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ABSTRACT
This report documents a two-month deployment of seismoacoustic instrumentation at the Langmuir 
Observatory, located outside Socorro, New Mexico. A total of eleven Fairfield Nodal Seismometers 
and fifteen GEM infrasound loggers were deployed from June 2 to August 5, 2025. The nodal 
seismometers recorded data for an average of 34 days, while the GEMs had variable operational 
durations throughout the deployment period. The primary objective was to capture thunder signals 
using seismoacoustic instrumentation, contributing to a better understanding of the acoustic and 
seismic phenomena associated with thunder.

Coinciding with this deployment, optical and electric field sensors were present, providing 
information regarding the timing and location of lightning strikes in the region. Additionally, 
triggered lightning strikes were conducted, serving as a ground truth for validating the captured 
thunder signals. Preliminary analysis of the data reveals clear thunder signals in both the seismic and 
infrasound recordings, with peak frequencies observed across a range of 4 to 40 Hz, depending on 
the event.
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1. INTRODUCTION
This report describes a deployment of seismic and acoustic sensors near the Langmuir Observatory 
in the Magdalena Mountains southwest of Socorro, New Mexico. The primary focus of the 
deployment is to obtain data that can enhance the characterization of the seismoacoustic properties 
of thunder signals. The study of thunder signals is important for various scientific and practical 
applications, including the discrimination between natural and man-made sources, site 
characterization, and a better understanding of potential noise sources.

Thunder is produced by the rapid expansion of air due to extreme heating from lightning discharges. 
Farges et al. (2021) demonstrated that infrasound measurements from thunderstorms can be 
effectively correlated with lightning activity, highlighting the utility of infrasound in understanding 
atmospheric dynamics and thunderstorm characteristics. Similarly, a large-N deployment was used to 
detect thunderstorms at distances up to 900 km (Scamfer and Anderson, 2023). Recent literature 
highlights a growing interest in the acoustic and seismic phenomena associated with thunder events. 
Studies by Lin and Langston (2007; 2009a, 2009b) utilized an array of infrasound and seismic 
sensors to analyze thunder signals, demonstrating their potential for characterizing shallow velocity 
site responses. Hong et al. (2023) focused on seismic waves induced by thunder in urban 
environments, providing a theoretical framework for inverting thunder source spectra and revealing 
that these seismic signals can mimic ground motions comparable to moderate earthquakes. 

Collectively, these studies underscore the potential of both infrasound and seismic monitoring to 
enhance our understanding of thunder phenomena, offering insights into the acoustic-to-seismic 
coupling mechanisms and their implications for hazard assessments. However, thunder can also be a 
nuisance source, often difficult to distinguish from other natural or man-made sources. Therefore, 
better characterization of thunder sources recorded on multiple arrays is crucial for effective source 
discrimination.

Seismic and infrasound stations were deployed near the Langmuir Observatory, located at an 
elevation of 3,240 meters in the Magdalena Mountains, approximately 27 kilometers southwest of 
Socorro. This deployment coincides with the installation of optical and electric field instruments at 
and around Langmuir, which provide valuable ground truth for the timing, location, and type of 
lightning strikes causing the thunder. While this report focuses solely on the seismoacoustic 
deployment, the concurrent deployment of other instruments presents an opportunity for multi-
phenomenological studies, further enriching our understanding of thunder signals and their 
implications.
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2. DEPLOYMENT
From June 3rd to August 5th, a deployment of GEM infrasound loggers (GEM) and Fairfield 
ZLand nodal seismometers (nodes) was conducted to monitor thunder sources around Langmuir 
Observatory. This deployment involved a total of 15 infrasound GEMs (Anderson et al., 2018) and 
11 Fairfield ZLand nodal seismometers, organized into three small-aperture seismoacoustic arrays 
and one larger-aperture array (Figure 1). The three small-aperture arrays were configured with three 
elements arranged in a triangular formation, with an approximate spacing of 100 meters between 
each element. The intent with this arrangement is to create a flexible deployment where different 
array sizes are sensitive to different frequencies. The central and southern small-aperture arrays were 
equipped with three GEM loggers and a single seismic node. Notably, in the southern small-aperture 
array, only one GEM and seismic node recorded successfully, while the other GEMs failed to 
capture data. In contrast, the northern small-aperture array featured four GEMs, each co-located 
with a seismic node; however, one of the nodes in this array also failed to record. The larger-
aperture array was designed to cover a more extensive area, measuring approximately 1.9 by 3.7 
kilometers. Each element of this array included both a seismic node and an infrasound GEM, 
allowing for comprehensive data collection across a broader spatial range (Figure 1). 

