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1. Introduction

There has been considerable recent progress in the matrix model approach to two
dimensional quantum gravity[l]. The new work yields a complete perturbative
(and possibly non-perturbative) description of pure gravity and gravity coupled
to minimal matter{2], to all orders in the genus expansion of surfaces. Physical
states of pure gravity are interpreted in the continuum scaling limit as finite loops
(finite boundaries of the surface) or as infinitesimal loops (punctures of the surface).
Correlation functions of these physical operators are exactly computable[3][4].

Continuum field theory descriptions of these systems have not to date been
able to successfully reproduce all of the matrix model results. Quantization of
gravity coupled to matter systems is based on the Polyakov model[5], which stresses
the neced to use a general coordinate invariant measure for the path integration
over gravitational metrics. The critical exponents for minimal matter (¢ < 1) were
first obtained by a clever choice of gauge[6], and later were derived in the more
conventional conformal gauge{7]. In the conformal gauge, the description of pure
gravity (the ¢ — 0 limit of gravity coupled to matter with central charge c), is given
by the Liouville action which describes the conformal anomaly, and by the ghost
action corresponding to the Fadeev-Popov determinant arising from the gauge fixing
of diffeomorphisms.

In this paper, we will argue that the Liouville theory does not describe pure
gravity, due to an additional local symmetry which is built into the pure gravity
theory. The gauge fixed theory of pure gravity which takes this additional symmetry
into account is essentially a gauge fixed version of Witten's topological gravity[8][9].

Witten has shown, by reproducing correlators at genus zero and one, that the
matrix model results for pure gravity are described by the continuum theory of topo-
logical gravity, which is invariant with respect to arbitrary infinitesimal variations

of the metric!

. The field theoretic description of topological gravity is developed
further in references {11][12][13][14]. In particular, references [8][14] construct field
theories such that the observables correspond to the stable cohomology classes on
the moduli space of Riemann surfaces.

In section 2 we consider the symmetries of pure 2-D gravity, and show that the

Polyakov measure respects a subset of the additional symmetries found in the clas-

! In [10] it is also shown that topological matter systems coupled to topological
gravity can reproduce the n-matrix model (gravity+minimal matter) correlators on
the sphere.



sical action. The additional symmetry is seemingly lost when one transforms to the
basis of metric fluctuations spanned by conformal, diffeomorphism, and Teichmiiler
variations in the standard way as first discussed by Polyakov. The non-trivial part
of the Jacobian for this change of variables is the Liouville action of the Weyl mode
given in the conformal gauge. In general covariant form it is the non-local con-
formal anomaly, and it is not invariant with respect to any symmetries other than
diffeomorphisms. However, the quantum measure for the integration over the dif-
feomorphism fluctuations, which is usually divided out of the path integral to gauge
fix, is also not invariant under the additional symmetry. The explicit gauge fixing
described in section 3 will in fact show that the breaking of the additional symmetry
by the Liouville action and by the measure over diffeomorphisms cancel each other.
This implies that pure 2-D quantum gravity has no conformal anomaly.

We also discuss the number of representatives of the orbits of gauge transfor-
mations required to describe the 2-D gravity. All points in string moduli space are
gauge equivalent. However, if we allow in the path integral surfaces on the boundary
of the compactification of string moduli space, then additional gauge representatives
are required.

In section 3 we quantize using the BRST formalism developed by Batalin and
Vilkovisky[15], which can properly account for redundancies in gauge symmetries.
The gauge fixed action for ghosts is a conférmaly invariant model virtually equiva-
lent to that previously discussed in the context of topological gravity in references
[12}{14]. However, the cosmological constant term in the action is a relevant pertur-
bation to this model; this term differentiates 2-D gravity from topological gravity.

Physical states are found in the BRST cohomology of the gauge fixed quantum
theory, so in section 4 we construct states which lie in the cohomology. The highest
weight of the conformal field theory, has the natural interpretation as a puncture
operator. As suggested by the matrix model approach, this is the basic primary state
of the cohomology. A relatively complete search for possible physical states in the
space of Virasoro highest weights is given. We find the states which were previously
considered in the context of topological gravity models[13][14], and additional states
which have not been previously considered.

