DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof. Reference herein to any social initiative (including but not
limited to Diversity, Equity, and Inclusion (DEI); Community Benefits
Plans (CBP); Justice 40; etc.) is made by the Author independent of
any current requirement by the United States Government and does
not constitute or imply endorsement, recommendation, or support by
the United States Government or any agency thereof.



SAND2025-12493R

Improving Runtime Performance of Tensor Computations
using Rust From Python

Kimmie Harding* Daniel M. Dunlavy'

Abstract

In this work, we investigate improving the runtime performance of key computational kernels in the
Python Tensor Toolbox (pyttb), a package for analyzing tensor data across a wide variety of appli-
cations. Recent runtime performance improvements have been demonstrated using Rust, a compiled
language, from Python via extension modules leveraging the Python C API—e.g., web applications,
data parsing, data validation, etc. Using this same approach, we study the runtime performance of
key tensor kernels of increasing complexity, from simple kernels involving sums of products over data
accessed through single and nested loops to more advanced tensor multiplication kernels that are key
in low-rank tensor decomposition and tensor regression algorithms. In numerical experiments involving
synthetically generated tensor data of various sizes and these tensor kernels, we demonstrate consistent
improvements in runtime performance when using Rust from Python over 1) using Python alone, 2)
using Python and the Numba just-in-time Python compiler (for loop-based kernels), and 3) using the
NumPy Python package for scientific computing (for pyttb kernels).

1 Introduction

Tensors, or multi-dimensional (d-way) arrays [2], can be used to represent complex relationships in a variety
of data analysis applications, such as deep learning [15], quantum computing [12], quantum chemistry [9],
signal processing [24], neuroscience [17], scientific computing [7], and others. Several key tensor algorithms
and operations, such as the sparse tensor times vector (TTV) product and sparse matricized tensor times
Khatri-Rao product (MTTKRP), require computation that scales exponentially with d. Therefore, im-
proving the runtime performance of such computational kernels and other tensor operations is critical for
effective tensor data analysis.

The Python Tensor Toolbox, pyttb [4], is a recently developed software package for tensor operations.
In the work presented here, we explore the possibility of improving runtime performance of pyttb on
CPUs by implementing key tensor kernels in the compiled language Rust [8] that are then called from
Python. Several strategies for improving runtime performance in Python include leveraging compiled-code
extensions through the Python Foreign Function Interface (FFI) [6] and just-in-time (JIT) compilation [10],
and we compare several such approaches in the numerical experiments presented below. We focus on using
Rust from Python via the Python FFI, as this approach has shown improved performance for a variety of

*New Jersey Institute of Technology (kah46@njit.edu); Sandia National Laboratories (kahardi@sandia.gov)
fSandia National Laboratories (dmdunla@sandia.gov)

Sandia National Laboratories is a multimission laboratory managed and

. 7Y
N J I Sandla NA‘S’Q@ operated by National Technology & Engineering Solutions of Sandia,
National RatoraituctoarSseury Samne et LLC, a wholly owned subsidiary of Honeywell International Inc., for the
New Jersey Institute 1 D) o U.S. Department of Energy’s National Nuclear Security Administration
, o Tecnntogy laboratories (%) ENERGY S °% 24 y

under contract DE-NA0003525.



applications—e.g., web applications, databases, file I/O, data parsing/validation, etc. [23]. However, there
is limited research available regarding using Rust from Python for numerical computing in general and
tensor operations specifically. Although there exist many examples of improving runtime performance of
Python software using C from Python, including previous work involving tensor algorithms [18], we focus
primarily on using Rust from Python, as a detailed comparison using Rust from Python and using C from
Python is beyond the scope of this work.

We test the hypothesis that using Rust from Python [20] for tensor operations leads to faster runtime
performance over using Python alone by implementing several tensor kernels of increasing complexity and
comparing average runtimes over multiple trials of each approach. Specifically, our contributions are as
follows:

e Demonstration of runtime performance improvements greater than 2 orders of magnitude using Rust
from Python over Python for two simple tensor kernels: vector dot product and dense matrix-vector
product; and

e Demonstration of runtime performance improvements by approximately 1 order of magnitude using
Rust from Python over Python for a more advanced tensor kernel: sparse tensor times vector product.