The GEMs recorded at 100 Hz and utilized solar power for operation. This arrangement resulted in 
variable coverage throughout the deployment period. The GEMs instrument response has corner 
frequencies corresponding to 3 dB attenuation at 0.039 and 27.1 Hz. While some sensors recorded 
continuously for the entire duration, others experienced interruptions (Figure 2). Four GEMs, 
SIG31, SIG32, ESLRI, and EOBSI, failed to record data altogether. The loss of these instruments 
impacts the design of the arrays. The southernmost small array is reduced to a single infrasound 
instrument, and the larger-aperture array is reduced in size. However, the remaining instruments can 
be incorporated into the larger-aperture array as needed to minimize the loss. 

The seismometers, which are 5-Hz, three-component sensors, recorded at 1000 Hz for an average of 
33 days, maintaining continuous operation while active. However, one seismometer, SSN11, was 
unable to deploy successfully. All seismometers were buried except for SSN21, which was partially 
buried and covered with rocks. The deployment's operational continuity is illustrated in Figure 2. 
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Figure 1: Map view of ThunderDOEME deployment. Instrument labels in white are those that 
recorded, while those in red failed to record. Green boxes indicate the small arrays, and orange 

boxes indicate elements of the larger array.

Figure 2: Data continuity for seismic (left) and infrasound (right) stations. Vertical redlines 
indicate gaps in the data; blue lines indicate continuous data. Green x’s indicate a new day.
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Table 1: Deployment details for the ThunderDOEME deployment.

Name Instrument Latitude Longitude Serial 
Number

Node 
Line

Start 
Date End Date

ESLRI GEM 33.9880529 -107.18233 156 - - -

SIG31 GEM 33.9758537 -107.18413 208 - - -

SIG32 GEM 33.9752001 -107.18479 209 - - -

EOBSI GEM 33.9754674 -107.18172 210 - - -

SIG22 GEM 33.9824317 -107.18753 297 - 6/3/25 8/5/25

WOBSI GEM 33.9789182 -107.19386 304 - 6/3/25 6/15/25

SIG12 GEM 33.9897199 -107.18788 305 - 6/3/25 7/5/25

SIG14 GEM 33.9891564 -107.18717 307 - 6/3/25 8/5/25

SIG13 GEM 33.9899486 -107.18686 308 - 6/3/25 8/5/25

SIG11 GEM 33.9905401 -107.18758 311 - 6/3/25 8/5/25

SIG21 GEM 33.9816716 -107.18811 317 - 6/3/25 8/5/25

SIG23 GEM 33.9826074 -107.18867 322 - 6/3/25 7/14/25

WSLRI GEM 33.9877823 -107.19205 324 - 6/3/25 7/14/25

SIG33 GEM 33.975016 -107.18376 329 - 6/3/25 8/5/25

SOLRI GEM 33.991555 -107.18831 331 - 6/3/25 8/5/25

SSN11 Node 33.9905272 -107.18759 0 104 - -

SSN12 Node 33.9897127 -107.18789 3445 102 6/3/25 7/9/25

SSN13 Node 33.9899374 -107.18686 5496 103 6/3/25 6/30/25

SSN14 Node 33.9891471 -107.18716 5462 101 6/3/25 7/8/25

SSN21 Node 33.9816443 -107.18808 6490 105 6/3/25 7/3/25

SSN31 Node 33.9758673 -107.18412 5508 106 6/3/25 7/9/25

ESLRS Node 33.9880837 -107.18235 679 107 6/3/25 7/5/25

SOLRS Node 33.9915042 -107.1883 5448 108 6/3/25 7/9/25

WSLRS Node 33.9877654 -107.19204 5493 109 6/3/25 7/9/25

WOBSS Node 33.9789128 -107.19386 3447 110 6/3/25 7/8/25

EOBSS Node 33.9754565 -107.18172 5485 111 6/3/25 7/5/25
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3. DATA
Throughout the duration of the deployment three triggered lightning events were executed. The 
rocket launch method for triggering lightning involved using a rocket equipped with a copper wire. 
The wire acts as a conductive path, allowing the electric field around the wire to ionize the air and 
initiate a lightning strike. As a first pass at this dataset, we use these events, which have a known 
ground-truth time associated with them, to show examples of thunder on the seismic and infrasound 
recordings.

