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1. Introduction 

There has been considerable recent progress in the matrix model approach to two 

dimensional quantum gravity[l]. The new work yields a complete perturbative 

(and possibly non-perturbative) description of pure gravity and gravity coupled 

to minimal matter[2], to all orders in the genus expansion of surfaces. Physical 

states of pure gravity are interpreted in the continuum scaling limit as finite loops 

(finite boundaries of the surface) or as infinitesimal loops (punctures of the surface). 

Correlation functions of these physical operators are exactly computable[3][4]. 

Continuum field theory descriptions of these systems have not to date been 

able to successfully reproduce all of the matrix model results. Quantization of 

gravity coupled to matter systems is based on the Polyakov model[5], which stresses 

the need to use a general coordinate invariant measure for the path integration 

over gravitational metrics. The critical exponents for minimal matter ( c < 1) were 

first obtained by a clever choice of gauge[6], and later were derived in the more 

conventional conformal gauge[7]. In the conformal gauge, the description of pure 

gravity (the c-+ 0 limit of gravity coupled to matter with central charge c), is given 

by the Liouville action which describes the conformal anomaly, and by the ghost 

action corresponding to the Fadeev-Popov determinant arising from the gauge fixing 

of diffeomorphisms. 

In this paper, we will argue that the Liouville theory does not describe pure 

gravity, due to an additional local symmetry which is built into the pure gravity 

theory. The gauge fixed theory of pure gravity which takes this additional symmetry 

into account is essentially a gauge fixed version of \Vitten's topological gravity[8]19]. 

Witten has shown, by reproducing correlators at genus zero and one, that the 

matrix model results for pure gravity are described by the continuum theory of topo­

logical gravity, which is invariant with respect to arbitrary infinitesimal variations 

of the metric1
. The field theoretic description of topological gravity is developed 

further in references [11][12][13][14]. In particular, references [8][14] construct field 

theories such that the observables correspond to the stable cohomology classes on 

the moduli space of Riemann surfaces. 

In section 2 we consider the symmetries of pure 2-D gravity, and show that the 

Polyakov measure respects a subset of the additional symmetries found in the clas-

1 In [10] it is also shown that topological matter systems coupled to topological 
gravity can reproduce then-matrix model (gravity+minimal matter) correlators on 
the sphere. 
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sical action. The additional symmetry is seemingly lost when one transforms to the 

basis of metric fluctuations spanned by conformal, diffeomorphism, and Teichmiiler 

variations in the standard way as first discussed by Polyakov. The non-trivial part 

of the Jacobian for this change of variables is the Liouville action of the Wey! mode 

given in the conformal gauge. In general covariant form it is the non-local con­

formal anomaly, and it is not invariant with respect to any symmetries other than 

diffeomorphisms. However, the quantum measure for the integration over the dif­

feomorphism fluctuations, which is usually divided out of the path integral to gauge 

fix, is also not invariant under the additional symmetry. The explicit gauge fixing 

described in section 3 will in fact show that the breaking of the additional symmetry 

by the Liouville action and by the measure over diffeomorphisms cancel each other. 

This implies that pure 2-D quantum gravity has no conformal anomaly. 

We also discuss the number of representatives of the orbits of gauge transfor­

mations required to describe the 2-D gravity. All points in string moduli space are 

gauge equivalent. However, if we allow in the path integral surfaces on the boundary 

of the compactification of string moduli space, then additional gauge representatives 

are required. 

In section 3 we quantize using the BRST formalism developed by Batalin and 

Vilkovisky[l5], which can properly account for redundancies in gauge symmetries. 

The gauge fixed action for ghosts is a conformaly invariant model virtually equiva­

lent to that previously discussed in the context of topological gravity in references 

[12][14J. However, the cosmological constant term in the action is a relevant pertur­

bation to this model; this term differentiates 2-D gravity from topological gravity. 

Physical states are found in the BRST cohomology of the gauge fixed quantum 

theory, so in section 4 we construct states which lie in the cohomology. The highest 

weight of the conformal field theory, has the natural interpretation as a puncture 

operator. As suggested by the matrix model approach, this is the basic primary state 

of the cohomology. A relatively complete search for possible physical states in the 

space of Virasoro highest weights is given. \Ve find the states which were previously 

considered in the context of topological gravity models[l3] [14], and additional states 

which have not been previously considered. 

Each state can be assigned an arbitrary amount of local "delta function" cur­

vature. Curvature of this type must be inserted into the path integral to describe 

the contribution from surfaces at the boundary of the compactification of ordinary 

string moduli space. 

Some implications of these results are given in section 5. 
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2. Is Pure Gravity the Liouville Model or "Topological Gravity"? 

In this section we argue that pure gravity in two dimensions is essentially the 

topological gravity proposed by Witten. As shown by Witten, this is consistent with 

the matrix model results. A detailed description of the Liouville theory approach 

to pure gravity is given in reference [16]. 

Classical Symmetries 

The continuum theory of gravity is governed by the action 

(2.1) 

In two dimensions, the dynamics of the action simplifies because the Einstein-Hilbert 

term is a topological index - f ,lgR = 4rrx, where the Euler number x = 2 - 2g and 

g is the number of handles (genus) of the closed surface. In addition to the local 

diffeomorphism invariance, under which the metric and coordinates transform as 

(2.2) 

the action is also invariant with respect to any local variation of the metric which 

preserves the area. It will be convenient to parametrize these variations as 

6,gµv =gµ>,L~ + gv>,L~ , L{ = 0 , 

Dwgµv =a.' gµv , J ./go/= 0 . 
(2.3) 

The variation 6, of the metric is an infinitesimal SL(2, R) transformation. To 

see this, consider the zwei-bein parametrization of gravitational degrees of freedom, 

g µv = Dabe~ et, where bab is the flat Euclidean tangent space metric. 

of the zwei-bein is given by 

A 6, variation 

(2.4) 

where we have defined the matrix A):= e;(e-')tL~. In the A): basis of the trans­

formation, it is clear that Ii, is an infinitesimal left SL(2, R) transformation on the 

zwei-bein, where the U(l) subgroup is the local 2-D Euclidean Lorentz group. The 

metric is unchanged by local Lorentz transformations, and therefore the action of 

ii, on the metric is the coset SL(2, R)/U(l) of the gauge symmetry. 

