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Abstract. To achieve better computational efficiency and exploit a wider range of com-
puting resources, the CMS software framework (CMSSW) has been extended to offload
part of the physics reconstruction to NVIDIA GPUs. To support additional back-ends, as
well to avoid the need to write, validate and maintain a separate implementation of the
reconstruction algorithms for each back-end, CMS has adopted the alpaka performance
portability library.

Alpaka (Abstraction Library for Parallel Kernel Acceleration) is a header-only C++ li-
brary that provides performance portability across different back-ends, abstracting the
underlying levels of parallelism. It supports serial and parallel execution on CPUs, and
extremely parallel execution on NVIDIA, AMD and Intel GPUs.

This contribution will show how alpaka is used in the CMS software to develop and main-
tain a single code base; to use different toolchains to build the code for each supported
back-end, and link them into a single application; to seamlessly select the best back-
end at runtime, and implement portable reconstruction algorithms that run efficiently on
CPUs and GPUs from different vendors. It will describe the validation and deployment
of the alpaka-based implementation in the CMS High Level Trigger, and highlight how it
achieves near-native performance.
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1 Introduction

Since the beginning of the LHC Run 3 data taking period (2022-2026), the Compact Muon
Solenoid (CMS) experiment at CERN has deployed a heterogeneous computing farm for the
High Level Trigger (HLT) online physics reconstruction and event filter[ 1]. Before the start of
the 2022 data taking, the HLT farm from Run 2 was replaced with 200 nodes, each equipped
with two AMD EPYC “Milan” 7763 CPUs and two NVIDIA T4 GPUs. Before the start of
the 2024 data taking, the processing power of the HLT farm was increased by about 20%,
with the addition of 18 nodes, each equipped with two AMD EPYC “Bergamo” 9754 CPUs
and three NVIDIA L4 GPUs - bringing the total to over 30’000 CPU cores and 450 GPUs.

This choice was initially motivated by the expectation that building a CPU-only filter farm
for the High Luminosity LHC (HL-LHC) would not be feasible[2], and the Trigger Studies
Group (TSG) and Data Acquisition (DAQ) groups deemed wise to start getting experience
with the use of GPUs in a real time environment during Run 3, when their use would be
beneficial but not critical to guarantee the successful operation of the experiment.

The CMS simulation, reconstruction and online selection software (CMSSW) consists of
a modular framework and thousands of algorithms, written in C++ and implemented as ob-
jects (so-called “modules”) that can be configured and loaded at run-time via a plug-in mech-
anism. The framework then schedules these algorithms based on their dependencies, and
executes them on multiple CPU threads, processing one or more events concurrently. During
the preparation for Run 3 the CMSSW framework was extended to support the asynchronous
execution of algorithms on NVIDIA GPUs. Various algorithms were rewritten using the
CUDA toolkit - the pixel local reconstruction, the pixel-only track and vertex reconstruction,
and the electromagnetic and hadronic calorimeters local reconstruction - achieving an offload
of about 40%, significantly better that the threshold of 25% that was required to break even
between the cost of a CPU-only farm and a GPU-equipped one.

The deployment of the CUDA-based GPU accelerated software and its validation, while
successful, introduced additional complexities in the development and maintenance of the
CMSSW code base and of the HLT configuration: most of the algorithms used two different
data structures and had two separate, independent implementations - a legacy one running
only on CPU and a novel one running only on NVIDIA GPUs; in some cases the two imple-
mentations also had different interfaces, with the overall reconstruction split across modules
in different ways. In order to support running with or without GPUs, the HLT configuration
had to include both set of modules, along with “switch” points to direct the execution to the
legacy CPU or GPU version of the modules|[2, 3].

