


RESEARCH ARTICLE | JULY 18 2025

## The impact of pulse width modulation on heat accumulation in AlGaN channel HEMTs

D. Myren  ; M. S. Jamil  ; B. A. Klein  ; A. A. Allerman; A. M. Armstrong  ; L. Yates  ; G. Pavlidis  



APL Electronic Devices 1, 036112 (2025)

<https://doi.org/10.1063/5.0279372>



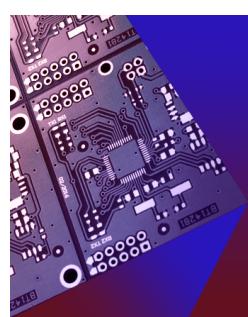
View  
Online



Export  
Citation

### Articles You May Be Interested In

Enhancement of drain current in AlGaN/GaN HEMT using AlN passivation


*AIP Conf. Proc.* (December 2019)

Correlation-based study of FEA and IR thermography to reveal the 2DEG temperature of a multi-fingered high-power GaN HEMT

*J. Appl. Phys.* (February 2022)

Nanoscale electro-thermal interactions in AlGaN/GaN high electron mobility transistors

*J. Appl. Phys.* (January 2020)



## APL Electronic Devices

Fostering connections across multiple disciplines  
in the broad electronics community

Now Open for Submissions



# The impact of pulse width modulation on heat accumulation in AlGaN channel HEMTs

Cite as: APL Electron. Devices 1, 036112 (2025); doi: 10.1063/5.0279372

Submitted: 7 May 2025 • Accepted: 2 July 2025 •

Published Online: 18 July 2025



View Online



Export Citation



CrossMark

D. Myren,<sup>1</sup> M. S. Jamil,<sup>1</sup> B. A. Klein,<sup>2</sup> A. A. Allerman,<sup>2</sup> A. M. Armstrong,<sup>2</sup> L. Yates,<sup>2</sup> and G. Pavlidis<sup>1,a)</sup>

## AFFILIATIONS

<sup>1</sup> School of Mechanical Aerospace and Manufacturing Engineering, University of Connecticut, Storrs, Connecticut 06269, USA

<sup>2</sup> Sandia National Laboratories, Albuquerque, New Mexico 87123, USA

<sup>a)</sup>Author to whom correspondence should be addressed: [georges.pavlidis@uconn.edu](mailto:georges.pavlidis@uconn.edu)

## ABSTRACT

The poor thermal properties of Aluminum–Gallium Nitride (AlGaN) channel High Electron Mobility Transistors (HEMTs) on sapphire limit the device’s maximum switching frequency due to high channel temperatures. Extracting the correct thermal time constants can provide guidelines for the device’s safe frequency operation. This study experimentally quantifies the impact of pulse width and duty cycle on the transient thermal dynamics of multi-finger AlGaN channel HEMTs. In most transient thermal metrology, lock-in averaging approaches are leveraged to increase signal-to-noise ratio and measure the device’s relative temperature rise. Assuming no heat accumulation, the temperature rise is used to quantify the device’s thermal resistance under continued pulsed biasing. For devices grown on sapphire substrates, however, heat accumulation leads to elevated reference temperatures and causes the differential measurement to underestimate the peak temperature. This study demonstrates the capability of transient Gate Resistance Thermometry (tGRT) to measure the absolute temperature, which is required to precisely evaluate the device’s thermal resistance. When an absolute temperature measurement is not feasible (such as thermoreflectance imaging), a solution is proposed to derive the peak temperature under pulsed biasing based on the differential temperature under pulsing and the steady-state thermal resistance (which is typically easier to obtain). Finally, additional tGRT (without averaging) is performed to demonstrate the temperature-dependent thermal time constants required to minimize heat accumulation effects.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (<https://creativecommons.org/licenses/by-nc/4.0/>). <https://doi.org/10.1063/5.0279372>

07 October 2025 20:30:25

Aluminum–Gallium Nitride (AlGaN) channel high electron mobility transistors (HEMTs) offer significant advantages for power electronics due to their large bandgap, which results in high breakdown voltages and low on-resistance compared to competitive material systems such as Gallium Nitride (GaN).<sup>1–3</sup> As a result of the large bandgap, AlGaN offers excellent resilience at high temperatures, and the material is known to demonstrate radiation hardness—the properties do not change significantly in the presence of radiation<sup>4</sup>—which broadens the potential for this material system in niche applications. The aluminum content of AlGaN has a strong and non-linear influence on the material properties of the system, particularly the bandgap, bulk critical electric field, and thermal conductivity.<sup>4</sup> When the aluminum content is low, AlGaN typically shows electrical properties similar to GaN ( $E_{G,\text{GaN}} = 3.4^3$  V,  $E_{C,\text{GaN}} = 3^3$  MV cm<sup>-1</sup>,  $\kappa_{\text{GaN}} = 230^1$  Wm<sup>-1</sup> K<sup>-1</sup>) but with lower thermal conductivity ( $\kappa_{\text{AlGaN}} = 8.5 - 11^2$  Wm<sup>-1</sup> K<sup>-1</sup>) because aluminum behaves as a lattice defect and increases the rate of phonon