The remainder of the paper is structured as follows: Section 2 provides background material on tensor
computations and related work; Section 3 describes the approach for comparing runtime performance of
Python, Rust, and using Rust from Python for several tensor kernels; and Section 4 presents the numerical
experiments. We then present our conclusions and ideas for potential future work in Section 5.

2 Background

In this section, we provide an overview of tensors and the pyttb software package, including the necessary
background for using Rust from Python to achieve runtime performance improvements for tensor kernels.
In addition, we discuss alternative approaches for potential runtime performance improvements of tensor
kernels that could be considered in future research.

2.1 Tensors, Python, and Rust

Tensors refer to general data arrays with d > 0 dimensions. Thus, scalars, vectors, and matrices—as
well as arrays with d > 2—are all examples of tensors, as illustrated in Figure 1. Throughout this paper,
we use standard tensor notation from [2] as follows: scalars (d = 0) are denoted by lowercase letters
(e.g. z), vectors (d = 1) are denoted as bold lowercase letters (e.g., x), matrices (d = 2) are denoted
as bold uppercase letters (e.g., X), and general tensors (d > 3) are denoted as bold Euler script letters
(e.g., X). All tensor elements in our current work are real-valued (i.e., taken from the set of real values, R).
Furthermore, tensor elements are defined by their indices ranging from 1 to the size of their dimensions;

for example, vector elements are denoted as x;; for x € R™ with iy € {1,...,n1}; matrix elements are
denoted as x;, ;, for X € R™*" with 41 € {1,...,n1} and i € {1,...,na}; and general tensor elements
are denoted as x;, j, . ;, for X € R™M>"2XX"d with 4; € {1,...,n1}, 2 € {1,...,n2}, and ig € {1,...,nq}.

The Python Tensor Toolbox (pyttb) [4] is a Python implementation of the highly cited Tensor Toolbox
for MATLAB (TTB) [1]. Previous work indicated that the implementation of several tensor algorithms in
Python can lead to faster runtimes over MATLAB [18], motivating the creation of pyttb to support tensor
research and data analysis consistent with TTB for Python users. Currently, tensor data classes in pyttb
are defined using the ndarray data structure from the NumPy Python package. Instances of ndarrays are
stored in memory as contiguous blocks and most functions involving ndarrays utilize vectorized operations
for improved performance [5]. Dense tensors are defined using an ndarray for the data values, and sparse
tensors are defined using an ndarray for the indices of the nonzero values and an ndarray for the values
corresponding to each of those indices. The shape, or sizes of the dimensions of the tensor, is defined using

a tuple for both dense and sparse tensors. These attributes of the pyttb implementation are important for



Scalar Vector Matrix 3rd-Order Tensor
d=0 d=1 d=2 d=3

Figure 1: Illustration of tensors of various dimensions.

understanding how we are using Rust from Python for the various tensor kernels we investigated in our
work and will be discussed in more detail in Section 3.

The Python language manages memory through reference counting and garbage collection, incurring
overhead costs and potentially impacting runtime performance. Reference counting is maintained through
Python’s Global Interpreter Lock (GIL), which only allows one thread to control the Python interpreter
at a time!. In CPython, which we use exclusively in the research presented here, the Python C API [22]
handles the interaction between C (or C-compatible) code and the Python interpreter by managing data
type conversions and reference counting across the FFI boundary [25]. In Rust, memory is managed
through ownership, a set of rules checked at compile time to ensure memory safety [8]. We use the Py03
Rust crate? to provide interoperability between the different memory managers in Rust and the Python
C API [20]. Python-compatible code is created and packaged from the Py03-enabled Rust code using the
Maturin [19] Python package.

2.2 Related Work

As mentioned above, the NumPy Python package provides vectorized operations of its data structures that
utilize compiled C code, avoiding explicit loops/indexing and resulting in improved performance [5]. As
some of these vectorized functions are already used in pyttb (via methods involving ndarrays), we can
use current implementations of tensor kernels in pyttb as baselines for measuring runtime performance
improvements, thus comparing using Rust from Python to using C from Python. Although, as noted
above, the goal of our work presented here is not a comprehensive comparison of using Rust from Python
and using C from Python, but rather if using Rust from Python is a viable option for improving runtime
performance of tensor kernels originally implemented in Python.