The variation bw of the metric is an area preserving conformal transformation. 

Any diffeomorphism acting on the metric can be expressed as a combination of these 

conformal and the SL(2, R)/U(l) transformations. 
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Quantum Symmetries 

The quantum path integral description of 2-D gravity requires a definition of 

the measure for the gravitational degrees of freedom. A multitude of results on this 

topic applied to string theory are found in [17] and citations therein. 

The Polyakov measure [5] for integration over the metric is determined by the 

norm of infinitesimal fluctuations in the field space of metrics, 

where C is a relative normalization constant. This is the unique norm which is 

quadratic in the fluctuations of the metric and invariant with respect to background 

diffeomorphisms. iVith respect to background diffeomorphisms, the metric transfor­

mation is given by (2.2) and the fluctuations transform as components of a second 

rank tensor, 

(2.6) 

The norm is not invariant with respect to background conformal transformations of 

the metric. It is however invariant with respect to the background SL(2, R)/U(l) 

transformations, whose action on the metric is given by (2.3) and on the metric 

fluctuations by, 

(2.7) 

An arbitrary infinitesimal variation of the metric can be decomposed as a com­

bination of conformal, diffeomorphism, and Teichmiiller variations, 

(2.8) 

where the operator A is given by 

(2.9) 

and the real parameters litu) and Beltrami differentials µ~)>. correspond to infinites­

imal Teichmiiller deformations of the metric. This decomposition can be used to 

rewrite the path integral measure over the metric 9µ.v = e<Pg,,_., where ,.jg= 1: 

[dM] = [d<f,]g[dV]g[Teich]det(e"')det'(P/P1 )½ e-oµ.f fl, 
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and where 

1184>1 I; = j 8,t,otf> , 

118V,,II~ = j yggl'"8V,,8Vv. 
(2.11) 

The cosmological constant term 8µ is the ultralocal dependence on the Wey! mode 

4> that has been extracted from the measure [dV]. The Jacobian factors of the 

measure can be evaluated via the heat kernel regularization scheme[l8]; in the 

conformal gauge, this procedure results in a Liouville action for the Wey! mode and 

the usual first order action for the diffeomorphism ghosts. The Liouville action is 

an expression of the conformal anomaly, which is non-local in covariant form. The 

volume of the diffeomorphism group connected to the identity is f[dV], and this 

term is divided out of the path integral to gauge fix the quantum diffeomorphism 

symmetry 8d VI' = tµ. 

There does not appear to be any residual local symmetry after the gauge fix­

ing of diffeomorphisms which would correspond to the background SL(2, R)/U(l) 

symmetry. One can verify that the Polyakov action (Liouville action in the con­

formal gauge) is not invariant with respect to the SL(2, R)/U(l) transformations 

of the metric. This is actually not inconsistent with the claim that there is such 

additional symmetry in the full path integral however, because the measure [dV] is 

also not invariant with respect to the background SL(2, R)/U(l) transformations. 

By inspection of the diffeomorphism norm, this measure would be invariant only if 

8,8Vµ = L:8Vv were satisfied for arbitrary L:. The explicit variation of the mea­

sure with respect to the SL(2, R)/U(l) transformations can be calculated using 

equations (2.7) and (2.8), 

v' µ(8,8Vv - L~8Vi.) + (µ <-+ 11) = (v' vL; - v'>. L,,v )8V.;. + L;v' .;.8Vv + (µ,.... 11) • 
(2.12) 

The right hand side of this equation vanishes only if L; corresponds to a trans­

verse diffeomorphism. These are the diffeomorphisms that are redundant with 

SL(2, R)/U(l) when acting on the metric. The norm for the measure [dV] is 

therefore not invariant with respect to an arbitrary SL(2, R)/U(l) variation. In 

fact, the SL(2, R)/U(l) dependence of the diffeomorphism measure and the Li­

ouville action should cancel one another. Although this analysis does not prove 

that there is explicit cancellation for the regularized theory, the BRST quantization 

in section 3 will indicate that this is indeed the case. Since conformal transfor­

mations of the metric can be expressed as a combination of diffeomorphism and 
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SL(2, R)/U(l) transformations, it is possible to properly gauge fix both diffeo­

morphisms and SL(2, R)/U(l) symmetries only if the pure gravity theory has no 

conformal anomaly. 

To divide the path integral out by the volume of connected diffeomorphisms 

f[dV] breaks both the diffeomorphism and SL(2, R)/U(l) symmetries. No account­

ing has been made however, for the redundancies between the two symmetries. 

Representatives of Gauge Orbits 

For a genus g surface, what are the representatives of the gauge orbits? Assume 

that the conformal anomaly of the gauge fixed theory vanishes without the addition 

of matter. Then all area-preserving variations of the metric are gauge variations 

of the quantum theory. In particular, if we take L~ = M(;)µ~i))., we see that only 

one point in string moduli space is required to specify the orbits of the pure gravity 

theory for each genus. In addition. we must integrate over the area (i.e. the zero 

mode ¢0 of the Wey! mode). Since the decomposition given by equation (2.8) is 

complete, the moduli space of the pure gravity theory is one dimensional for each 

genus. 