In order to address these issues, in parallel to the deployment of the CUDA-based soft-
ware, the TSG and Offline and Computing (O&C) groups decided to evaluate different options
for performance portability, with the goal of having a single code base that could be com-
piled and executed on different back-ends: CPUs, GPUs from different vendors (NVIDIA,
AMD, eventually Intel), and possibly other kind of accelerators. After a thorough evalua-
tion of OpenMP, alpaka[4—6], Kokkos[7], SYCL, and solutions based on standard C++, the
alpaka library appeared as the more mature and better performing solution[8—10].

To simplify the development of efficient data structures for code running on GPUs, the
DAQ and TSG groups developed a generic Structure of Array (SoA) approach, optimised to
minimise data transfers and take advantage of coalesced access to GPU memory[11]. At the
same time, the O&C Core Software group developed a more efficient approach to execute
asynchronous operations on a GPU[12].

With the goals to reduce code complexity, avoid multiple implementation of the same
algorithms, ease the execution and validation of the algorithms on different back-ends, and
simplify the configuration of the HLT application, from 2022 to 2024 the work shifted to the
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Figure 1. Directory and file structure of an alpaka-based data structures library (left) and a plug-in
package (right). Files under the new alpaka/ subdirectories are compiled multiple times, once for
each back-end. .cc files are compiled by the host compiler, while .dev.cc files are compiled by the
back-end’s device compiler.

“alpaka migration”: rewriting CUDA code to take advantage of the central SoA approach,
the new asynchronous execution framework, and the alpaka performance portability library.

2 Integration of alpaka in the CMS software

Alpaka has been integrated in the CMS software stack in three main areas: the build system,
data structures, and the plug-in system.

The build system has been extended to support multiple alpaka back-ends: serial execu-
tion on the host CPUs, offloading to NVIDIA GPUs, and AMD GPUs. Support for parallel
execution on the CPUs and for additional back-ends, like Intel GPUs, is under development.
A dedicated directory structure and a new file type were introduced to separate traditional
code running on the CPU from alpaka-based code, as shown in figure 1: files under the new
alpaka/ subdirectories are compiled multiple times, once for each back-end. The resulting
binaries are linked together into a back-end specific shared library or plug-in. C++ files with
the regular . cc extension are compiled multiple times by the host compiler, while C++ files
with the newly introduced .dev.cc extension are compiled each time by the back-end spe-
cific compiler: gcc, nvcc or hipcc. To prevent naming conflicts, this code is either templated
on back-end specific types or defined in a back-end specific namespace.

The generic SoA data structures used in CMSSW are agnostic of the memory space where
they reside: pageable or pinned host memory, GPU global or shared memory, efc. They have
been coupled with alpaka memory buffers and memory operations, resulting in “portable
collections” with a uniform interface, that can be trivially copied between the host memory
and a GPU memory, used by code runing on the CPUs or GPUs, and written to and read back
from ROOT files.

Integration within the CMSSW framework has taken place in multiple places: the asyn-
chronous execution support has been rewritten using alpaka calls and polling for alpaka-based
events; the plug-in mechanism has been extended so that a module declared in the con-
figuration as module@alpaka automatically uses the best back-end available for module;
asynchronous copies of the alpaka-based data structures to and from GPU memory can au-
tomatically be scheduled by the framework. Together these features noticebly simplify the
configuration of a heterogeneous application: the user can request a mix of CPU-only and
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Figure 2. Event processing throughput measured on a 2022 HLT node as described in section 3. The
values that are actually used are marked by coloured dots. The left plot (a) shows the throughput of the
HLT application running only on CPUs. The right plot (b) shows the throughput of the HLT application
offloading part of the reconstruction to GPUs.

alpaka-based modules, and the framework will automatically schedule the alpaka-based ones
on a GPU when one is available, and take care of copying the data between the host and the
GPU as needed.

The adoption of alpaka in CMS has been beneficial also for the alpaka library itself: many
of the features for simplifying writing heterogeneous kernels in CMSSW have later been con-
tributed to alpaka itself, and work is in progress to further contribute various optimisations,
like memory and event caching.