The Numba Python package includes a just-in-time (JIT) compiler that optimizes Python code contain-
ing loops and NumPy data structures [10]. Numba provides function decorators to denote Python functions to
be compiled into machine code during the initial call to each function. This approach can reduce overall de-
velopment cost and complexity but may not actually lead to improved performance if Numba’s JIT compiler
cannot successfully compile a function into machine code as requested. For example, if the intermediate
representation of variables defined in a function cannot be identified at compilation time, the function is
compiled in object mode, which has lower performance than when compiling fully into machine code using
no python mode [10]. A detailed comparison between using Numba and using Rust from Python is beyond
the scope of this work, but we include several examples of comparisons in the numerical experiments in
Section 4 to illustrate some of the performance improvements that can be gained using Numba.

As stated above in Section 1, using Rust from Python for improved runtime performance has been
demonstrated in various applications, including the Polars DataFrame package [16], the TikToken natural

! Although recent versions of Python provide support for an experimental feature of free-threading by releasing the GIL [21],
which can leverage parallelism for runtime performance improvements, the use of this feature is beyond the scope of this work.
2Crates are packages external to the core Rust language that are available via Rust’s Package Registry: https://crates.io


https://crates.io

language processing package [14], and the Pydantic data validation package [3]. However, there is little
published evidence of runtime performance improvement associated with packages focused on numerical
computing (and specifically on tensor operations), thus motivating our work presented here.

3 Methodology

We test our hypothesis that using Rust from Python leads to faster runtime performance of tensor op-
erations in pyttb using computational kernels of increasing complexity run over a range of various data
sizes. The computational kernels are implemented in Python, Rust, and using Rust from Python, and the
average runtimes over multiple trials are measured as a function of the size of the data. Specifically, we
focus here on the following tensor kernels:

e vector dot product (Section 3.1);
e dense matrix-vector product (Section 3.2); and
e sparse tensor times vector product (Section 3.3).

For each tensor kernel, we run an experiment consisting of n.;qs trials for each combination of kernel
implementation and size of data to account for system runtime variability. All data arrays contain ran-
domized 64-bit floating-point values (i.e., numpy.float64 in Python and £64 in Rust) uniformly sampled
from [0, 1] to reflect the standard data types used in numerical computing in general and pyttb specif-
ically. New data arrays are generated for each trial of the loop-based kernels: vector dot product and
dense matrix-vector product. However due to generation costs, one data array is generated for all trials
of the sparse tensor times vector product. All the values are sampled using the uniform function from
the random module in the NumPy Python package and using the Uniform struct from the rand distr Rust
crate. The data sizes chosen in our experiments were determined as those sizes that resulted in runtimes
greater than milliseconds for the Python tensor kernel implementations to reduce the impact of noise in
the timing instrumentation.

We implement all tensor kernels using the NumPy Python package ndarray data structure. However, only
the sparse tensor times vector product kernel in pyttb leverages some of the vectorized functions from the
NumPy Python package. Similarly, the Rust implementations use data structures from the Ndarray Rust
crate [13], and only the sparse tensor times vector product kernel employs various Ndarray Rust crate
methods for comparable functionality to the methods in the NumPy Python package.

The timing instrumentation in Python and Rust both use monotonic clocks that measure the duration
between the two reference points. In Python, we use the perf_counter function from the time module.
In Rust, we use the now and elapsed methods of the Instant struct from the std Rust crate. Thus,
there could be some minor timing discrepancies when comparing runtimes between Rust and Python in
our experiments. However, all timing results within Python (i.e., for the Python loop-based kernels, NumPy,
Numba, and pyttb) are consistent across experiments. When using Rust from Python with the Py03 Rust
crate, overhead costs are included in the runtimes of the initial call per Python script execution. The
specific sources of the overhead cost for the first call are uncertain—possibilities include crossing the FFI
boundary, loading the Python module, data type coversions, etc.—however, future research is required
to determine the contribution of each source. To control for these overhead costs in our experiments, we
compute each kernel once before measuring runtimes. Furthermore, we estimate this overhead when using
Rust from Python for the vector dot product and the dense matrix-vector product at each of the data sizes
by computing the difference in average runtimes of the first call and the average runtimes of the nypqs
calls after the first call for each experiment. Reports of these estimated costs are reported in the numerical
results presented in Section 4.