Any compactification of the moduli space generated by the infinitesimal Te­

ichmiiller deformations will include limit points of a certain codimension; the mod­

uli space of stable curves corresponds to the compactification with a boundary of 

codimension one. One cannot perform a series of infinitesimal Teichmiiller deforma­

tions on the boundary points to return to a generic representative in moduli space. 

This means that the boundary of moduli space requires separate representatives in 

the gauge fixing procedure of pure gravity. 

For example, consider the genus one case. The conformal classes of tori are 

represented by the doubly periodic parallelogram with sides (1, r) in the complex 

plane. The modulus is the complex parameter r = r1 + ir2, where -½ '.'o r1 '.'o ½ , 
r2 > 0, and lrl > 1. The limit point is r 2 -, oo, for which the torus degenerates into 

an infinite cylinder. (This point is infinitely far from any generic point in moduli 

space, with respect to the Weil-Petersson metric d2 s = 2\c5r\ 2 /r:f.) The cylinder can 

be conformally mapped to the Riemann sphere, with z = 0 and z = oo "connected" 

by a tube of infinitely thin width. A combination of conformal transformations and 

diffeomorphisms can then map this to a finite sphere with two punctures. The two 

punctures carry curvature since the total integrated curvature of the sphere with 

punctures is zero for the "torus". There are no infinitesimal Teichmiiller defor­

mations (gauge transformations) that can deform this representation of the limit 
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point back to a generic point in the moduli space of the torus. Therefore, there 

are two representatives of the gauge symmetry of pure gravity for genus one, if we 

consider the compactification of moduli space to be the relevant space of metric 

configurations. 

Next, consider the higher genus cases. The boundary of moduli space, in the 

Fenchel-Nielson coordinates of Teichmiiller space [19], are the surfaces obtained by 

pinching any combination of the 3g - 3 non-intersecting loops for genus g. Consider 

for instance the pinching of a homology cycle, wruch reduces the genus of the surface 

by one. The moduli of the genus g - 1 pinched surface are the positions of the 

two points on the surface with the required curvature insertions, and the ordinary 

moduli of a generic genus g - 1 surface. There are no moduli to unpinch the surface. 

The moduli space of pure 2-D gravity for the compactified string moduli space is 

therefore finite dimensional for each genus; it contains one unpinched surface, and 

pinched surfaces at the boundary of Teichmiiller space which are inequivalent under 

global diffeomorphisms. 

3. BRST Quantization and Conformal Field Theory 

In trus section the conformal, diffeomorphism, and SL(2, R)/U(l) symmetries 

of the pure gravity model will be gauge fixed, leading to a conformal field theory 

description of the gauge fixed path integral. The gauge fixed quantum theory will 

have crural BRST charges which square to zero, indicating that it is indeed consis­

tent to assume the absence of the conformal anomaly. The analysis of trus section 

overlaps substantially with [11][12], and the notation we use conforms to [14]. 

The initial expectation for the pure gravity theory is that surface area is the 

only observable for each topological class of metrics, so that gauge fixing is hence­

forth trivial. However, this expectation is modified by the matrix model analysis 

of the random lattice formulation of 2-D gravity. In this analysis, local physical 

degrees of freedom are associated with finite or infinitesimal punctures of the sur­

face[4]. In the continuum field theory description of gravity, infinitesimal punctures 

are marked points which diffeomorphisms are required to leave fixed. Therefore to 

obtain a puncture operator in the continuum th;ory, one can gauge fix to an unpunc­

tured surface and subsequently require the ghosts associated with diffeomorphism 

gauge fixing to vanish at certain marked points. It is not completely trivial to 

obtain diffeomorphism ghosts from the pure gravity theory we have described in 
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the previous section because diffeomorphisms are completely redundant with the 

conformal and SL(2, R)/U(l) symmetries when acting on the metric. One must 

use the BRST formalism of Batalin and Vilkovisky[l5] (BV) to treat the redundant 

symmetries. In their language, 2-D gravity is a first-stage gauge theory. 

We will choose a gauge which preserves background general coordinate invari­

ance, and which leads to a gauge fixed action that is essentially an exactly soluble 

conformal field theory. We begin by fixing to a generic point in moduli space for a 

given genus. Generalizations of the procedure which gauge fixes to representatives 

on the boundary of moduli space will be discussed briefly at the end of the section. 

Gauge Fermions 

A gauge fermion W with ghost number -1 contains information of the gauge 

constraints in the EV gauge fixing formalism. The ERST variation DbW is the gauge 

fixing contribution which is to be added to the action, and it includes the Fadeev­

Popov ghost terms automatically. \Ve decompose the metric 9µ.v as 9µ.v = eef>§µv, 

and denote the background representative as §µv• Consider the gauge fermion 

W = W1 + W2, where 
w1 = j x(ytgR-/iR), 

(3.1) 

The gauge fermion w I will fix the trace of the metric, up to the zero mode ,Po 
which corresponds to the physically observable area. Note that the gauge constraint 

JgR = a,/gR with a f- 1 violates Euler number conservation; we will apply such 

a choice to gauge fix to configurations on the boundary of the compactification of 

moduli space. The second gauge fermion will fix the traceless ( with respect to ii µv ) 

components of the metric to be those of a fixed background representative metric 

§µv• The zero mode of the antighosts x and bµv should be excluded from Wo. All 

of the zero modes which arise from the gauge fixing will be treated when the path 

integral over the gauge fixed action is obtained below. 