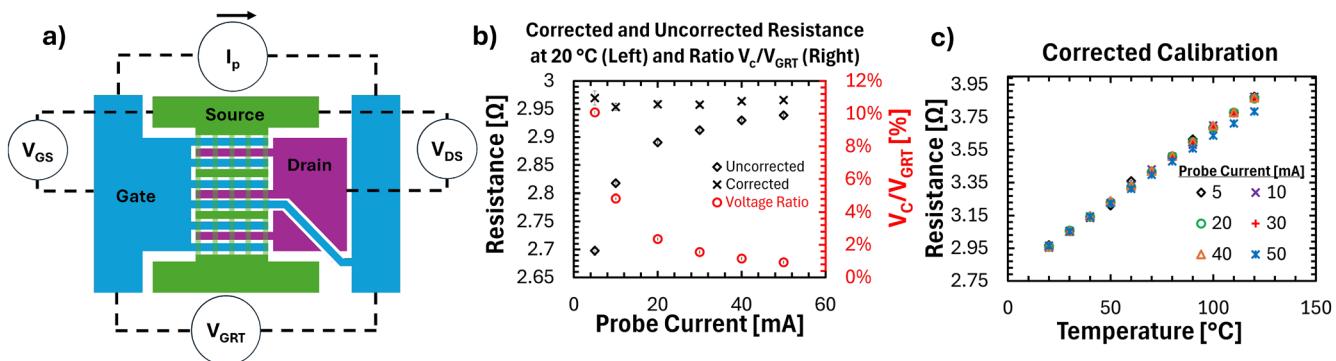
scattering.<sup>5</sup> AlGaN with a high aluminum content resembles aluminum nitride (AlN) ( $E_{G,\text{AlN}} = 6^6$  V,  $E_{C,\text{AlN}} = 12.3^7$  MV cm<sup>-1</sup>,  $\kappa_{\text{AlN}} = 319^8$  Wm<sup>-1</sup> K<sup>-1</sup>) but also with reduced thermal conductivity because gallium acts as a phonon scattering site.

The thermal characterization of AlGaN devices is essential for their implementation due to the poor thermal conductivity of the material. Device design must consider the thermal behavior of the semiconductor material system, or the electrical benefits of the system will not be fully realized due to poor thermal transport behavior.<sup>9</sup> AlGaN devices can use higher thermal conductivity substrates and thermal spreading structures<sup>10,11</sup> to mitigate heat accumulation, and it is important to verify that these design strategies achieve the desired results. It is not always practical to use high thermal conductivity substrates due to the small wafer sizes of AlN (typically <6 in. or 150 mm), and the additional processing complexity of the GaN–Diamond or GaN–Silicon Carbide systems results in high costs. Sapphire is a low thermal conductivity substrate that offers

advantageous wafer size (commercially available at >200 mm diameter) and is already well commercialized for LED applications, leading to advantages in cost. Given sufficient time, it is likely that high thermal conductivity substrates will become commercially viable, but in the intermediate timeframe, it is prudent to consider the effects of sapphire substrates on the AlGaN channel HEMT.

Wide-field optical methods for the thermal evaluation of these devices, such as transient thermoreflectance imaging (TTI),<sup>12</sup> can be implemented in some cases, but as the bandgap becomes large, it becomes necessary to use deep-ultraviolet (DUV) optical systems<sup>13</sup> and these systems are still in their early developmental stages.<sup>14</sup> In addition, many AlGaN devices do not provide unobstructed optical access to the channel due to thermal spreading structures, field plates, and air bridges.<sup>15</sup> Gate resistance thermometry (GRT) is an alternative thermometry method particularly well suited for complex device structures.<sup>16</sup>

Previous work has explored the limits of thermal characterization on single-fingered HEMTs, especially as it pertains to the choice of experimental conditions optimal for TTI and Raman thermometry.<sup>17</sup> Lundh *et al.* reported the minimum pulse width required to reach steady state for both GaN HEMTs on Silicon and AlGaN Channel HEMTs on Sapphire. This work differentiates itself by exploring the importance of the cooling time rather than the rise time, and directly quantifies the impact of pulsed operating conditions on device thermal performance. Being a differential temperature measurement, TTI requires sufficient time for cooling to ensure no heat accumulation. The impact of heat accumulation is thus quantified, and the effects of pulse width on transient thermal crosstalk in multi-fingered devices are explored.


GRT is a thermally sensitive electrical parameter (TSEP) method in which the electrical resistance of a metallic structure, the gate, is used to evaluate the spatially averaged temperature of the gate.<sup>16,18</sup> For HEMTs, the maximum temperature is known to be located in the channel immediately below the gate edge on the drain side.<sup>19–22</sup> Based on the peak temperature's proximity to the gate, GRT has proven to be an effective temperature measurement technique for lateral HEMTs. The use of Kelvin (four-wire) probing

allows for high-accuracy measurements of the TSEP, and it is known that electrical resistance varies linearly with temperature over a very wide range in metals (100–500 K is expected).<sup>23</sup>

As shown in Fig. 1(a), a six-fingered AlGaN channel HEMT was investigated using transient GRT (tGRT). The epitaxial structure consists of a 30-nm-thick  $\text{Al}_{0.85}\text{Ga}_{0.15}\text{N}$  barrier layer atop a 360 nm UID  $\text{Al}_{0.51}\text{Ga}_{0.49}\text{N}$  channel. There is an AlGaN gradient layer that transitions to an AlN smoothing layer, which itself is atop a  $\approx 430\text{-}\mu\text{m}$ -thick  $\text{Al}_2\text{O}_3$  (sapphire) substrate. The channel and buffer layer thicknesses are reported in Refs. 24–26. The device is a six-finger HEMT with a bridged source structure passing over each gate and drain finger five times. One central gate finger is connected to dedicated GRT probing and sensing pads, and the device does not have a field plate. The gate length is 4  $\mu\text{m}$ , and each gate finger width is 100  $\mu\text{m}$ . The gate-drain spacing is 8  $\mu\text{m}$ , and the source-gate spacing is 4  $\mu\text{m}$ . All measurements were conducted by mounting the die onto the temperature-controlled stage of a thermoreflectance imaging station (for direct thermal comparison). Silver paste was applied between the die and the stage to reduce the thermal boundary resistance, and a thermocouple was placed near the die for accurate temperature assessment during calibrations.