Each state can be assigned an arbitrary amount of local “delta function” cur-
vature. Curvature of this type must be inserted into the path integral to describe
the contribution from surfaces at the boundary of the compactification of ordinary
string moduli space.

Some implications of these results are given in section 5.
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2. Is Pure Gravity the Liouville Model or “Topological Gravity”?

In this section we argue that pure gravity in two dimensions is essentially the
topological gravity proposed by Witten. As shown by Witten, this is consistent with
the matrix model results. A detailed description of the Liouviile theory approach

to pure gravity is given in reference [16].

Classical Symmetries

The continuum theory of gravity is governed by the action

5=u/¢§+Af¢§R. (2.1)

In two dimensions, the dynamics of the action simplifies because the Einstein-Hilbert
term is a topological index - [ \/gR = 4xx, where the Euler number x =2 — 2¢ and
g is the number of handles (genus) of the closed surface. In addition to the local

diffeomorphism invariance, under which the metric and coordinates transform as
ddguy =V e, +Vye, , bgzt =¢" (2.2)

the action is also invariant with respect to any local variation of the metric which

preserves the area. It will be convenient to parametrize these variations as
A
639!“’ =g#»\Lﬁ +Q‘,,,\L;) ' LA =0 ’
Swiuw = Gy , j\/g_]a' =0.

The variation 8, of the metric is an infinitesimal SL(2, R) transformation. To

(2.3)

see this, consider the zwei-bein parametrization of gravitational degrees of freedom,
Juv = 6abe;ef,, where 8,5 is the flat Euclidean tangent space metric. A é, variation
of the zwei-bein is given by

A b
Ssey, = Lel = Aye, (2.4)

where we have defined the matrix Af =e%(e™')§L4. In the Af basis of the trans-
formation, it is clear that §, is an infinitesimal left SL(2, R) transformation on the
zwei-bein, where the U(1) subgroup is the local 2-D Euclidean Lorentz group. The
metric is unchanged by local Lorentz transformations, and therefore the action of
85 on the metric is the coset SL(2, R)/U(1) of the gauge symmetry.

The variation é,, of the metric is an area preserving conformal transformation.
Any diffeomorphism acting on the metric can be expressed as a combination of these
conformal and the SL(2, R)/U(1) transformations.
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Quantum Symmetries

The quantum path integral description of 2-D gravity requires a definition of
the measure for the gravitational degrees of freedom. A multitude of resuits on this
topic applied to string theory are found in [17] and citations therein.

The Polyakov measure {5 for integration over the metric is determined by the

norm of infinitesimal fluctuations in the field space of metrics,

||6guv”2 :/ﬁ [gnygAaﬁguA‘nga +Cgﬂyg)\a6guuag)\a ) (2-5)

where C is a relative normalization constant. This is the unique norm which is
quadratic in the fluctuations of the metric and invariant with respect to background
diffeomorphisms. With respect to background diffeomorphisms, the metric transfor-
mation is given by (2.2) and the fluctuations transform as components of a second

rank tensor,
6(60u0) = VA(69u )6 + (693) Ve + (8g,un) Ve | (2.6)

The norm is not invariant with respect to background conformal transformations of
the metric. It is however invariant with respect to the background SL(2, R}/U(1)
transformations, whose action on the metric is given by (2.3) and on the metric

fluctuations by,
85(6guu) = (89ua)L} + (Sgan) L), - (2.7)

An arbitrary infinitesimal variation of the metric can be decomposed as a com-

bination of conformal, diffeomorphism, and Teichmiiller variations,
Sguv = (86 + Va8V g + (Pr6V )uw + Sty gan (2.8)
where the operator P is given by
(PLEV )y = V6V + V6V, — g0, V6V, (2.9)

and the real parameters 6¢(;) and Beltrami differentials ()X correspond to infinites-
(1) Hy p
imal Teichmiiller deformations of the metric. This decomposition can be used to

rewrite the path integral measure over the metric g, = €®§,., where /§ =1:

[dM) = [d¢]g[dV]g[Teich]det(e‘ﬁ)det'(PfP})% e[ VI (2.10)
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and where

166112 = [ 6686 ,

(2.11)
A j Jag" V8V .