3.1 Vector Dot Product

The vector dot product computes the scalar product of two vectors (first-order tensors) as the summation
of the products of the elements of each vector at the same indices. The vectors must have the same number
of elements in order to calculate the dot product. The equation for scalar output is as follows:

ni

i1=1

We implement Equation 1 using a single loop over the two vectors in Python, Rust, and using Rust
from Python. We also compare the vector dot product using Numba’s JIT-compiled version of the Python
implementation. When using Rust from Python and Numba, we estimated the costs of the first call of using
Rust from Python and the Numba JIT compiler, respectively, to illustrate the additional overhead in using
these approaches. Note, the overhead of the first call of using the Numba Python package includes both the
JIT compile time in addition to the other overhead costs mentioned above.

3.2 Dense Matrix-Vector Product

The dense matrix-vector product computes an output vector whose elements consist of the vector dot prod-
uct between the rows of a matrix (second-order tensor) and a vector (first-order tensor). Mathematically,
a dense matrix-vector product of A € R™*"2 and x € R™ is defined as follows:

T

no n2 T2
A Xxx= E A1i5Liq, E A5 Lijgy vy E AnqigLisg s (2)

no=1 i9=1 i9=1

where the result is a column vector of length n;. We implement Equation 2 using a nested loop in Python,
Rust, and using Rust from Python. The outer loop computes the elements of the resulting column vector
(first-order tensor)—i.e., the elements of the right hand side of Equation 2 above. The inner loop computes
the sums in each of those elements of the resulting vector.

We define multiple experiments involving the dense matrix-vector product corresponding to matrices
with an 1) increasing number of rows (ng constant), 2) increasing number of columns (n; constant),
and 3) increasing number rows and columns (n; and ng equal). Note that computing with second-order
tensors requires the additional consideration of memory layout, as the elements of matrices can be stored
in memory in row-major or column-major order—defined in the NumPy Python package as “C” and “F”
(denoting Fortran) order, respectively. All data structures in the current implementation of pyttb use
column-major order (for consistency with TTB), whereas the corresponding data structures in the Ndarray
Rust crate use row-major order, and these differences may impact the runtime performance comparisons.
Further research could be conducted to assess whether pyttb could be improved by providing more flexible
memory layout options. Although preliminary studies demonstrated that memory layout can impact
runtime performance, a detailed assessment of the impact of memory layout in tensor operations is beyond
the scope of the current work. As in the vector dot product experiment described above in Section 3.1, we
also compare runtime performance using JIT-compiled versions of the Python implementation via Numba,
and runtime costs associated with the first call of using Rust from Python and the Numba JIT compiler are
estimated in a similar way.

3.3 Sparse Tensor Times Vector Product

The sparse tensor times vector (TTV) product multiples a d-way tensor with n, vectors resulting in a
tensor with d — n, dimensions, where n, € {1,...,d} and the size of each vector must correspond to
the size of one of the dimensions of the d-way tensor [2]. For example, for the TTV product of a sparse
third-order tensor (d = 3) and a single vector (d = 1 and n, = 1), the result is a tensor of dimension



d—n, =3—1=2 (i.e., a matrix). Mathematically, the TTV product of a d-way tensor A € R *72X"X"d
and a vector x € R™ can be defined element-wise as follows:
ng

(‘A‘ Xk x)il,.‘.,ik,hik+1,...,id = Z ai17i27---7idl‘ik ? (3)

ip=1

where X}, denotes mode-k tensor multiplication [2, Sec. 3.3] and k € {1,...,d}.

Sparse tensors contain a large percentage of zero values; therefore, only the nonzero elements are stored
to support efficient use of memory. This can be beneficial for data analysis, as loops over the sparse
tensor instances only iterate over the indices associated with nonzero values. The sparse TTV serves as
the foundation of the sparse matricized tensor times Khatri-Rao product (MTTKRP) kernel, the main
computational kernel used in important tensor algorithms, such as low-rank tensor decompositions [2] and
tensor-on-tensor regression [11]. Therefore, improving the runtime performance of the sparse TTV kernel
in pyttb will also improve the runtime performance of the sparse MTTKRP and these important tensor
algorithms.