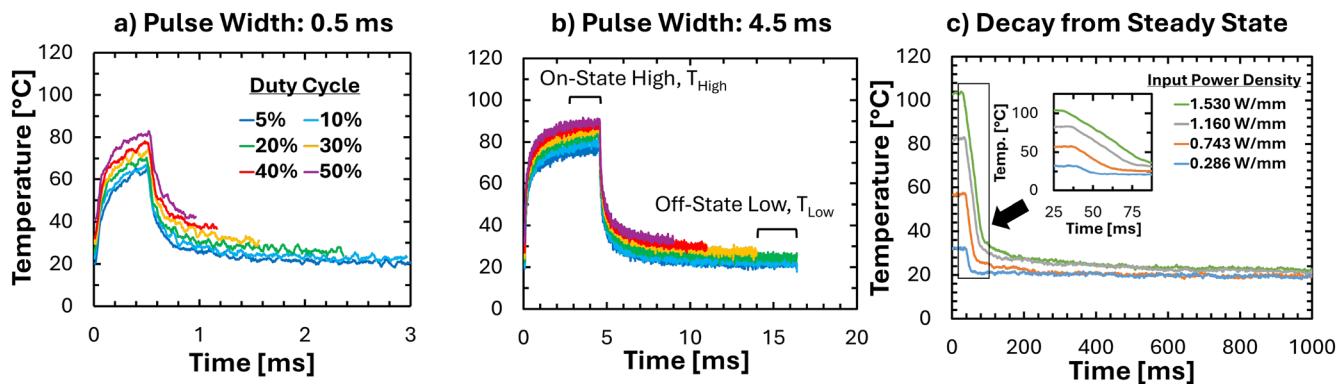
A Keithley 2400 SourceMeter is used to apply a probe current  $I_p$  across the dedicated probing pads, as indicated in Fig. 1(a). This current acts along the gate width of a central finger. On the opposite sides of the probing pads, a Tektronix MS044 oscilloscope is used to measure the voltage drop,  $V_{GRT}$ , corresponding to that current, resulting in a Kelvin (four-wire) resistance measurement. By controlling the device temperature and measuring the resistance, it is possible to evaluate the thermal coefficient of resistance (TCR), as shown in Eq. (1), where  $\Delta T$  is the difference between the reference temperature ( $\approx 20^\circ\text{C}$ ) and the calibration temperature,  $R_0$  is the resistance measured at the reference temperature, and the  $\Delta R$  term is the difference between the resistance at the calibration and reference temperatures:<sup>16</sup>

$$TCR = \frac{\Delta R}{R_0} \frac{1}{\Delta T}. \quad (1)$$



**FIG. 1.** (a) Simplified schematic of the six-finger AlGaN/AlN HEMT on a thick sapphire substrate that was thermally characterized. Probe locations are indicated for the Kelvin (four-wire) resistance measurement of a gate finger. (b) Gate resistances measured at the controlled 20 °C calibration point for various probe currents, as well as the fraction of the measured voltage  $V_{GRT}$  comprised by the correction voltage  $V_c$ . Error bars are present in this plot but are very small relative to the symbol size. (c) Calibration curves for the various probe currents after correction, demonstrating strong agreement except at elevated currents. Error bars are present in this plot, but they are small relative to the symbol size and are obscured. (b) Corrected and uncorrected resistance at 20 °C (left) and ratio  $V_c/V_{GRT}$  (right). (c) Corrected calibration.

Once the TCR is derived from the calibration, Eq. (1) can be rearranged to estimate the temperature rise during operation, as shown in Eq. (2), where  $V_{GRT}$  is the voltage measured during device operation and  $V_0$  is the reference voltage used during the calibration.<sup>16</sup> While this is shown in terms of  $\Delta T$ , it is clear that the reference temperature from the calibration may be used to evaluate an absolute temperature rather than a change in temperature. It is critical to note that the TCR is strongly dependent on the reference voltage and temperature and is generally known to be unstable over long time periods<sup>27</sup> or upon exposures that may result in surface chemical changes.<sup>16</sup> It is good practice to perform TCR calibration immediately prior to experimental characterization of the device and to avoid using the same calibration for multiple devices, even if they are located on the same wafer and share the same design:


$$\Delta T = TCR^{-1} \times \left( \frac{V_{GRT}}{V_0} - 1 \right). \quad (2)$$

Based on Eq. (2), the magnitude of the measured voltage is controlled by the probe current. It was hypothesized that at low probe currents, experimental sensitivity might be poor, but at elevated probe currents, there might be probe-induced heating of the gate or an alteration of the device performance due to changes in the field induced by the additional current flow.<sup>16</sup> To evaluate the effects of probe current on these devices, calibrations were completed at probe current  $I_P$  values of 5, 10, 20, 30, 40, and 50 mA in the range of 20–120 °C with the gate and drain voltages held constant at zero ( $V_{DS} = V_{GS} = 0$  V). These currents correspond to a potential difference of ~0.015–0.5 V across the gate width. At all probe currents, no difference was detected in the device transfer curve, but some differences were observed in the calibration. Close inspection revealed that there is a non-zero potential difference across the gate width when the probe current is off. This small voltage is likely due to current leakage from the device pulser heads used to excite the device during the experiment and from the additive series resistances of the oscilloscope probing station and is called the correction voltage

$V_C$ . As shown in Fig. 1(b),  $V_C$  is 10% of the measured  $V_{GRT}$  at the 5 mA probe current but drops to 1.6% at the 30 mA probe current. At the 20 °C calibration point, the measured resistance is shown to range from ~2.7 to 2.93 Ω. If the resistance is corrected by subtracting  $V_C$  from  $V_{GRT}$ , the resistance is shown to vary only between 2.95 and 2.97 Ω. Experimentally,  $V_C$  did not vary with temperature up to 120 °C. Figure 1(c) shows the corrected calibration curves over the entire temperature range of interest, demonstrating that if stray voltages are properly accounted for, there is no difference in the calibration curve or TCR. It is also notable in Fig. 1(c) that the 50 mA calibration is slightly different from the others, which suggests the initiation of probe current self-heating effects. For further measurements in this study, 30 mA is used as a probe current to avoid self-heating effects but maintain a high signal-to-noise ratio.