The cosmological constant term §u is the ultralocal dependence on the Weyl mode
¢ that has been extracted from the measure {dV]. The Jacobian factors of the
measure can be evaluated via the heat kernel regularization scheme[18]; in the
conformal gauge, this procedure results in a Liouville action for the Weyl mode and
the usual first order action for the diffeomorphism ghosts. The Liouville action is
an expression of the conformal anomaly, which is non-local in covariant form. The
volume of the diffeomorphism group connected to the identity is [[dV], and this
term is divided out of the path integral to gauge fix the guantum diffeomorphism
symmetry é4V¥# = €.

There does not appear to be any residual local symmetry after the gauge fix-
ing of diffeomorphisms which would correspond to the background SL(2, R)/U(1)
symmetry. One can verify that the Polyakov action (Liouville action in the con-
formal gauge) is not invariant with respect to the SL(2, R)/U(1) transformations
of the metric. This is actually not inconsistent with the claim that there is such
additional symmetry in the full path integral however, because the measure [dV] is
also not invariant with respect to the background SL(2, R)/U(1) transformations.
By inspection of the diffeomorphism norm, this measure would be invariant only if
6,6V, = L}, 8V, were satisfied for arbitrary L;. The explicit variation of the mea-
sure with respect to the SL(2, R)/U(1) transformations can be calculated using
equations (2.7) and (2.8),

V88V, = LY6VA) + (o v) = (V, L) — VAL )6Va + LyVadV, +{(p o v)

(2.12)
The right hand side of this equation vanishes only if L;: corresponds to a trans-
verse diffeomorphism. These are the diffeomorphisms that are redundant with
SL(2,R)/U(1) when acting on the metric. The norm for the measure [dV] is
therefore not invariant with respect to an arbitrary SL(2, R)/U(1) variation. In
fact, the SL(2, R)}/U(1) dependence of the diffeomorphism measure and the Li-
ouville action should cancel one another. Although this analysis does not prove
that there is explicit cancellation for the regularized theory, the BRST quantization
in section 3 will indicate that this is indeed the case. Since conformal transfor-

mations of the metric can be expressed as a combination of diffeomorphism and
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SL(2,R)/U(1) transformations, it is possible to properly gauge fix both diffeo-
morphisms and SL(2, R)/U(1) symmetries only if the pure gravity theory has no
conformal anomaly.

To divide the path integral out by the volume of connected diffeomorphisms
f[dV] breaks both the diffeomorphism and SL(2, R}/U(1) symmetries. No account-

ing has been made however, for the redundancies between the two symmetries.

Representatives of Gauge Orbits

For a genus g surface, what are the representatives of the gauge orbits? Assume
that the conformal anomaly of the gauge fixed theory vanishes without the addition
of matter. Then all area-preserving variations of the metric are gauge variations
of the quantum theory. In particular, if we take L} = 6t(,-),u£'.)x, we see that only
one point in string moduli space is required to specify the orbits of the pure gravity
theory for each genus. In addition. we must integrate over the area (i.e. the zero
mode ¢o of the Weyl mode). Since the decomposition given by equation (2.8) is
complete, the moduli space of the pure gravity theory is one dimensional for each
genus.

Any compactification of the moduli space generated by the infinitesimal Te-
ichmiiller deformations will include limit points of a certain codimension; the mod-
uli space of stable curves corresponds to the compactification with a boundary of
codimension one. Omne cannot perform a series of infinitesimal Teichmiiller deforma-
tions on the boundary points to return to a generic representative in moduli space.
This means that the boundary of moduli space requires separate representatives in
the gauge fixing procedure of pure gravity.

For example, consider the genus one case. The conformal classes of tori are
represented by the doubly periodic parallelogram with sides (1, 1) in the complex
plane. The modulus is the complex parameter r = 7, + 72, where —-% <7n < % ,
12 >0, and |7| > 1. The limit point is 7, — oo, for which the torus degenerates into
an infinite cylinder. (This point is infinitely far from any generic point in moduli
space, with respect to the Weil-Petersson metric d*s = 2{6712/7f.) The cylinder can
be conformally mapped to the Riemann sphere, with z =0 and z = co “connected”
by a tube of infinitely thin width. A combination of conformal transformations and
diffeomorphisms can then map this to a finite sphere with two punctures. The two
punctures carry curvature since the total integrated curvature of the sphere with
punctures is zero for the “torus”. There are no infinitesimal Teichmiller defor-

mations (gauge transformations) that can deform this representation of the limit
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point back to a generic point in the moduli space of the torus. Therefore, there
are two representatives of the gauge symmetry of pure gravity for genus one, if we
consider the compactification of moduli space to be the relevant space of metric
configurations.