For the experiment involving the TTV kernel, we use the sparse tensor function sptensor.ttv from
pyttb (pyttb.sptensor.ttv) as the Python implementation. Although pyttb supports general dimen-
sions for sparse tensors (e.g. d = 1 or d = 2) and the ability to compute against multiple vectors in
one operation, this experiment only focuses on the case of a third-order (d=3) tensor times one vector as
an illustration of typical runtime performance for the sparse TTV kernel. Furthermore, this experiment
isolates the runtime performance of the TTV kernel by removing all error checking from the pyttb code.
Although pyttb converts the output to a dense tensor when the percentage of nonzero elements exceeds
50%, this experiment removes this conversion step as well.

The sparse TTV kernel in pyttb leverages several vectorized functions of the ndarray class in the NumPy
Python package that are not implemented in the Ndarray Rust crate: setdiffld, arrange, unique,
accumarray, flatten, squeeze, nonzero. Therefore, our implementation in Rust does not correspond
exactly line-by-line to the implementation in pyttb. Instead, our implementation provides equivalent
functionality of the TTV kernel using a combination of available functions provided in the Ndarray Rust
crate, Rust iterators, and several new functions created specifically for this experiment. Note that we
made no attempt to improve the current sparse TTV implementation in pyttb, and future work could
attempt to improve the pyttb implementation to provide a more equitable comparison. Furthermore,
as no sparse tensor implementation currently exists in Rust, our implementation of the TTV kernel when
using Rust from Python returns the individual arrays for newsubs, newvals, and newshape, which are used
to instantiate a new instance of pyttb.sptensor after the return to Python (which is equivalent to the
final step of the pyttb.sptensor.ttv implementation). This runtime cost of the sptensor instantiation
in pyttb is included in the average runtimes presented in the numerical results in Section 4.

The sparse TTV kernel is tested using a constant density of nonzero elements across the various data
sizes investigated in the experiment. The data tensors, A, are also instantiated with random values using
the pyttb.sptenrand method, which generates the nonzero elements by sampling uniformly from [0, 1].
For consistency across the experiment, in all trials for all data sizes, the sparse TTV is computed using
third-order tensors with dimensions of equal sizes, n; = ny = ng, multiplied by a single vector (first-order
tensor) of size ng along dimension k = 2.

4 Numerical Experiments

All numerical experiments were performed on a system with an AMD 1.8 GHz EPYC 9345P processor
and 768GB RAM, running Red Hat Enterprise Linux Release (RHEL) 9.5 and the following versions of
Python, Rust, and their respective packages and crates:

e Python 3.12 and the following packages:
pyttb 1.8.2) NumPy 2.2.6, Maturin 1.9.4, Numba 0.61.2; and



e Rust 1.81 and the following crates:
Py03 0.25.0, Ndarray 0.16.1, rust-numpy 0.25.0, Rand 0.9.2, rand_distr 0.5.1.

For each tensor kernel, we computed the average runtimes across ng.;q;s = 30 trials for each size of
data.

4.1 Vector Dot Product

The vector dot product was calculated for vectors of sizes n; € {10%,10%, 10%,10%,107,108}. The average
runtimes versus vector size for Python, Rust, using Rust from Python, and using a Numba-compiled version
of the Python code are shown in Figure 2. The results illustrate a runtime improvement greater than 2
orders of magnitude between using Rust from Python over using Python alone. At larger vector sizes,
the plot illustrates negligible differences between the average runtime performance between using Rust
from Python, Rust, and using Numba. However, at smaller vector sizes, such as n; = 10%, the Rust
implementation is faster than using Rust from Python and using Numba, potentially indicating runtime
variability in these other methods at smaller vector sizes.

Estimated overhead costs for the first call of using Rust from Python and the Numba JIT compiler as a
function of the size of the vector are shown in Table 1. The runtime overhead for the first call of using Rust
from Python is approximately 3 orders of magnitude faster than the first call of using Numba. However,
the estimated overhead for using Rust from Python increases slightly with the size of the vector, while the
estimated overhead using Numba is relatively constant.