On June 11th, two lightning events were triggered at approximately 21:04 and 21:06 UTC. All the 
deployed instrumentation was operational during this time. Clear thunder arrivals can be seen in the 
waveforms for nearly all stations (Figure 3 & 4). For the infrasound this signal is likely the acoustic 
wave of the thunder, while for the seismic this signal likely represents the infrasound coupling with 
the ground, resulting in a ground-coupled airwave (Lin and Langston, 2007). For the first event, 
peak frequencies of the observed signals ranged from ~4 to 13 Hz for the infrasound signals and 
from 5 to 17 Hz for the seismic signals. The second event has higher peak frequencies across both 
phenomena, with the infrasound signals ranging from ~5 to 18 Hz and the seismic signals ranging 
from 6 to 40 Hz.

Figure 3: Record section showing infrasound and seismic waveforms following the June 10th 
21:04 UTC triggered lightning strike. Blue traces are the vertical component seismogram, and 

green traces are the infrasound trace. Distances are calculated using the surface location of the 
rocket launch as the origin location and the origin time estimate (red line) based on electric field 
instrumentation. Traces are filtered using a 125 Hz bandpass. Distances are sorted sequentially 

by increasing distance, but relative distance is not incorporated to clearly show the individual 
waveforms.
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Figure 4: Record section showing infrasound and seismic waveforms following the June 10th 
21:06 UTC triggered lightning strike. All other parameters are as in Figure 3.

A third triggered lightning strike occurred July 18th at 19:45. At this point only five of the GEMs 
and no seismometers were still recording. The frequencies for this event range from ~6 to 12 Hz. 
Figure 5 shows the data for the available stations. 

Figure 5: Record section showing infrasound waveforms following the July 18th 19:45 UTC 
triggered lightning strike. All other parameters are as in Figure 3.

In addition to the triggered strikes, optical and EM sensors also provided detections of 480 
untriggered lightning strikes, providing an unprecedented opportunity to explore thunder in seismic 
and infrasound data. While we do not explore these detections further here, Figure 6 shows a 
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30-minute period with lightning detections from an optical sensor alongside the seismic and 
infrasound data. Clear thunder signals can be observed following many of the lightning detections. 
In addition, there are signals not following a lightning detection that may represent thunder signals 
not recorded by the electric field instruments. Previous work has suggested the electric field sensors 
can identify signals out to ~24 km, so these may represent thunder signals from greater distances 
(Leal, 2021), suggesting that missed detections indicate further sources. Across this 30-minute 
window there is a strong similarity between the seismic and acoustic traces. Additionally, across all 
three components, amplitudes seem consistent.

Figure 6: Infrasound and seismic waveforms for a 30-minute period during a thunderstorm on 
June 11th. Dashed red lines indicate lightning detections from electric field instrumentation, green 

trace is infrasound station SIG11, and blue is seismic station SSN14. Seismic traces are 
normalized across all components. 
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4. CONCLUSIONS
This report documents the successful deployment of seismic and acoustic instruments at the 
Langmuir Observatory in the Magdalena Mountains, southwest of Socorro, New Mexico, aimed at 
capturing thunder signals. The infrasound sensors recorded data for up to two months, while the 
seismic sensors maintained an average operational duration of approximately 34 days. A first look at 
the data indicates that clear thunder signals are prevalent in both the seismic and infrasound 
datasets, demonstrating the effectiveness of the deployed instrumentation in capturing these 
phenomena. Additionally, the human-triggered lightning strikes conducted throughout the 
deployment have enriched the dataset, allowing a more precise correlation between lightning events 
and the resulting acoustic signals. The dataset, which includes over 400 lightning detections, presents 
an unprecedented opportunity for further exploration of thunder signals and their characteristics. 
Future work could involve a more detailed analysis of the acoustic-to-seismic coupling mechanisms, 
as well as the potential for distinguishing between natural and anthropogenic noise sources.
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