The ERST variations of the fields are 

DbX =,r + cµOµX 

c b 1 , -µv O 
Vb µ11 =iT µ1n 1T' µll9 = , 
Db9µv =2,Pµv + 'v µ.Cv + 'v vCµ , 

Db,Pµv = - ('v µ.'(v + 'v v"fv) , 

DbCµ. =('v vCµ.)cv + ('v µCv )cl'-+"(µ , 
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and the ghost numbers of x,bµv,1r,1r~v,'Pµv,Cµ,"/µ are -1,-1,0,0, 1, 1,2 respec­

tively. The BRST transformation laws for the fields ( 7r, 1r~, 1 µ) are determined by 

nilpotency of the BRST charge (8l=O on all fields). The BRST transformation 

law for X has been unconventionally defined by adding the cµOµX term to make X 

transform as a scalar with respect to background coordinate transformations; this 

does not introduce extra degeneracies in the constraints imposed by ( 1r, 1r~)- The 

advantage of this redefinition is that it decouples the (x, 1r) ghost system from the 

(b, c) system. Physically, it means that the gauge fermion 'll1 is defined so as not 

to break general coordinate invariance. The fields cµ, ,Pµv are diffeomorphism and 

topological ghosts respectively, and the field 1 µ expresses the redundancy between 

the two symmetries. This type of BRST transformation law for topological gravity 

was first given in reference [ll]. 
To fix the redundant symmetry, consider the gauge fermion 

(3.3) 

The BRST variations of the antighost multiplet 13µv, 1r 11 µ• with ghost numbers 

-2, -1 are 
(3.4) 

The full gauge fixing term will be S9.f. = 8b(w 1 + 'll2 + '1' 3). There is no need to 

add the "extraghost" associated with the first-stage gauge fixing procedure of BV, 

since the constraints obtained by integrating over the Lagrange multipliers 1r and 

1r~" are non-degenerate. 

Gauge Fixed Action 

Integrating out the Lagrange multipliers 1r~", 1r 11 µ• imposes the constraints 

4>- ,/, 1 .1. 
9µv = e 9µ.11 , 'Pµv = 2,lf"9µv • 

The additional contribution to the action (2.1) from gauge fixing is then 

Sg.f. = J v'9[1rt:.,t, - xt:.( ,f; + -v, ,\c,\) 

+bµv('v'µcv + 'v'" Cµ) + /3µ" ('v' µ1v + 'v' v1µ)] , 

(3.5) 

(3.6) 

where t:. = -'v' µ 'v' v?V". To simplify the second term of (3.6), we redefine the field 

,/; by making the linear shift 
(3.7) 
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Note that the redefinition will effect the BRST transformation law of ¢ m the 

quantized theory. 

The be ghost system exponentiates the standard Fadeev-Popov determinant 

of the diffeomorphisms (see equation (2.10)), and the /3"! system exponentiates the 

inverse determinant. This occurs because gauge fixing the SL(2, R)/U(l) symmetry 

requires no determinant factor; there are no derivatives in the metric variation given 

by equation (2.3). For an unpunctured surface, the two ghost systems are expected 

to cancel. One can in principle integrate out the 71', ¢, X, ,p fields, which we denote as 

the Weyl uctor of the theory, to impose the constraint </> = </>o, where </>o is the zero 

mode of the field ¢. However, it will be useful to have the Wey! sector in the path 

integral when we attempt to construct physical states using standard conformal 

field theory ( CFT) technology. 

The remaining action describes CFT of free fields with central charges, 

-26, +26, -2 and +2 from the be, /3"!, X'P and ,rq, systems respectively, and there­

fore one expects that the heat kernel regularized partition function has no conformal 

anomaly. This is indeed the case, although the Wey! mode contribution requires 

special attention. A careful evaluation of the Jacobian det( e<P) which arises from 

the measure[l8], is required. In the calculation, the ,rq, and X'P systems are properly 

regarded as a representation of the covariant delta function 8( ¢'). 

From the action (3.6), one can read off the ghost zero modes, which require 

special treatment in the definition of the path integral. First, recall that the surface 

area is a physical observable, and the zero mode ¢,0 was not gauge fixed. Conse­

quently, the zero modes of 71',X and ,j, are not in the irreducible space of states; we 

must insert delta functions in the covariant path integral to soak up these modes. 

Secondly, the modes of bµv in J{ er Pi are also not in the irreducible space of states. 

This is because the constraints on the topological ghost 'Pµv obtained by the BRST 

variation of W 3 do not fix the modes of ,p µv in Ker P/. The path integral over these 

modes eliminates the modes of bµv in Ker P/. We also need to fix the modes of /3µv 

in KerP{ because the Teichmiiller variations of the SL(2,R)/U(l) symmetry are 

not redundant with diffeomorphisms. And, as is standard in string theory, the re­

maining conformal Killing symmetries of the sphere and torus are fixed by inserting 

modes of cµ in I{ er Pi into the path integral. 

Conformal Field Theory of 2-D Gravity 

For each topology of surfaces we can use standard CFT techniques to obtain 

a current algebra solution for the gauge fixed theory ( see ref. [20] and citations 
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therein). In each patch of the surface, a complex coordinate system (z, z) can be 

defined. The dynamics of each conformal field W(z, z) in the gauge fixed path 

integral are governed by its holomorphic and antiholomorphic components w(z) 

and w( z), and the current algebra of the theory is locally reducible into two chiral 

algebras. The local operator algebra for the holomorphic sector is described in this 

section; completely analogous results are obtained for the antiholomorphic sector. 