Next, consider the higher genus cases. The boundary of modul: space, in the
Fenchel-Nielson coordinates of Teichmiiller space [19], are the surfaces obtained by
pinching any combination of the 3¢ — 3 non-intersecting loops for genus ¢g. Consider
for instance the pinching of a homology cycle, which reduces the genus of the surface
by cne. The moduli of the genus g — 1 pinched surface are the positions of the
two points on the surface with the required curvature insertions, and the ordinary
moduli of a generic genus g — 1 surface. There are no moduli to unpinch the surface.
The moduli space of pure 2-D gravity for the compactified string moduli space is
therefore finite dimensional for each genus; it contains one unpinched surface, and
pinched surfaces at the boundary of Teichmiiller space which are inequivalent under

global diffeomorphisms.

3. BRST Quantization and Conformal Field Theory

In this section the conformal, diffeomorphism, and SL(2, R)/U(1) symmetries
of the pure gravity model will be gauge fixed, leading to a conformal field theory
description of the gauge fixed path integral. The gauge fixed quantum theory will
have chiral BRST charges which square to zero, indicating that it is indeed consis-
tent to assume the absence of the conformal anomaly. The analysis of this section
overlaps substantially with [11][12], and the notation we use conforms to {14].

The initial expectation for the pure gravity theory is that surface area is the
only observable for each topological class of metrics, so that gauge fixing is hence-
forth trivial. However, this expectation is modified by the matrix model analysis
of the random lattice formulation of 2-D gravity. In this analysis, local physical
degrees of freedom are associated with finite or infinitesimal punctures of the sur-
face[4]. In the continuum field theory description of gravity, infinitesimal punctures
are marked points which diffeomorphisms are required to leave fixed. Therefore to
obtain a puncture operator in the continuum theory, one can gauge fix to an unpunc-
tured surface and subsequently require the gh(‘:)sts associated with diffeomorphism
gauge fixing to vanish at certain marked points. It is not completely trivial to

obtain diffeomorphism ghosts from the pure gravity theory we have described in
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the previous section because diffeomorphisms are completely redundant with the
conformal and SL(2, R)/U(1) symmetries when acting on the metric. One must
use the BRST formalism of Batalin and Vilkovisky[15] (BV) to treat the redundant
symmetries. In their language, 2-D gravity is a first-stage gauge theory.

We will choose a gauge which preserves background general coordinate invari-
ance, and which leads to a gauge fixed action that is essentially an exactly soluble
conformal field theory. We begin by fixing to a generic point in moduli space for a
given genus. Generalizations of the procedure which gauge fixes to representatives

on the boundary of moduli space will be discussed briefly at the end of the section.

Gauge Fermions

A gauge fermion ¥ with ghost number —1 contains information of the gauge
constraints in the BV gauge fixing formalism. The BRST variation 6, ¥ is the gauge
fixing contribution which is to be added to the action, and it includes the Fadeev-
Popov ghost terms automatically. We decompose the metric g,, as gup = e®8uus
and denote the background representative as §,,. Consider the gauge fermion
¥ =¥, + ¥;, where