Tensor Kernel: Vector Dot Product

-

—e— Python
-#- Rust

10%°4 —— Rust-from-Python
Python Numba

105

10—1_

H
=
N

10—3,

Average Runtime (Seconds)

103 104 105 106 107 108
Size of Vector

Figure 2: Average runtime of the vector dot product as a function of vector size.

Table 1: Estimated overhead costs (in seconds) for using Rust from Python and using the Numba Python
JIT compiler for the vector dot product.

Size of Vector | Rust from Python Numba
103 1.44 x 1074 3.17 x 1071
10% 1.44 x 1074 3.17 x 107!
10° 1.49 x 1074 3.18 x 1071
106 1.58 x 1074 3.16 x 10!
107 2.42 x 1074 3.19 x 107!
108 3.07 x 10~* 3.19 x 107!




4.2 Dense Matrix-Vector Product

The dense matrix-vector product was tested using matrices with an 1) increasing number of rows, 2)
increasing number of columns, and 3) equal, increasing number of rows and columns of the following sizes:

e n € {102,103,10%, 105,10} with constant ny = 10%;
e ny € {102,10%,10%,105, 10} with constant n; = 10%; and
e ny,n9 € {102,103, 10%}.

The average runtimes for Python, Rust, using Rust from Python, and using a Numba-compiled version
of the Python code for the various cases are shown in Figure 3. At the largest matrix size, as demonstrated
in all subplots, using Rust from Python presents a runtime performance improvement greater than 2 orders
of magnitude. Note that the reasons for the increased average runtimes for Rust and Numba over using
Rust from Python for the larger matrix sizes in all three experiments is unclear from our experiments. In
future work, we plan to investigate the differences in more detail.

As in the results for the vector dot product discussed in Section 1, we estimated the overhead as a
function of matrix size for the first call of using Rust through the FFI and JIT compiling with Numba. The
results were calculated for matrices with equal numbers of rows and columns, with the total number of
elements in the square matrices displayed in Table 2. The results illustrate lower overhead from the first
call of using Rust from Python in comparison to the first call when using Numba. However, the estimated
overhead cost when using Rust from Python has greater variability as the size of the matrix increases in
comparison to using Numba.

Table 2: Estimated overhead costs (in seconds) for using Rust from Python and using the Numba Python
JIT compiler for the dense matrix-vector product.

Number of Matrix Elements | Rust from Python Numba
10? 1.50 x 107* 3.58 x 10~ T
106 1.87 x 1074 3.58 x 1071
108 6.41 x 1072 3.06 x 1071

4.3 Sparse Tensor Times Vector (TTV) Product

The sparse tensor times vector product was tested using third-order tensors containing 1% nonzero values
(specified as density=0.01 when calling pyttb.sptenrand) and equal sizes of dimensions, with ny,ng, ng €
{100,200, ...,1200}. In all experiments, the sparse tensors are multiplied along the second-dimension by
a dense vector of random floating point values.

The results shown in Figure 4 demonstrate an improved runtime performance of approximately 1
order of magnitude when using Rust from Python over using the Python implementation in pyttb. The
plot illustrates that the difference between the runtime performance of using Rust from Python to Python
increasing slightly with the size of the tensor. There are potentially many differences in the implementations
leading to these runtime performance differences, such as memory layout, compiler optimizations (e.g.,
Rust iterators versus NumPy vectorized optimizations), and FFI boundary crossing overhead (Rust via
Py03 versus NumPy, which uses C-based extension modules). In future work, we plan to investigate the
specific causes of these runtime improvements across these various factors.