The local operator product expansions of the free field theories described by 

the action ( 3.6) are given by 

1 
b(z)c(w) ~ p(z),(w) ~ 8,¢,(z),r(w) ~ 8,x(z),P(w) ~ -- , (3.8) 

z-w 

and the holomorphic component of the traceless stress tensor is 

(3.9) 

The cosmological constant termµ f .jge4' of the action is treated in this approach as 

a relevant perturbation. \Vith respect to the conformal stress tensor, the dimensions 

of the primary fields are 

t. [c, 1 , ,r, ¢,, X, ,P, b, t,] = [-1, -1, 0, 0, 0, 0, 2, 2] (3.10) 

The chiral splitting of the current algebra implies that there are BRST charges Q 

and Q for the holomorphic and antiholomorphic sectors. BRST transformations for 

the holomorphic fields are 

and the nilpotent 

by(14], 

8bb =T, 

8n =c81 - 18c , 

8bp =b + 8x8¢, + c8t, + 28ct, , 

8b¢, =c8¢, + ,P , 

8b,P =c8,P - 18¢, , 

8bX =11" + c8x , 

8b,r =c8,r - 18X , 

(3.11) 

BRST charge which generates these transformations 1s given 

(3.12) 
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We have taken into account the redefinition (3.7) of the ,jJ field in the BRST trans­

formation laws for </) and ,jJ. 

Physical states are those annihilated by Q and Q, but not proportional to 

either, i.e. in the cohomology. The BRST charge enforces the constraints of the 

gauge theory. In dimension d ::=: 3, the gravitational constraints are known as the 

lapse and shift constraints, which require that the theory be invariant with respect 

to reparametrizations of time and the patching together from one time to the next of 

spatial coordinate systems. For 2-D gravity with matter, these constraints extend to 

the invariance with respect to arbitrary conformal transformations of coordinates. 

For the pure gravity case, the constraints are even stronger, as can be seen by the 

inspection of the BRST charge. The theory has a global supersymmetry[14]. The 

supercharge operator is given by 

(3.13) 

and the generator of local superconformal transformations is 

G = oxorf, + cof3 + 2ocf3 . (3.14) 

It is also useful to define the supercharge 

{J. = Q. + f ;axa<t, , (3.15) 

which when acting on the fields squares to zero, up to a diffeomorphism. By inspec­

tion of the BRST charge (3.12), we see that conformally invariant physical states 

must also be annihilated by the supercharge Q •· 

Gauge fixing on the Boundary of Moduli Space 

Recall from section 2 that a genus one surface at the boundary of moduli space 

could be represented as the doubly punctured sphere with curvature insertions. To 

gauge fix to this surface, we must modify the gauge fixing constraints. Consider the 

gauge fermion 

(3.16) 

Since we want to fix to the sphere and still satisfy the Euler number theorem for 

the torus, we need to use w\1
> as the gauge fermion which fixes the Wey! mode. 

This modifies the gauge fixed Lagrangian by adding a background charge term for 

12 



the 1r field; subsequently the holomorphic stress tensor is modified by the addition 

of 
(3.17) 

Non-vanishing correlation functions on the "torus" require the addition of BRST 

invariant operators Vqq proportional to eq"+ii" since the U(l) currents of the 1rq, sys­

tem enforce charge neutrality of the path integral. These operators create curvature 

at their insertions. To see this, recall that the total curvature is 

,jgR = y'g( t.q,( z, z) + R) . (3.18) 

Talcing the operator product of ./gt.q, with eq,rq;- in local conformal coordinates 

shows that the operator inserts curvature 21r(q + q).52(Y - X) at the point X. The 

total integrated curvature sphere with two punctures must vanish, since it repre­

sents a torus with zero Euler number. As is appropriate for a torus, the two operator 

insertions break the SL(2, C) invariance of the sphere down to the translation sub­

group. 

4. States in the BRST Cohomology 

The goal of this section is to make a relatively complete list of states in the 

cohomology of the BRST operators Q and Q. \Ve will find the states discussed 

previously in references [131[14], which correspond to the stable cohomology classes 

on the moduli space of Riemann surfaces found by Mumford[21]. \Ve at present have 

no similar interpretation for the additional states that exist in the cohomology; a 

careful study of their correlators may lead to insight on this question. 

States are local operators of the form 

( 4.1) 

where the fields On and O,, are primary conformal fields of dimension (1, 0) and 

(0, 1) respectively. Note that the unfilled vacuum state 1 is not a highest weight 

with respect to the be ghost system because c has negative conformal dimension. 

The c contribution to ( 4.1) fills the mode of the negative dimension fermionic ghost 

raising operator. The bosonic ghost I is another negative conformal dimension 

primary field in the theory. The states ( 4.1) must also be highest weights with 

respect to this field, 

lim 1 (z)On(0)=0. ,-o 
(4.2) 
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The simplest solution to these constraints is the puncture operator, 

p(o) = .5(1)8(,y)cc(X), ( 4.3) 

where 
(4.4) 

The BRST transformation property of .5(1) is fixed by (4.4) to be 

(4.5) 

The puncture operator is BRST invariant and not exact ( more precisely, it will 

be shown below that it is the BRST variation of an unphysical state), and hence it 

is in the BRST cohomology of physical states. It is the simplest possible Virasoro 

highest weight state of the theory, and it has a simple physical interpretation. An 

infinitesimal boundary, or puncture at a point X of the surface constrains diffeomor­

phisms bdx" = t" to satisfy tµ(X) = 0. This means that there is less symmetry to 

gauge fix, and the field configurations of ghosts c, 'l' which do not vanish at X must 

be eliminated from the path integral. These configurations clearly are projected out 

by inserting the puncture operator ( 4.3). 