1! =]X(\/§R"\/§R) ,

(3.1)
Ur = [ B30, Buug® =0

The gauge fermion ¥, will fix the trace of the metric, up to the zero mode ¢y
which corresponds to the physically observable area. Note that the gauge constraint
VIR = a\/ER with a # 1 violates Euler number conservation; we will apply such
a choice to gauge fix to configurations on the boundary of the compactification of
moduli space. The second gauge fermion will fix the traceless (with respect to G,y )
components of the metric to be those of a fixed background representative metric
Guv. The zero mode of the antighosts x and by, should be excluded from ¥o. All
of the zero modes which arise from the gauge fixing will be treated when the path
integral over the gauge fixed action is obtained below.
The BRST variations of the fields are

bpx =m + "0, x
bobuy =mypy T " =0,
O guy =29 uu + Ve, + Ve, (3.2)
v = = (Vurw +Vou),
dpey =(Vyeu)e? + (Ve e + v,
8



and the ghost numbers of X, by, T, T, Y, Cu, Yu are —1, -1,0,0,1,1,2 respec-
tively. The BRST transformation laws for the fields (, 7}, v, ) are determined by
nilpotency of the BRST charge (67=0 on all fields). The BRST transformation
law for y has been unconventionally defined by adding the c#8,x term to make x
transform as a scalar with respect to background coordinate transformations; this
does not introduce extra degeneracies in the constraints imposed by (, WL) The
advantage of this redefinition is that it decouples the (x, ) ghost system from the
(b, c) system. Physically, it means that the gauge fermion ¥ is defined so as not
to break general coordinate invariance. The fields ¢#, %, are diffeomorphism and
topological ghosts respectively, and the field 7# expresses the redundancy between
the two symmetries. This type of BRST transformation law for topological gravity
was first given in reference [11).

To fix the redundant symmetry, consider the gauge fermion

s = [ 8" Jibus s G =0. (33)

The BRST variations of the antighost multiplet §#*, #"#¥ with ghost numbers
—2,-1 are

5(,6“" =3 iad N 6;,1!'“"” =0. (34)

The full gauge fixing term will be S, 5. = §;( ¥, + ¥, + ¥3). There is no need to

add the “extraghost” associated with the first-stage gauge fixing procedure of BV,

since the constraints obtained by integrating over the Lagrange multipliers 7 and
!

7, are non-degenerate.

Gauge Fixed Action

Integrating out the Lagrange multipliers 7}, #''*¥ imposes the constraints

Juv = e‘f’g,uu s Wup = %d)gw . (3.5)

The additional contribution to the action (2.1) from gauge fixing is then

So.t. = [ VilrAd — XA +VacY)

) ) . ) (3.6)
Fo,, (VH + V) + B (Vv + Vuvu)]

where A = =V, V,3**. To simplify the second term of (3.6), we redefine the field
1 by making the linear shift
% = — Vact . (3.7)
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Note that the redefinition will effect the BRST transformation law of ¢ in the
quantized theory.

The bc ghost system exponentiates the standard Fadeev-Popov determinant
of the diffeomorphisms (see equation (2.10)), and the 3~ system exponentiates the
inverse determinant. This occurs because gauge fixing the SL(2, R}/U(1) symmetry
requires no determinant factor; there are no derivatives in the metric variation given
by equation (2.3). For an unpunctured surface, the two ghost systems are expected
to cancel. One can in principle integrate out the =, @, x, ¥ fields, which we denote as
the Weyl sector of the theory, to impose the constraint ¢ = ¢, where ¢g is the zero
mode of the field ¢. However, it will be useful to have the Weyl sector in the path
integral when we attempt to construct physical states using standard conformal
field theory (CFT) technology.

The remaining action describes CFT of free fields with central charges,
—26, 426, —2 and +2 from the bec, 37, x¥ and 7¢ systems respectively, and there-
fore one expects that the heat kernel regularized partition function has no conformal
anomaly. This is indeed the case, although the Weyl mode contribution requires
special attention. A careful evaluation of the Jacobian det(e®) which arises from
the measuref18], is required. In the calculation, the w¢ and x% systems are properly
regarded as a representation of the covariant delta function 6(¢").

From the action (3.6), one can read off the ghost zero modes, which require
special treatment in the definition of the path integral. First, recall that the surface
area 1s a physical observable, and the zero mode ¢y was not gauge fixed. Conse-
quently, the zero modes of m,y and ¢ are not in the irreducible space of states; we
must insert delta functions in the covariant path integral to soak up these modes.
Secondly, the modes of by, in KerP] are also not in the irreducible space of states.
This is because the constraints on the topological ghost ¢, obtained by the BRST
variation of ¥3 do not fix the modes of ¢, In KerP]. The path integral over these
modes eliminates the modes of b,, in K erPIT. We also need to fix the modes of g*¥
in KerP! because the Teichmiiller variations of the SL(2, R)/U(1) symmetry are
not redundant with diffeomorphisms. And, as is standard in string theory, the re-
maining conformal Killing symmetries of the sphere and torus are fixed by inserting

modes of ¢* in Ker P, into the path integral.