The tGRT results of the device under pulsed operation are shown in Fig. 2. Parts (a) and (b) show the complete temperature profile of the device operating at  $V_{DS} = 20$  V and  $V_{GS} = 0$  V for several duty cycles ( $\alpha = 5, 10, 20, 30, 40$ , and 50%) with constant pulse width (equating to a peak power density of  $\approx 1.6 \frac{W}{mm}$ ). The variation in duty cycle extends the off-period between successive activations, and the data shown are averaged over 500 cycles. The figures show temperature magnitude rather than the typical  $\Delta T$  presented for a GRT measurement.<sup>16</sup> Two key regions are shown in Fig. 2(b) for clarity, but they may be observed in parts (a) and (c) as well. These are the on-state high temperature ( $T_{High}$ ) and off-state low temperature ( $T_{Low}$ ). In this analysis, the key temperatures are calculated as an average over the last 5% of the on or off segment of the period, respectively. The difference  $T_{High} - T_{Low}$  is the measured  $\Delta T$ , which would typically be reported in GRT or other relative measurement strategies such as transient thermoreflectance imaging (TTI).<sup>28</sup>

Figure 2(a) shows the 0.5 ms pulse width data, and there is a clear upward trend in both the peak temperature and low temperature as the duty cycle increases. This trend is also shown in Fig. 2(b), corresponding to a 4.5 ms pulse width. Figure 2(c) shows a single-shot (unaveraged) decay from a steady-state powered



**FIG. 2.** (a) Temperature rise and decay profiles at duty cycles of 5%, 10%, 20%, 30%, 40%, and 50% and a constant pulse width of 0.5 ms at 20 V. Each curve is averaged over ~500 cycles, and a rise in temperature is seen with increasing duty cycle, which is attributed to heat accumulation. (b) Temperature rise and decay profiles at duty cycles of 5%, 10%, 20%, 30%, 40%, and 50% and a constant pulse width of 4.5 ms at 20 V. Each curve is also averaged over 500 cycles and demonstrates the effects of heat accumulation. Also shown are the regions of the temperature profile identified as the On-State High and Off-State Low temperatures. (c) A single-shot temperature decay from extended (steady-state) constant voltage conditions. (a) Pulse width: 0.5 ms. (b) Pulse width: 4.5 ms. (c) Decay from steady state.

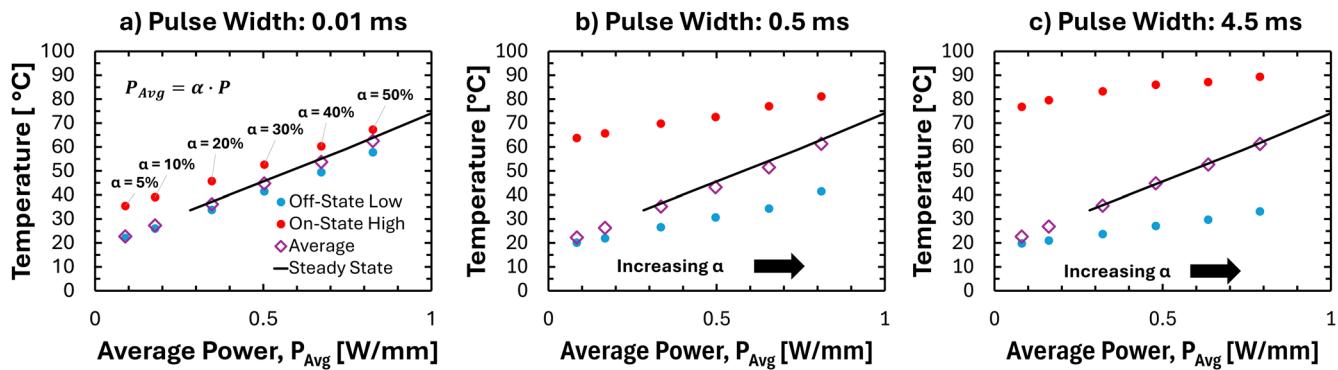
**TABLE I.** Summary of time constants and amplitudes.

| Power density [ $\frac{W}{mm}$ ] | (V) | Voltage           |               |                   |                    |
|----------------------------------|-----|-------------------|---------------|-------------------|--------------------|
|                                  |     | A ( $^{\circ}C$ ) | $\tau_1$ (ms) | B ( $^{\circ}C$ ) | $\tau_2$ (ms)      |
| 0.286                            | 5   | 14.44             | 5.15          | 2.183             | 334.3 <sup>a</sup> |
| 0.743                            | 10  | 57.22             | 10.02         | 7.014             | 188.4 <sup>a</sup> |
| 1.160                            | 15  | 68.88             | 15.33         | 9.521             | 228.3 <sup>a</sup> |
| 1.530                            | 20  | 103.3             | 18.33         | 13.09             | 180.6 <sup>a</sup> |

<sup>a</sup>Long time constants suggest that the acquisition duration may be too short. Regardless, they comprise only a small fraction of the overall decay behavior, and the rapid decay associated with the short time constant is the only part relevant to the analysis.

