diameter
— D3.5, Min. C=0.690 at SOC =5.97 CAD ATDC
— D3.0, Min. C=0.669 at SOC = 8.01 CAD ATDC
— D2.5, Min. C=0.338 at SOC =5.59 CAD ATDC



Cost-function evaluation of DFI config’s: Non-EGR
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e Minimum cost-function values decrease consistently with duct diameter
— D3.5, Min. C=0.927 at SOC=5.51 CAD ATDC
— D3.0, Min. C=0.752 at SOC =2.19 CAD ATDC
— D2.5, Min. C=0.542 at SOC =4.00 CAD ATDC

e Conclusion: DFI D2.5 configuration is most promising



CS duct-diameter study: EGR
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e CS D2.5 performs ~same or better than D3.0 for all parameters except NO,
— NO, increases are small, especially at retarded timings



CS duct-diameter study: Non-EGR
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e Similar trends as EGR condition: CS D2.5 seems to have best performance
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Cost-function evaluation of CS & CDC config’s: EGR
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e Minimum cost-function value decreases with duct diameter
— CS D3.0, Min. C=2.377 at SOC =7.83 CAD ATDC
— CS D2.5, Min. C=1.359 at SOC = 8.35 CAD ATDC
— CDC, Min.C=1.815 at SOC =5.89 CAD ATDC

e CS D2.5 performs better than CDC



=l
Cost-function evaluation of CS & CDC config’s: Non-EGR
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e Minimum cost-function value decreases with duct diameter
— CS D3.0, Min. C=2.782 at SOC =4.25 CAD ATDC
— CS D2.5, Min. C=1.836 at SOC =2.97 CAD ATDC
— CDC, Min.C=2.022 at SOC=0.78 CAD ATDC

e Conclusion: CS D2.5 config. is most promising & performs better than CDC



Evaluation of CDC, CS D2.5, & DFI D2.5: EGR
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e DFI performs ~same or better than CDC & CS for all parameters except NO,
— NO, differences are generally small



Evaluation of CDC, CS D2.5, & DFI D2.5: Non-EGR
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e Similar trends as EGR condition: DFI D2.5 seems to have best performance
— NO, is again higher for DFI D2.5, maybe due to higher T,



Cost-function summary for all tested conditions

e CS performs better than CDC Optimal
— EGR: 25% lower cost function Operating Cost- Optimal
— Non-EGR: 9% lower Condition Function SOC [CAD]
e DFI performs better than CDC & CS Value L]
— EGR CDC 1.82 5.9
» 81% lower than CDC EGR CS 1.36 8.4
» 75% lower than CS DF| 534 c 6
— Non-EGR : '
» 73% lower than CDC CDC 2.02 0.8
» 71% lower than CS Non- cS 184 30

EGR
e Why? DFI 0.54 4.0




Compare strategies @ optimal SOCs: EGR

200

e Timing corresponds to min. cost
function for each strategy w/ EGR

AHRR [J/deg]

e AHRR is generally advanced for DFI
— Despite same SOC as CDC

e Leads to higher T, values
— Due to more-premixed combustion?
— Enhancing late-cycle soot oxidation?
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e AHRR drops faster during late-cycle 20}
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e Higher SINL implies hotter soot
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Movies @ optimal
SOC: EGR

e CS may be entraining combus-
tion products before EOI

e Raw liftoff lengths (LoLs) are
longer for DFI & CS...
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Natural Luminosity OH* Chemiluminescence

Movies @ optimal T e
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e CS may be entraining combus-
tion products before EOI

e Raw liftoff lengths (LoLs) are
longer for DFI & CS...

e ...but effective LoLs are shorter
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Compare strategies @ optimal SOCs: Non-EGR
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e Timing corresponds to min. cost _ or
function for each strategy w/o EGR
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Movies @ optimal
SOC: Non-EGR

e Again see evidence of CS
ingesting combustion products
before EOI
— This is not observed for DFI
— Preventing this could improve

CS performance
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Movies @ optimal
SOC: Non-EGR

e Again see evidence of CS
ingesting combustion products
before EOI
— This is not observed for DFI
— Preventing this could improve

CS performance
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Summary
e Optimal duct diameter = 2.5 mm for CS & DFlI Optimal Optimal
— Didn’t change despite orifice diam. changing Operating Cost- SOC
from .110 mm to .288 mm (6.9X flow area T) Condition | Function

[CAD]

Value [-]
e Both CS & DFI generally outperform CDC

CDC 1.82 5.9
— DFI has lowest cost fcns. for the tested cond’s
EGR CS 1.36 8.4
e Processes of potential importance for future B 0.34 e
optimization (all may be related) : :
— Extent of flame liftoff from duct/passage exit o CDC 2.02 0.8
— Entrainment of combust’n products into duct . CS 1.84 3.0

— Spray/bowl interaction
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