3 Performance of the High Level Trigger

The performance of the HLT was measured running on a 2022 HLT node equipped with
two AMD EPIC “Milan” 7763 CPUs and two NVIDIA T4 GPUs, running the 2024 HLT
configuration over 13.6 TeV proton-proton collisions data with an average pileup of 60. Each
measurement consists of 8 jobs running in parallel, each with 32 threads, in order to saturate
all CPU cores on the machine. Each job runs over 120 000 events; the first 20 000 events
are not included in the measurement, to let the system reach stable thermal and running
conditions. Each measurement is repeated five times, ignoring the first one to ensure the data
and application are cached. The event processing time and throughput are then averaged over
the remaining four measurements.

Figure 2 shows the event processing throughput for the HLT application running only on
CPU (a), 400 +4 ev/s, and offloading part of the reconstruction to GPUs (b), 603 + 6 ev/s,
with an increase of 50.9% +0.7%. Figure 3 shows the distribution of the event processing
time grouped by the main detector or reconstruction algorithm when running only on CPU
(a), while (b) highlights the part of the reconstruction written using the alpaka library, that
can be offloaded to GPUs: the pixel local reconstruction, the pixel-only track and vertex
reconstruction, the electromagnetic and hadronic calorimeters local reconstruction, and part
of the particle flow reconstruction, spanning about one third of the HLT processing time.
Figure 3 (c) shows the timing distribution when running also on GPUs, and (d) summarises
the gains in event processing time: from 638 ms per event running only on CPUs to 421 ms
per event running also on GPUs, a reduction of about 34%.

4 Power efficiency

The reduction in event processing time and the corresponding increase in throughput, how-
ever, is only part of the improvement achieved by a heterogeneous computing farm equipped
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Figure 3. Distribution of the event processing time for the 2024 HLT menu running on a 2022 HLT
node as described in section 3. The innermost ring indicates the detector or high-level object being
processed, optionally accompanied by an extra ring that indicates GPU processing or the conversion of
data structures to legacy format; the next ring indicates the C++ module; the outermost ring indicates
the instance of the module, that is the concrete algorithms being run. The top left plot (a) shows the
timing of the HLT application running only on CPUs. The top right plot (b) highlights the part of
the HLT application that can be offloaded to GPUs. The bottom left plot (c) shows the timing of the
HLT application offloading part of the reconstruction to GPUs. The bottom right plot (d) shows the
comparison between the timing of the CPU-only and GPU-enabled HLT applications.

with GPUs. The other improvement is the reduction in power consumption for a given pro-
cessing throughput, i.e. the energy cost of the processing a fixed amount of data, measured in
Joules per event.

To assess the impact of the use of GPUs on the overall power consumption the measure-
ments described in the previous section were instrumented to measure the power drawn by
the CPUs, by the GPUs, and by the whole system: the CPU power usage is measured via the
/sys/class/powercap/intel-rapl interface of the Linux kernel, the GPU power usage
is measured via the nvidia-smi command, and the total system power usage is measured
directly by a smart power distribution unit. In addition, when measuring the performance
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Figure 4. Power consumption measured on a 2022 HLT node as described in sections 3 and 4. The
values that are actually used are marked by a green rectangle. The left plot (a) shows the power con-
sumption measured on a CPU-only machine, where the full HLT application ran only on CPU. The
left plot (b) shows the power consumption on a GPU-equipped machine, where about 34% of the HLT
application was offloaded to GPUs.

Table 1. Power consumption and event processing throughput measured on a 2022 HLT node
equipped with two AMD EPYC “Milan” 7763 CPUs and zero or two NVIDIA T4 GPUs as described
in section 3.

GPUs Power consumption  Event throughput
0 879.8+ 14 W 339.8+£3.5¢ev/s
2 11355+1.9W 603.3+6.4 ev/s

and power consumption of the CPU-only configurations, the GPUs were physically removed
from the server.