condition at  $V_{DS} = 5, 10, 15$ , and  $20$  V. The device was powered for several seconds until no change in temperature was seen prior to being deactivated. Due to the large time scale in part (c), it appears that these decays to the ambient temperature are quite rapid, but fitting the decays with a two-term exponential,<sup>29</sup> as shown in Eq. (3), reveals that the primary time constants follow the trends shown in Table I, where even for a 5 V operating condition, corresponding to a peak temperature rise of  $\sim 17^{\circ}C$ , at least a 5 ms decay should be expected before the device returns to ambient temperature:

$$\Delta T = Ae^{\frac{-t}{\tau_1}} + Ce^{\frac{-t}{\tau_2}}. \quad (3)$$


The origin of the variation of the thermal time constant with respect to the input power requires a detailed analysis that is not yet fully developed. Briefly, in this case, it is attributed to both the thermal crosstalk between fingers of the HEMT<sup>29,30</sup> and to the thermal penetration depth of the heating.<sup>31</sup> As the device is heated under higher power conditions, the rate at which heat may be extracted from the more central fingers is limited in the lateral directions by the presence of heat caused by the other fingers.<sup>29,30</sup> In addition, it is demonstrated in many introductory texts on heat transfer that for a slab-type heat conduction problem subjected to a constant heat flux at one surface, the thermal time constants may be

well approximated by  $\tau = \frac{x^2}{D}$ , where  $x$  is the power-dependent thermal penetration depth and  $D$  is the thermal diffusivity. Both the crosstalk and penetration depth effects are expected to be relevant to the observed phenomenon. Similar results have been observed but not significantly discussed in GaN HEMTs.<sup>32</sup>

In light of the duration of the delay required for a device to return to ambient temperature from even a low-power condition, as shown in Table I, as  $\tau_1$ , it is clear that under the pulsed operating conditions explored in this study, the device does not have sufficient time to reject all of the heat between cycles. Figures 3(a)–3(c) show the distribution of key temperatures over an operation cycle for various pulse-width conditions, alongside the steady-state temperatures observed at the given power conditions. The average power shown is the power density [ $\frac{W}{mm}$ ] multiplied by the duty cycle  $\alpha$ , thus showing the average power dissipation over the complete cycle. Since each experiment within a given pulse width was performed at  $1.6 \frac{W}{mm}$ , the increase in average power corresponds to an increase in the duty cycle. For the steady-state condition, the average power is equivalent to the DC power. The temperatures  $T_{High}$  and  $T_{Low}$  show a strong upward trend, though this trend does not exactly parallel the steady-state temperatures across the range of average powers investigated. The difference between  $T_{High}$  and  $T_{Low}$ , denoted as  $\Delta T$ , is nearly constant over the range of average powers, implying that these are dynamic equilibria where heat accumulates and raises the base temperature  $T_{Low}$ . If thermal resistance were calculated based on  $\Delta T$  and an assumed constant base temperature  $T_{Low}$ , the accumulation effects would not be captured, and the thermal resistance would be underestimated:

$$T_{Avg} = \alpha \times \Delta T + T_{Low}. \quad (4)$$

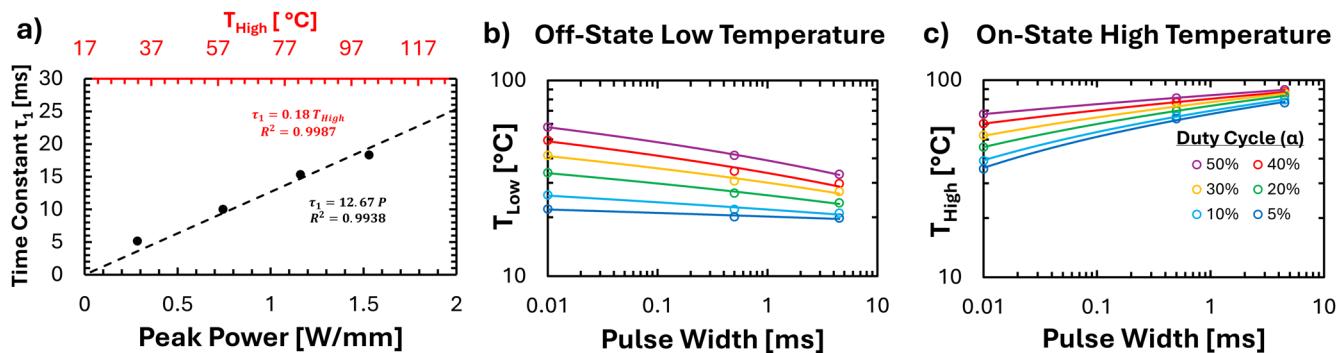
Figure 3 also shows the average temperature of the device, calculated using Eq. (4). By inspection,  $T_{Avg}$  corresponds very well to the steady-state temperature. Additional experimentation is required to confirm this conjecture, but it may be possible to use this relationship to predict  $T_{High}$  and  $T_{Low}$  for a wide range



**FIG. 3.** (a) Key temperatures ( $T_{Low}$ ,  $T_{High}$ ,  $T_{Average}$ ) observed in 0.01 ms pulse-width power cycles at 20 V for various duty cycles, alongside the calculated average temperature and the steady-state temperature. (b) Key temperatures ( $T_{Low}$ ,  $T_{High}$ ,  $T_{Average}$ ) observed in 0.5 ms pulse-width power cycles at 20 V for various duty cycles, alongside the calculated average temperature and the steady-state temperature. (c) Key temperatures ( $T_{Low}$ ,  $T_{High}$ ,  $T_{Average}$ ) observed in 4.5 ms pulse-width power cycles at 20 V for various duty cycles, alongside the calculated average temperature and the steady-state temperature. In all three parts of this figure, the increase in average power is attributed to an increase in the duty cycle,  $\alpha$ , as the electrical drive parameters of the device ( $V_{GS}$ ,  $V_{DS}$ ) are held constant. Pulse width: (a) 0.01 ms, (b) 0.5 ms, and (c) 4.5 ms.

of operating conditions from a significantly reduced dataset. By obtaining a dataset that captures the steady-state heating behavior and thermal resistance, one can estimate  $T_{High}$  and  $T_{Low}$  from the measured  $\Delta T$  and known duty cycle  $\alpha$ , under the assumption that  $T_{Steady\ State} = T_{Avg}$ .