5 Conclusion and Future Work

We demonstrated that using Rust from Python can result in improved runtime performance for several
tensor kernels available in the Python Tensor Toolbox (pyttb). Our results indicate runtime improvements



Tensor Kernel: Dense Matrix-Vector Product

—e— Python
-#- Rust

—¥— Rust-from-Python
Python Numba

101_

100_

._.
Sy
L

Average Runtime (Seconds)
=
|

1073
1074
10-5
102 103 104 105 108
Number of Matrix Rows
(a)
Tensor Kernel: Dense Matrix-Vector Product
Nl Python
1074 _a- Rust
g 100 —— Rust-from-Python
§ Python Numba
S 10-1
g
'g 102
&
o 1073
IS
[¢]
é:; 10—4
z
105
102 103 10% 105 106
Number of Matrix Columns
(b)
Tensor Kernel: Dense Matrix-Vector Product
1011 —e— Python
-#- Rust
é 1000 = Rust-from-Python
g Python Numba
& 10-1
g
2 10724
5
&
o) 10-3
IS
[¢]
53 10—4
z
1075

102 103 10*
Number of Matrix Rows & Columns

()

Figure 3: Average runtimes of dense matrix-vector product for (a) increasing number of columns, (b)
increasing number of columns, and (c) equal, increasing number of rows and columns.



Tensor Kernel: Sparse Tensor Times Vector Product

—e— Python
—— Rust-from-Python

101_

100_

10714

1072_

Average Runtime (Seconds)

1034

102 103
Size of Dimension

Figure 4: Average runtime of sparse tensor times vector product as a function of tensor dimension size.

greater than 2 orders of magnitude for two simple tensor kernels—the vector dot product and the dense
matrix-vector product—and runtime improvements of approximately 1 order of magnitude for a more ad-
vanced tensor kernel, the sparse tensor times vector (T'TV) product. For the two former kernels, we also
compared to versions of the Python implementations that were compiled into machine code using the just-
in-time compiler from the Numba Python package, and results indicate comparable runtime performance
improvements to that of using Rust from Python. Future work could consider experiments leveraging
Numba on more advanced computation, like that of the sparse TTV kernel. There is a trade-off between
lower development complexity versus higher one-time execution overhead cost in using just-in-time com-
pilation in Numba that could also be explored in detail in future work. Other ideas for future work include
investigation into the role of memory layout, compiler optimizations, using iterators over loop-based im-
plementations, and increased computational complexity (e.g., as in the matricized tensor times Khatri-Rao
product [MTTKRP]) when searching for opportunities that could lead to improved runtime performance.
Lastly, although we focused here on runtime improvements on a single CPU core, we could also investi-
gate the use of advanced computing architectures—e.g., GPUs (graphics processing units), TPUs (tensor
processing units), etc.—and the use of on-node concurrency (via Rust or solutions provided in several
Python packages) or distributed-memory computation to take advantage of multiple computing resources
simultaneously.

Acknowledgements

We would like to express our sincere gratitude to Joshua B. Teves, Carolyn Mayer, Carlos Llosa, Rich
Lehoucq, and Jeremy Myers for their invaluable feedback and suggestions during the preparation of this
manuscript. Their insights greatly enhanced the quality of this work.

References

[1] Brett W. Bader and Tamara G. Kolda. Tensor Toolbox for MATLAB (Version 3.6). https://www.
tensortoolbox.org/, 2023.

[2] Grey Ballard and Tamara G. Kolda. Tensor Decompositions for Data Science. Cambridge University
Press, 2025.

10


https://www.tensortoolbox.org/
https://www.tensortoolbox.org/

[3]

[17]

[18]

Samuel Colvin. Pydantic V2 Plan. https://pydantic.dev/articles/pydantic-v2, 2022. Accessed:
2025-07-02.

Daniel M. Dunlavy, Nicholas T. Johnson, et al. pyttb: Python Tensor Toolbox (Version 1.8.2).
https://github.com/sandialabs/pyttb, January 2025.

Charles R. Harris, K. Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Ferndndez del
Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with
NumPy. Nature, 585:357-362, 2020.

Price D. Johnson and Douglas D. Hodson. PyO3: Building Python extension modules in native Rust
with performance and safety in mind. In Douglas D. Hodson, Michael R. Grimaila, Hamid R. Arabnia,
Leonidas Deligiannidis, and Torrey J. Wagner, editors, Scientific Computing and Bioinformatics and
Computational Biology, pages 23-30, Cham, 2025. Springer Nature Switzerland.

Boris N. Khoromskij. Tensor Numerical Methods in Scientific Computing. De Gruyter, Berlin, Boston,
2018.

Steve Klabnik, Carol Nichols, et al. The Rust Programming Language, 2nd Edition. No Starch Press,
2022.