Conformai Field Theory of 2-D Gravity

For each topology of surfaces we can use standard CFT techniques to obtain

a current algebra solution for the gauge fixed theory (see ref. [20] and citations
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therein). In each patch of the surface, a complex coordinate system (z,Z) can be
defined. The dynamics of each conformal field W(z, Z) in the gauge fixed path
integral are governed by its holomorphic and antiholomorphic components w(z)
and w(Z), and the current algebra of the theory is locally reducible into two chiral
algebras. The local operator algebra for the holomorphic sector is described in this
section; completely analogous results are obtained for the antiholomorphic sector.

The local operator product expansions of the free field theories described by
the action (3.6) are given by

Bz)e(w) ~ B(2)7() ~ Bul(2)n(w) ~ Bux(p(w) ~ —— ,  (38)

w

and the holomorphic component of the traceless stress tensor is
T = 9rdd + OO + cOb 4 28cb + v08 + 20+ . (3.9)

The cosmological constant term p [ /Fe?® of the action is treated in this approach as
a relevant perturbation. With respect to the conformal stress tensor, the dimensions

of the primary fields are
A [Ca T, ¢1 X ws b, ﬁ] = [—11 "'13 01 0! 01 0: 23 2] B (3'10)

The chiral splitting of the current algebra implies that there are BRST charges @
and Q for the holomorphic and antiholomorphic sectors. BRST transformations for

the holomorphic fields are
dpec =clc + v,
&b =T,
byy =cOy — v0c ,
5p3 =b+ Ox ¢ + cIB + 20c¢h

(3.11)
by =cOP + ¢ ,
6b¢ =Ca¢ - ’Ya¢5 ’
Spy =7 + Iy ,

oy =cdr — ’yax )

and the nilpotent BRST charge which generates these transformations is given
by[14],
Q= }6 {c[T — L(cOb + 20cb)] + vOxO¢ + Oty + by} . (3.12)
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We have taken into account the redefinition (3.7) of the + field in the BRST trans-
formation laws for ¢ and .

Physical states are those annihilated by @ and @, but not proportional to
either, i.e. in the cohomology. The BRST charge enforces the constraints of the
gauge theory. In dimension d > 3, the gravitational constraints are known as the
lapse and shift constraints, which require that the theory be invariant with respect
to reparametrizations of time and the patching together from one time to the next of
spatial coordinate systems. For 2-D gravity with matter, these constraints extend to
the invariance with respect to arbitrary conformal transformations of coordinates.
For the pure gravity case, the constraints are even stronger, as can be seen by the
inspection of the BRST charge. The theory has a global supersymmetry[14]. The

supercharge operator is given by

Qo = $(0rv +bv) (3.13)

and the generator of local superconformal transformations is
G =0x8¢ +cdB + 20c8 . (3.14)

It is also useful to define the supercharge

Qs=Q.+ f v9x8¢ , (3.15)

which when acting on the fields squares to zero, up to a diffeomorphism. By inspec-
tion of the BRST charge (3.12), we see that conformally invariant physical states
must also be annihilated by the supercharge Q..

Gauge fixing on the Boundary of Moduli Space

Recall from section 2 that a genus one surface at the boundary of moduli space
could be represented as the doubly punctured sphere with curvature insertions. To
gauge fix to this surface, we must modify the gauge fixing constraints. Consider the

gauge fermion

U = [ X(VGR-(1-a)/iR) . (3.16)

Since we want to fix to the sphere and still satisfy the Euler number theorem for
the torus, we need to use \If(ll) as the gauge fermion which fixes the Weyl mode.