As previously established, heat accumulation can reasonably be expected when the device does not have sufficient cooling time (Off-State) to reject all the heat produced during the On-State. We can estimate the required off-period by investigating the time constants of the thermal decay from steady state. The first time constant from Eq. (3),  $\tau_1$ , is responsible for  $\approx 86.9 - 89\%$  of the decay, which makes it a reliable estimator for the minimum cooling time between cycles to prevent the accumulation of heat. It is reasonable to expect that the time constants are dependent on many features of this device, including multi-finger thermal crosstalk and heat transfer through the multi-layered structure into the substrate and thermal chuck.<sup>33</sup> The presence of a device package would also influence this, if it were present. Within the limiting case of an unpackaged device, Fig. 4(a) shows  $\tau_1$  plotted against both the steady-state power density and the peak temperature. A good linear fit is displayed against both parameters. A linear relationship between power and temperature rise is expected when the thermal conductivity does not change significantly over the given temperature range, so the linear relationship between the input power and the time constants may only be valid for the temperature range for which the thermal diffusivity is approximately constant.


The accumulation effects are also visible in Figs. 4(b) and 4(c), where the temperatures  $T_{Low}$  and  $T_{High}$  are shown as functions of pulse width. In Fig. 4(b), at a low duty cycle ( $\alpha = 5\%$ ), the off-state temperature ( $T_{Low}$ ) varies by 11% across the range of explored pulse widths. In contrast, at higher duty cycles ( $\alpha = 50\%$ ), reducing the pulse width is shown to increase  $T_{Low}$  by 74% due to heat accumulation. During low-frequency operation (longer pulse widths), the off-state temperature will tend to be less sensitive to the duty cycle because there is more time for cooling to occur in all duty cycle cases, and  $T_{Low}$  will trend toward its steady-state behavior. For example, at a 0.01 ms pulse width, reducing the duty cycle from 50% to 5% reduces  $T_{Low}$  by 62%, but the same duty cycle change

at a 4.5 ms pulse width reduces  $T_{Low}$  by 40%. A similar trend is observed in Fig. 4(c). At low duty cycles ( $\alpha = 5\%$ ), the on-state temperature ( $T_{High}$ ) can be reduced by 54% by reducing the pulse width from 4.5 to 0.01 ms. The effect is less prominent at higher duty cycles ( $\alpha = 50\%$ ), where the reduction is only 25% over the same interval. For a 0.01 ms pulse width, reducing the duty cycle from 50% to 5% reduces  $T_{High}$  by 47%, but the same duty cycle change at a 4.5 ms pulse width reduces  $T_{High}$  by only 14%. During low-frequency operation (longer pulse widths), the on-state temperature ( $T_{High}$ ) trends toward a pseudo-steady state based on the power input, but during higher-frequency operation (shorter pulse widths), the device does not reach a fully heated condition because of the limited time for heating to occur. At high frequencies, the duty cycle is an effective tool for controlling  $T_{Low}$  and  $T_{High}$ , but at lower frequencies, the pulse width effect is much more dominant. This correlates well with experiments showing higher switching efficiency during high-frequency operation.<sup>34</sup>

For the design of systems and application of devices, it is often beneficial to estimate reasonable operational limits. If the time constant for a device at a particular power is known, it is possible to calculate the upper limit of the allowable pulse width from the desired duty cycle, as shown in Eq. (5), where  $PW_{Max}$  is the upper limit of the allowable pulse widths. If the pulse width is the preferred control feature, it can also suggest a limit on the allowable duty cycle:

$$\frac{\tau}{\alpha} = PW_{Max}. \quad (5)$$

In the final analysis, this AlGaN channelled, multi-fingered HEMT demonstrates heating behavior dominated by the accumulation of heat in the device between individual pulses. The magnitudes of the temperatures shown in Figs. 2(a) and 2(b) demonstrate behavior suggestive of a dynamic equilibrium state and illustrate the effect of substrate heat accumulation. Figure 2(c) shows the relatively long thermal time constants inherent to this device, summarized in Table I, which supports the claim that there is insufficient time to reject heat during the device-off duration. The analysis of the key operating temperatures shown in Fig. 3 indicates a conjectured



**FIG. 4.** (a) First (dominant) time constant in the two-term exponential fit [Eq. (3)] to the steady-state temperature decay, related to both the steady-state device power density and temperature, showing a linear relationship between the time constant and both operating parameters. (b) Off-State low temperature for each duty cycle across the range of pulse widths explored in this study. (c) On-State high temperature for each duty cycle across the range of pulse widths explored in this study. (a)  $T_{High}$  (°C). (b) Off-state low temperature. (c) On-state high temperature.

relationship between the steady-state operating temperature and the averaged operating temperature of the device, which may also be related to the heat accumulation effect. The primary time constant in this device is relatively long, as shown in Fig. 4(a), and within a region of linearity, we can estimate it. This allows for predicting the domain of operating conditions where heat accumulation poses a risk. It is also possible to draw some reasonable inferences about the operation of devices of this type from Figs. 4(b) and 4(c), suggesting operating conditions that may reduce the risk of heat accumulation.