Taichi Kosugi, Xinchi Huang, Hirofumi Nishi, and Yu-ichiro Matsushita. Tensor-decomposition tech-
nique for qubit encoding of maximal-fidelity lorentzian orbitals in real-space quantum chemistry. Phys.
Rev. A, 111:052615, May 2025.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: a LLVM-based Python JIT compiler.
In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15,
New York, NY, USA, 2015. Association for Computing Machinery.

Eric F Lock. Tensor-on-tensor regression. Technometrics, 60(4):480-492, 2018.

Linjian Ma and Chao Yang. Low rank approximation in simulations of quantum algorithms. Journal
of Computational Science, 59:101561, 2022.

Ndarray Developers. Ndarray: an N-dimensional array for general elements and numerics (version
0.16.1). https://github.com/rust-ndarray/ndarray, 2025.

OpenAl. tiktoken. https://github.com/openai/tiktoken, 2023.

Yannis Panagakis, Jean Kossaifi, Grigorios G Chrysos, James Oldfield, Taylor Patti, Mihalis A Nico-
laou, Anima Anandkumar, and Stefanos Zafeiriou. Tensor methods in deep learning. In Signal
Processing and Machine Learning Theory, pages 1009-1048. Academic Press, 2024.

Ulrik Thyge Pederson. Better together four examples of how Rust makes Python better. https:
//towardsai.net/p/l/better-together-four-examples-of-how-rust-makes-python-better,
2023. Accessed: 2025-07-02.

A. Pellegrino, H. Stein, and N.A. Cayco-Gajic. Dimensionality reduction beyond neural subspaces
with slice tensor component analysis. Nature Neuroscience, 27:1199-1210, 2024.

Matthew G. Peterson and Daniel M. Dunlavy. Tensor Toolbox: Wrapping to Python using SWIG,
December 2014. Technical Report Number SAND2015-38290.

11


https://pydantic.dev/articles/pydantic-v2
https://github.com/sandialabs/pyttb
https://github.com/rust-ndarray/ndarray
https://github.com/openai/tiktoken
https://towardsai.net/p/l/better-together-four-examples-of-how-rust-makes-python-better
https://towardsai.net/p/l/better-together-four-examples-of-how-rust-makes-python-better

[19]
[20]
[21]

PyO3 Project and Contributors. Maturin. https://github.com/Py03/maturin, 2025.
PyO3 Project and Contributors. PyO3 (Version 0.25.0). https://github.com/Py03/pyo3, 2025.

Python Software Foundation. Python experimental support for free threading. https://docs.
python.org/3/howto/free-threading-python.html. Accessed: 2025-07-02.

Python Software Foundation. Python C API Reference Manual. https://docs.python.org/3/
c-api/index.html, 2025. Version 3.x (refer to specific version if applicable).

Prashanth Rao. How Rust is supercharging Python from the ground up. https://thedataquarry.
com/blog/rust-is-supercharging-python, 2023. Accessed: 2025-07-02.

Neriman Tokcan, Shakir Showkat Sofi, Van Tien Pham, Clémence Prévost, Sofiane Kharbech, Baptiste
Magnier, Thanh Phuong Nguyen, Yassine Zniyed, and Lieven De Lathauwer. Tensor decompositions
for signal processing: Theory, advances, and applications. Signal Processing, 238:110191, 2026.

Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor Wiskunde en
Informatica Amsterdam, 1995.

12


https://github.com/PyO3/maturin
https://github.com/PyO3/pyo3
https://docs.python.org/3/howto/free-threading-python.html
https://docs.python.org/3/howto/free-threading-python.html
https://docs.python.org/3/c-api/index.html
https://docs.python.org/3/c-api/index.html
https://thedataquarry.com/blog/rust-is-supercharging-python
https://thedataquarry.com/blog/rust-is-supercharging-python

	Introduction
	Background
	Tensors, Python, and Rust
	Related Work

	Methodology
	Vector Dot Product
	Dense Matrix-Vector Product
	Sparse Tensor Times Vector Product

	Numerical Experiments
	Vector Dot Product
	Dense Matrix-Vector Product
	Sparse Tensor Times Vector (TTV) Product

	Conclusion and Future Work