The measurements from figures 2 and 4 are summarised in table 1: the use of GPUs
raises the power consumption from 880+ 1 W to 1136 +2 W, but increases the throughput
from 340 + 4 ev/s to 603 + 6 ev/s, improving the energy efficiency from 2.59 +0.03 J/ev to
1.88 +0.11 J/ev, a 37% improvement.

To study the possible gains from a heavier use of GPUs, the HLT application can be cus-
tomised to run only the alpaka-based part and used as a benchmark to compare the energy
efficiency of GPUs and CPUs for a realistic workflow: this approach runs the same recon-
struction algorithms either entirely on CPUs, or almost entirely on GPUs. The small amount
of CPU processing power used by the GPU-based application can be taken into account run-
ning the GPU-based application in parallel to the CPU-only one, and measuring the increase
in the total power consumption and event processing throughput. This measurement was per-
formed on one of the 2024 HLT nodes, equipped with two AMD EPYC “Bergamo” 9754
CPUs and up to four NVIDIA L4 GPUs.

The CPU-only baseline performance was measured as described in the previous section,
running enough copies of the modified HLT application in parallel to fully saturate the CPUs.
The measurement is then repeated after adding one GPU to the system, running in parallel
to the CPU-only applications enough GPU-based applications to saturate the GPU, and mea-
suring the increase in power consumption and total event processing throughput. Then, the
measurements are repeated adding a second, third and fourth GPU, until the machine is fully
populated.

The results are summarised in table 2 and shown in figure 5: saturating the two AMD
EPYC “Bergamo” 9754 CPUs achieves a throughput of 599.1 + 1.9 ev/s with a power con-
sumption of 525.0 £ 0.2 W, resulting in a processing cost of 0.876 + 0.003 J/ev; on average



Table 2. Power consumption and event processing throughput for a 2024 HLT node equipped with two
AMD EPYC “Bergamo” 9754 CPUs and up to four NVIDIA L4 GPUs, running enough modified
alpaka-only HLT benchmark applications to saturate the CPUs and GPUs.

GPUs Power consumption  Event throughput

0 1050.0+0.5 W 1198.2 +3.8 ev/s
1 1133.7+0.6 W 1690.5 + 8.4 ev/s
2 1257.5+£29 W 2229.5+6.1 ev/s
3 13427+29 W 2764.7+2.7 ev/s
4 1456.1+5.0 W 322277+ 8.4 ev/s
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Figure 5. Event processing throughput as a function of the power consumption for a 2024 HLT node
equipped with two AMD EPYC “Bergamo” 9754 CPUs and up to four NVIDIA L4 GPUs, running
enough modified alpaka-only HLT benchmark applications to saturate the CPUs and GPUs. For refer-
ence, the red dashed line shows the event processing throughput of the CPU-only configuration scaled
linearly with the power consumption.

each NVIDIA L4 GPU adds a throughput of 512.3 + 8.0 ev/s with a power consumption of
102.1 + 3.4 W, resulting in a processing cost of 0.199 + 0.007 J/ev - a factor four better than
the CPU-only case.

These results validate the assumption made in [2] that offloading a large part of the HLT
processing to GPUs can substantially reduce the power and cooling requirements of the online
filter farm.

5 Conclusions

The deployment of a heterogeneous HLT farm in Run 3 has allowed CMS to increase the
online data processing rate by 50%, while improving its energy efficiency by 37%.

The adoption of the alpaka performance portability library and its integration in the CMS
build system and software framework has contributed the simplification of the development,
validation and maintenance of the algorithms running on CPUs and GPUs, the configuration
of the HLT application, and the overall adoption of GPUs in CMS.

This work is still ongoing: rewriting more of the online and offline reconstruction to
run on GPUs, targeting both the closing years of Run 3 and the future HL-LHC data taking



periods; validating the support for AMD GPUs, in order to reduce the vendor lock-in and
leverage resources like the LUMI HPC; and adding support for more alpaka back-ends to
CMSSW, like SYCL for CPUs and Intel GPUs, and possibly Altera FPGAs.

Additional measurements and results based on newer HLT nodes can be found in [13].
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