The basic building blocks of the physical states are the holomorphic !-forms 

Ondz. From these, the 2-form representation of a state can also be constructed, 

( 4.6) 

There will be cases where there exist 2-form operators in the BRST cohomology 

which do not correspond to a 0-form physical state. These type of operators will 

be denoted as Jcreening operatorJ. 

"Bosonization" of the /3] system 

It will be useful to represent the /3')' Virasoro highest weights in terms of bosonic 

vertex operators in order to easily evaluate operator products. Following reference 

[13], we define new fields via the relations 

The new fields have stress tensors given by 

T'f' = - ½ ( 8ip8ip + 38\,) , 
T~e = - ry8(, 
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and the conformal dimensions of 17, ( and 'P primary fields are 

( 4.9) 

All states in the 17, (, 'P systems can be re-expressed in terms of the original /31 

system by use of the identities 

e-"'='5(1 ), 17=0H(·r), 

e"' = '5(/3) , ( = H(/3) , 
(4.10) 

where H(1) is the unit stepfunction. The 'P system is a Gaussian model coupled 

to background charge 3(1 - g), and the simplest non-vanishing correlator on the 

sphere is the three-puncture configuration 

( 4.11) 

where (( w) soaks up the zero mode fo, which is not part of the irreducible space of 

states. It will also be useful to have a bosonic representation of the 17( system via 

the relations T/ = e;e and ( = e-•0 . The 0 system stress tensor is 

( 4.12) 

and primary fields erne have conformal dimension ½n(n + 1 ). Although the 0 system 

has background charge (1 - g ), it is not correct to to use this charge cancellation 

as a selection rule for higher genus correlators in this case. The bosonization of the 

/31 system of the superstring ( with different conformal dimensions) in reference [22] 

shows that the correct prescription is given by writing 17 = oa- and considering the 

anomaly of the ( a- scalar ghost system. 

Puncture Operators 

We can obtain an infinite number of representations of the puncture operator, 

each with different ghost number, by picture changing[20] the basic puncture oper­

ator P. Recall that the zero mode of X is not in the irreducible space of states, so 

the picture changed state [ Q, X P] = 1r P is not BRST exact in the irreducible space 

of states. By taking infinite linear combinations of the puncture operator in the 

different pictures, one obtains the coherent states specified by the 1-forms 

(4.13) 



As discussed in the previous section, these operators correspond to insertions of 

finite curvature at a point. 

We can picture change these operators with respect to the zero mode of 1/,, 

[Q, 1/Jw(Pqc)w] = }~(c81/,- ,8¢),(eq"S(1 )c)w, 

= - lim q: (e,i,ry),(eq"e-<l>c)w:, 
z-w 

= - q( ryeq" C )w . 

( 4.14) 

Repeating this process for both Q and Q yields the generally left-right asymmetric 

picture-changed puncture operators P~~~q,ii = PiPJcc, where 

( 4.15) 

and the zero curvature I-forms Pn, with ghost charge (2n, OJ, are given by 

Pn =(8,fS(,), 

1 O 0n-1 (n-l)cp 
=r(n)!) !)""" 17e • 

(4.16) 

The 1-forms with no curvature ( q = 0) are not related to the basic puncture operator 

via picture changing. The Symmetric ( n = n) zero curvature operators are in fact 

the physical states of Distler[l3] and of Verlinde and Verlinde[l4] in the -1 picture. 

Selection rules for correlators of these operators reduce all correlation functions of 

Pi:~ for genus g = 0 to specification of the the simplest non-vanishing correlator 

given by equation (4.11); in this sense, the Pn are redundant operators [23][24]. 

Physical States of the /31 Sector 

We now make a more general search for physical states constructed from 1-

forms in the (31 system. Consider the Virasoro highest weights 

6.[Va,b] = ½(a(a + 1) - b(b + 1)) + 1. 
( 4.17) 

These are probably the most general forms of Virasoro Highest weights in the /31 

system, up to the application of screening operators. Although we have no com­

pleteness proof, this type of ansatz has proved successful in describing the Virasoro 

highest weight spectrum in many CFT problems. To use these as building blocks 

for the physical states IVa.bcj 2 , the vertex operators must be dimension one, and 

they must be highest weights with respect to 1 . The second constraint assures that 
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the state is annihilated by the Q • part of the BRST operator. These constraints in 

terms of a and b are that a = b or b = -( a + 1 ), and for both cases a - b 2'. 0. The 

solutions are Vn,n for n E Z and Vm,-(m+2) form= 0, 1, • • •. The vertex operators 

Vn,n for n negative are actually not quite physical states, because they explicitly 

depend upon the zero mode (o, which is not part of the irreducible space of states. 

This problem is overcome by multiplying these states by the operator f TJ, which 

commutes with /3, 1 , and the stress tensor. The vertex operators Pn = Vn,n for 

n = 0, l, · · · were already discussed, and are given by equation ( 4.16) in the TJ, (, <p 

basis. The new operators obtained are denoted as 

Rn=[/. ry]P-(n+l)(z) = 8l · · · 8"le-(n+2
)'1', 

Sn+! = Vn+l,-(n+2) = T} • • • 8nrye-(n+3
)'1' , 

(4.18) 

for n = 0, l, · · ·. These operators are various Feigen-Fuchs conjugates of the Pn 

operators[25]. Note that although the 1-forms Sn are not /3 highest weights, they 

are acceptable building blocks for physical states. We can multiply the 1-forms of 

( 4.18) by eq" to generate the 1-forms with curvature Ri and sa, which are also 

suitable for creating physical states. 