Sandia National Laboratories is a multi-mission laboratory managed and operated by the National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-NA0003525. AlGaN HEMTs were provided by Sandia National Laboratories as part of the sponsorship of Muhammad S. Jamil during the academic year 2023–2024. Dominic Myren was supported by the Department of Defense (DoD) through the National Defense Science and Engineering Graduate (NDSEG) Fellowship Program.

## AUTHOR DECLARATIONS

### Conflict of Interest

The authors have no conflicts to disclose.

### Author Contributions

**D. Myren:** Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Writing – original draft (lead); Writing – review & editing (lead). **M. S. Jamil:** Data curation (equal). **B. A. Klein:** Conceptualization (equal); Resources (equal). **A. A. Allerman:** Conceptualization (equal); Resources (equal). **A. M. Armstrong:** Conceptualization (equal); Resources (equal). **L. Yates:** Conceptualization (equal); Formal analysis (supporting); Funding acquisition (equal); Project administration (lead); Resources (equal); Supervision (equal); Writing – original draft (supporting). **G. Pavlidis:** Conceptualization (equal); Data curation (equal); Formal analysis (equal); Funding acquisition (equal); Investigation (equal); Methodology (equal); Project administration (equal); Supervision (equal); Writing – original draft (equal); Writing – review & editing (equal).

## DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

## REFERENCES

- 1 G. A. Slack, L. J. Schowalter, D. Morelli, and J. A. Freitas, "Some effects of oxygen impurities on AlN and GaN," *J. Cryst. Growth* **246**, 287–298 (2002).
- 2 S. Choi, S. Graham, S. Chowdhury, E. R. Heller, M. J. Tadjer, G. Moreno, and S. Narumanchi, "A perspective on the electro-thermal co-design of ultra-wide bandgap lateral devices," *Appl. Phys. Lett.* **119**, 170501 (2021).
- 3 J. Yang, K. Liu, X. Chen, and D. Shen, "Recent advances in optoelectronic and microelectronic devices based on ultrawide-bandgap semiconductors," *Prog. Quantum Electron.* **83**, 100397 (2022).
- 4 J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van De Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, "Ultrawide-bandgap semiconductors: Research opportunities and challenges," *Adv. Electron. Mater.* **4**, 1600501 (2018).
- 5 A. J. H. McGaughey, A. Jain, H.-Y. Kim, and B. Fu, "Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation," *J. Appl. Phys.* **125**, 011101 (2019).
- 6 M. Xu, D. Wang, K. Fu, D. H. Mudiyanselage, H. Fu, and Y. Zhao, "A review of ultrawide bandgap materials: Properties, synthesis and devices," *Oxford Open Mater. Sci.* **2**, itac004 (2022).
- 7 C. E. Quiñones, D. Khachariya, P. Reddy, S. Mita, J. Almeter, P. Bagheri, S. Rathkanthiwar, R. Kirste, S. Pavlidis, E. Kohn, R. Collazo, and Z. Sitar, "High-current, high-voltage AlN Schottky barrier diodes," *Appl. Phys. Express* **17**, 101002 (2024).
- 8 G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, "The intrinsic thermal conductivity of AlN," *J. Phys. Chem. Solids* **48**, 641–647 (1987).
- 9 A. N. Khan, K. Jena, G. Chatterjee, M. Chauhan, and S. Routray, "Thermal resistance modeling and its different aspects on AlGaN/GaN HEMTs: A comprehensive review," in *Modeling of AlGaN/GaN High Electron Mobility Transistors*, edited by D. Nirmal and J. Ajayan (Springer Nature, Singapore, 2025), pp. 125–165.
- 10 N. Tsurumi, H. Ueno, T. Murata, H. Ishida, Y. Uemoto, T. Ueda, K. Inoue, and T. Tanaka, "AlN passivation over AlGaN/GaN HFETs for surface heat spreading," *IEEE Trans. Electron Devices* **57**, 980–985 (2010).
- 11 M. J. Tadjer, T. J. Anderson, M. G. Ancona, P. E. Raad, P. Komarov, T. Bai, J. C. Gallagher, A. D. Koehler, M. S. Goorsky, D. A. Francis, K. D. Hobart, and F. J. Kub, "GaN-on-diamond HEMT technology with  $T_{AVG} = 176^\circ\text{C}$  at  $P_{DC,max} = 56 \text{ W/mm}$  measured by transient thermoreflectance imaging," *IEEE Electron Device Lett.* **40**, 881–884 (2019).
- 12 C. Yuan, R. Hanus, and S. Graham, "A review of thermoreflectance techniques for characterizing wide bandgap semiconductors' thermal properties and devices' temperatures," *J. Appl. Phys.* **132**, 220701 (2022).
- 13 D. C. Shoemaker, A. Karim, D. Kendig, H. Kim, and S. Choi, "Deep-ultraviolet thermoreflectance thermal imaging of GaN high electron mobility transistors," in *2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)* (IEEE, San Diego, CA, 2022), pp. 1–5.
- 14 H. Amano, R. Collazo, C. D. Santi, S. Einfeldt, M. Funato, J. Glaab, S. Hagedorn, A. Hirano, H. Hirayama, R. Ishii, Y. Kashima, Y. Kawakami, R. Kirste, M. Kneissl, R. Martin, F. Mehnke, M. Meneghini, A. Ougazzaden, P. J. Parbrook, S. Rajan, P. Reddy, F. Römer, J. Ruschel, B. Sarkar, F. Scholz, L. J. Schowalter, P. Shields, Z. Sitar, L. Sulmoni, T. Wang, T. Wernicke, M. Weyers, B. Witzigmann, Y.-R. Wu, T. Wunderer, and Y. Zhang, "The 2020 UV emitter roadmap," *J. Phys. D: Appl. Phys.* **53**, 503001 (2020).
- 15 J. S. Raj Kumar, H. Victor Du John, B. K. Jebalin I. V., J. Ajayan, A. Delight A, and D. Nirmal, "A comprehensive review of AlGaN/GaN high electron mobility transistors: Architectures and field plate techniques for high power/high frequency applications," *Microelectron. J.* **140**, 105951 (2023).
- 16 G. Pavlidis, B. Foley, and S. Graham, "Gate resistance thermometry: An electrical thermal characterization technique," in *Thermal Management of Gallium Nitride Electronics* (Elsevier, 2022), pp. 201–221.
- 17 J. S. Lundh, Y. Song, B. Chatterjee, A. G. Baca, R. J. Kaplar, A. M. Armstrong, A. A. Allerman, H. Kim, and S. Choi, "Integrated optical probing of the thermal dynamics of wide bandgap power electronics," in *ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems* (American Society of Mechanical Engineers, Anaheim, California, 2019), p. V001T06A014.
- 18 R. J. T. Simms, J. W. Pomeroy, M. J. Uren, T. Martin, and M. Kuball, "Channel temperature determination in high-power AlGaN/GaN HFETs using electrical methods and Raman spectroscopy," *IEEE Trans. Electron Devices* **55**, 478–482 (2008).