Are these new states independent, or are they picture changed versions of one 

another? First consider the Ri states; the picture changing generated by the zero 

mode ,j,0 relates Ri to R'[,_ 1 , 

(4.19) 

so that the basic physical state with curvature q # 0 is RZ = e-2
'1'eP and the other 

Ri are picture changed versions. Note that the state IRocl 2 can be interpreted as 

a double puncture operator in the sense that it forces the field I and its derivative 

81 to vanish at a point. 

The picture changing procedure generated by the ,j,0 mode can in fact be de­

scribed in the /31 system without reference to ,j, by using an inverse picture changing 

operator f X = f e-'1'(. In particular, f XPn = Pn-1, and f XRn = Rn+I• 

The basic puncture operator P is the picture changed version of an unphysical 

operator, 
( 4.20) 

where (P0c)2 = e-2"'c8c. In this sense, the puncture operator is locally exact but 

globally non-trivial. This relation is actually the first of a hierarchy of picture 
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changing relations using the mode (o, 

( 4.21) 

This has an interesting physical interpretation. The operator j(Poc)"j2 forces c, "/, 

and their first n - 1 derivatives to vanish at a point. The relation ( 4.21) tells us 

that the order of vanishing for c and "I is redundant information as long as the order 

of vanishing is the same for both fields. 

Another very interesting set of relations for the PJ and R~ that can be easily 

derived are 
( 4.22) 

for n = l, 2 · • •. These relations imply that states based on these 1-forms are BRST 

exact and hence decouple from the physical spectrum. However, this is not quite 

correct, because of the existence of contact terms in the operator algebra of these 

states[14]. The contact terms are due to an incompatibility of world sheet supersym­

metry with a global holomorphic decomposition of the operator algebra[26]. The 

unusual dependence on the c ghost field of the 2-forms J jPJ&cj2 may be related to 

this; because of the &c dependence, these 2-forms are technically not part of the 

irreducible space of states for the sphere and the torus . Turning the argument 

around, equations ( 4.22) show that the only contribution to correlators of the Pn 

and Rn will be from the contact term algebra. 

No such relations seem to exist between the Sn, although we have no proof 

that such a relation cannot exist. Rather, the Sn states obey another interesting 

recursion relation, 

Sn= [f. Yi]Sn+1c&c(z), 

Y1 =(&x&</>+b)e"'&(. 
( 4.23) 

The operator Y1 can be interpreted as a screening operator; although there is no 

highest weight state that can be constructed from it, the 2-form J Yi Yi is in the 

BRST cohomology of the irreducible space of states. To see this, we first picture 
• change the identity operator 1 ( which is not a highest weight) with respect to the 

zero mode (o, 

[Q, (] = cD(- e"(&x&</> + b) = 5(,B)[cD,B - (&x&</> + b)]. ( 4.24) 

The 1-form version Y0 = D( of this state is trivially obtained [8] by considering the 

action of a diffeomorphism, D[Q, (] = [Q, D~]- Then the 1-form Yi is obtained by 
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subsequently picture changing Yo, 

[Q, (all= -2Yi +a(•••) . 

The operator f [Yo 12 plays the role of screening operator in reference [13}. 

Phvsical States of the /3, and Wey! Sectors 

( 4.25) 

Consider the construction of possible physical states which include dependence 

on the fields ¢, ,r, x, ,p, i.e. the Wey! sector of the theory. Recall that the Wey! 

sector is generated by constraining the curvature R in order to fix </,. This is the 

simplest gauge constraint which respects background general covariance and leaves 

the zero mode ¢0 unfixed. Since some information about the Wey! mode remains 

even after integration over the Lagrange multiplier field ir, there is hope that new 

non-trivial states can be constructed by using the fields in this sector. 

A similar set of fields and BRST symmetries arises if one introduces a Lorentz 

mode tr, into the pure gravity theory by using zwei-beins as the basic gravitational 

degrees of freedom, and uses the spin connection as the gauge fixing constraint. In 

this case however, it seems that one can also gauge fix the Lorentz mode to tr,= 0 

directly and obtain a Lorentz sector with no propagating fields. Therefore, any 

non-trivial dynamics which arises from the Wey! sector will have to be intimately 

related to the existance of a non-vanishing cosmological constant, which prevents 

us from eliminating the zero mode </,o. 

The field </, is almost completely redundant, and its BRST transformation prop­

erty Db<P = ,p + · · · makes it unlikely that a BRST invariant state independent of 

,j;0 can be constructed. (One exception of course, is the area operator e"'•.) vVe 

will therefore focus on using the other three fields x, ,r and ,j, of the Wey! sector to 

construct BRST covariant holomorphic 1-forms. 

With the X, ,r system, we can construct screening operators with non-vanishing 

curvature. Consider the holomorphic 1-form 

( 4.26) 

Under BRST variations it transforms as a total derivative, and we can use it to 

construct a 2-form physical state u<2 )qq = f UqtJq. For q and ij non-vanishing, this 

is a well defined on-shell operator . BRST invariance of these operators relies on 

the supersymmetry variation of [Q., x] = ir. It does not seem possible to construct 

new BRST invariant 1-forms by multiplying the Uq by dimension zero primaries of 
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other fields in the theory. Nor does it seem that these operators correspond to a 

BRST invariant physical state, since the 0-form version of these fields is not a c and 

'Y highest weight. Nevertheless, they may serve a useful role in the calculation of 

correlation functions by cancelling fermion charge. 

We are left to discuss the field ,j,, which transforms under BRST as a dimension 

0 primary field plus additional terms proportional to 'Y or O"f. Define the operator 

(4.27) 

It is a primary field with conformal dimension ½n(n + 1) and is independent of 

the zero mode 'PO• Now define the field W(n, a, b) = oiva,b, where v.,b is given 

by equation ( 4.17). To be the 1-form component of a physical state, it must be 

conformal dimension one, and have a non-singular operator product with the "fOXO<P 

term in the supersymmetry charge Q., 

n(n+l)+a(a+l)=b(b+l), 

a - b :C::n + 1. 
( 4.28) 

To satisfy the second constraint, introduce an integer p = 1, 2, • • • such that a = 

b + n + p. The conformal dimension constraint can be solved in terms of p, 

b = -(n + 1) - p(p - l) . 
2(n + p) 

( 4.29) 

If b is non-integral, then it is not clear how to impose the independence of the zero 

mode ( 0 in the path integral. So define the positive integer m. 

p(p - 1) 
m-

- 2(n + p) ' 
( 4.30) 

so that b = -(n + 1) - m and a= p - m - l. For a given m, there are an infinite 

number of solutions to the constraints ( 4.28). Define Hr m,p to be the holomorphic 

1-form component of the resulting physical states. The simplest cases are m = 1, 

for which n = ½P(P - 3) with p = 4, 5, • • ·, 

l ( 3) I 'V _ 0 2P p- i(p-2)x -(,p(p-3l+J)cp 
v 1,p - ,;, e e ( 4.31) 

Them= 2, 3, 4 series start at (n,p) = (6, 8), (3, 9), (14, 16) respectively. Each holo­

morphic 1-form W m,p can be multiplied by eq" to create 1-forms Wh,P which carry 

non-vanishing curvature. 
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States constructed out of these 1-forrns are BRST invariant, but are they 

BRST exact (and therefore spurious)? \Ve now consider whether the Virasoro 

highest weight field W( n, a, b )eq" is the supersymrnetry variation of another Vi­

rasoro highest weight field. Examination of terms in Q • and charge conservation 

of the bosonic vertex operators implies that the field can be the variation of either 

W(n+l,a-1,b-l)eP, or W(n,a-1,b-l)Bcfor q=O. In the first case, the 

OPE of-y8x8,f, with W(n + 1, a -1, b-1) is non-singular, for p 2 3. In the second 

case, the relavant OPEs are also non-singular. The conclusion is that the states 

constructed from the 1-forrns W~,P may be in the cohomology; they are not BRST 

exact in an obvious fashion. 

5. Discussion 

The pure 2-D gravity theory has an additional symmetry which alters the 

quantization procedure relative to the system of gravity plus matter. The impact 

of this additional symmetry in the quantization procedure is quite significant, since 

it seems to imply that the gauge fixed path integral has no conformal anomaly. 

The resulting conformal field theory for pure gravity has essentially the same field 

content as 2-D gravity coupled to a c = -2 matter system[13]. However, there are a 

number of important differences between the two models. The pure gravity theory 

has a different (larger) BRST symmetry ( due to a larger set of constraints), which 

has a smaller cohomology of physical states than the gravity plus c = -2 system. 

Also, the \Vey! sector of the theory, which leads to states in the cohomology, is not 

part of the gravity plus c = -2 system. Recall that we were led to this system in 

the gauge fixing procedure by fixing the curvature R. This constraint leaves the 

zero mode ,f,0 of the \Vey! mode unfixed, as required. 

The moduli space of the pure gravity theory is much smaller than ordinary 

string theory moduli space. Only one point in string moduli space is required to 

represent the gauge orbit of the pure gravity theory, although one still has to inte­

grate over the area of each surface. It is not clear whether it is necessary to include 

the compactification boundary points in the formal definition of moduli space. If 

we choose to do so, then each topology of boundary requires a representative in 

the gauge fixed path integral. At the very least, including the compactification 

boundary will change the relative weights that each genus contributes to the path 

integral. 
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We have not attempted to calculate correlation functions of the states in the 

BRST cohomology that have been found. The correlation functions of some of 

the states represented by PJ in this paper were calculated in references [13][14] in 

different ways. As discussed in section 4, contact terms can be the only contribu­

tion to correlators of the operators. The P~ states for q f 0 are picture changed 

versions of the simplest primary puncture operator P, and do not describe addi­

tional information about the system. Note that the q = -1 cases correspond to the 

curvature insertions required to describe the path integral on the boundary of the 

compactification of moduli space. 

The P~ states are the most likely candidates for the 4> 2
n type operators in the 

matrix model approach[l3](14]. With this identification, the states generated by 

Rn and Sn should have a similar type of interpretation. There is no ghost num­

ber cancellation argument which prevents these states from contributing to non­

vanishing correlation functions. A precise determination of these correlation func­

tions is clearly required for a better understanding of their role in the theory. Note 

that it is possible that the extra states could represent a redundant parametrization 

of the Pn physical states. Another central issue to resolve is whether the !-forms 

Wm.p generate new primaries, or states redundant with the Pn. 

There is in principle no reason not to use left-right asymmetric combinations 

of holomorphic and antiholomorphic operators as physical states. Each sector could 

then satisfy a different set of selection rules for non-vanishing correlators, because of 

differing cancellation of bosonic charges. Correlators in the matrix model approach 

are derived by varying couplings in the partition function which correspond to dif­

ferent potentials. The specific heat of the partition function satisfies a differential 

equation (the string equation) for each critical potential. The asymmetric matrix 

models[27] are specified by two independent string equations. The left-right asym­

metric vertex operators might therefore generate deformations of the pure gravity 

theory that correspond to the asymmetric models. 
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