<sup>19</sup>B. Chatterjee, C. Dundar, T. E. Beechem, E. Heller, D. Kendig, H. Kim, N. Donmezer, and S. Choi, "Nanoscale electro-thermal interactions in AlGaN/GaN high electron mobility transistors," *J. Appl. Phys.* **127**, 044502 (2020).

<sup>20</sup>C. Dundar, D. Kara, and N. Donmezer, "The effects of gate-connected field plates on hotspot temperatures of AlGaN/GaN HEMTs," *IEEE Trans. Electron Devices* **67**, 57–62 (2020).

<sup>21</sup>M. Haziq, S. Falina, A. A. Manaf, H. Kawarada, and M. Syamsul, "Challenges and opportunities for high-power and high-frequency AlGaN/GaN high-electron-mobility transistor (HEMT) applications: A review," *Micromachines* **13**, 2133 (2022).

<sup>22</sup>V. V. Painter, R. Sommet, J.-C. Nallatamby, and P. V. Raja, "Influence of field plate, gate width, and voltage dependence of thermal resistance ( $R_{TH}$ ) for AlGaN/GaN HEMT," *IEEE Trans. Electron Devices* **71**, 6552–6559 (2024).

<sup>23</sup>R. A. Matula, "Electrical resistivity of copper, gold, palladium and silver," *J. Phys. Chem. Ref. Data* **8**(4), 1147–1298 (1979), In press.

<sup>24</sup>B. A. Klein, A. A. Allerman, and A. M. Armstrong, "Al-rich AlGaN high electron mobility transistor gate metallization study up to 600 °C in air," *Appl. Phys. Lett.* **124**, 103506 (2024).

<sup>25</sup>B. Klein, A. Allerman, A. Armstrong, M. Rosprim, C. Tynnik, Y. Zhu, C. Joishi, C. Chae, and S. Rajan, "Al-rich AlGaN transistors with regrown p-AlGaN gate layers and ohmic contacts," *Adv. Mater. Interfaces* **12**, 2301080 (2025).

<sup>26</sup>A. Allerman, M. Crawford, A. Armstrong, B. Klein, A. Binder, L. Yates, R. Kaplar, J. Steinfeldt, and M. Smith, "Ultra-wide bandgap AlGaN alloys for power electronics," presented at the 9th IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA 2022), Redondo Beach, CA, 7–9 Nov. 2022 [Online]. Available: <https://doi.org/10.2172/2005973>.

<sup>27</sup>B. M. Paine, T. Rust, and E. A. Moore, "Measurement of temperature in GaN HEMTs by gate end-to-end resistance," *IEEE Trans. Electron Devices* **63**, 590–597 (2016).

<sup>28</sup>G. Pavlidis, D. Kendig, L. Yates, and S. Graham, "Improving the transient thermal characterization of GaN HEMTs," in 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (IEEE, San Diego, CA, 2018), pp. 208–213.

<sup>29</sup>K. R. Bagnall, O. I. Saadat, S. Joglekar, T. Palacios, and E. N. Wang, "Experimental characterization of the thermal time constants of GaN HEMTs via micro-Raman thermometry," *IEEE Trans. Electron Devices* **64**, 2121–2128 (2017).

<sup>30</sup>K. R. Bagnall and E. N. Wang, "Theory of thermal time constants in GaN high-electron-mobility transistors," *IEEE Trans. Compon., Packag. Manuf. Technol.* **8**, 606–620 (2018).

<sup>31</sup>A. Cutivet, G. Pavlidis, B. Hassan, M. Bouchilaoun, C. Rodriguez, A. Soltani, S. Graham, F. Boone, and H. Maher, "Scalable modeling of transient self-heating of GaN high-electron-mobility transistors based on experimental measurements," *IEEE Trans. Electron Devices* **66**, 2139–2145 (2019).

<sup>32</sup>G. Pavlidis, D. Kendig, E. R. Heller, and S. Graham, "Transient thermal characterization of AlGaN/GaN HEMTs under pulsed biasing," *IEEE Trans. Electron Devices* **65**, 1753–1758 (2018).

<sup>33</sup>D. S. Jakob, J. J. Schwartz, G. Pavlidis, K. E. Grutter, and A. Centrone, "Understanding AFM-IR signal dependence on sample thickness and laser excitation: Experimental and theoretical insights," *Anal. Chem.* **96**, 16195–16202 (2024).

<sup>34</sup>G. Pavlidis, S. Som, J. Barrett, W. Struble, and S. Graham, "The impact of temperature on GaN/Si HEMTs under RF operation using gate resistance thermometry," *IEEE Trans. Electron Devices* **66**, 330–336 (2019).