This modifies the gauge fixed Lagrangian by adding a background charge term for
12



the 7 field; subsequently the holomorphic stress tensor is modified by the addition

of
6T = ~ad’r . (3.17)

Non-vanishing correlation functions on the “torus” require the addition of BRST
invariant operators V99 proportional to ™27 since the U(1) currents of the 7¢ sys-
tem enforce charge neutrality of the path integral. These operators create curvature

at their insertions. To see this, recall that the total curvature is

VIR =7(A¢(z,2) + R) . (3.18)

Taking the operator product of /§A¢ with e?™" in local conformal coordinates
shows that the operator inserts curvature 2x(g + §)62(Y — X) at the point X. The
total integrated curvature sphere with two punctures must vanish, since it repre-
sents a torus with zero Euler number. As is appropriate for a torus, the two operator

insertions break the SL(2, C) invariance of the sphere down to the translation sub-

group.

4. States in the BRST Cohomology

The goal of this section is to make a relatively complete list of states in the
cohomology of the BRST operators @ and Q. We will find the states discussed
previously in references [13][14], which correspond to the stable cohomology classes
on the moduli space of Riemann surfaces found by Mumford[21]. We at present have
no similar interpretation for the additional states that exist in the cohomology; a
careful study of their correlators may lead to insight on this question.

States are local operators of the form
OPL(X) = 0x0nct(X), (4.1)

where the fields O, and Os are primary conformal fields of dimension (1,0) and
(0, 1) respectively. Note that the unfilled vacuum state 1 is not a highest weight
with respect to the be ghost system because ¢ has negative conformal dimension.
The ¢ contribution to {4.1) fills the mode of the negative dimension fermionic ghost
raising operator. The bosonic ghost < is another negative conformal dimension
primary field in the theory. The states (4.1) must also be highest weights with
respect to this field,

lim 7(2)0n(0) =0 . (4.2)
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The simplest solution to these constraints is the puncture operator,
PO = 5(7)8(7)ed(X) (4.3)

where

J s =1. (4.4)

The BRST transformation property of 8(y) is fixed by (4.4) to be

8:6(%) = cB8(y) + 6(7)de . (4.5)

The puncture operator is BRST invariant and not exact (more precisely, it will
be shown below that it is the BRST variation of an unphysical state), and hence it
is in the BRST cohomology of physical states. It is the simplest possible Virasoro
highest weight state of the theory, and it has a simple physical interpretation. An
infinitesimal boundary, or puncture at a point X of the surface constrains diffeomor-
phisms §4z* = € to satisfv ¢*(X) = 0. This means that there is less symmetry to
gauge fix, and the field configurations of ghosts ¢, ¥ which do not vanish at X must
be eliminated from the path integral. These configurations clearly are projected out
by inserting the puncture operator {4.3).

The basic building blocks of the physical states are the holomorphic 1-forms

O,dz. From these, the 2-form representation of a state can also be constructed,
o) = [ V50.0: 4.6
na = V§0n0n . (4.6)

There will be cases where there exist 2-form operators in the BRST cohomology
which do not correspond to a 0-form physical state. These type of operators will

be denoted as screening operators.

“Bosonization” of the Jv system

It will be useful to represent the 4+ Virasoro highest weights in terms of bosonic
vertex operators in order to easily evaluate operator products. Following reference

(13], we define new flelds via the relations
B=e"70f |, y=¢%n. (4.7)
The new fields have stress tensors given by

T, =— 4 (8pdp +30°)
TYJE = Uaf ’
14

(4.8)



and the conformal dimensions of 5, £ and ¢ primary fields are

A€ et =[1,0,-1e(g+3)] - (4.9)

All states in the 71, £,y systems can be re-expressed in terms of the original fv

system by use of the identities

e~¥=46(y), n=0H(v),

(4.10)
e =6(8), E=H(B),

where H(#) is the unit stepfunction. The ¢ system is a Gaussian model coupled
to background charge 3(1 —g), and the simplest non-vanishing correlator on the

sphere is the three-puncture configuration

{E(w)P(21)P(22)P(z3)) =1, (4.11)

where £(w) soaks up the zero mode &, which is not part of the irreducible space of
states. It will also be useful to have a bosonic representation of the n{ system via

the relations n = ¢'? and ¢ = ¢™*Y. The 6 system stress tensor is
Ts = —5(0006 +5°6) (4.12)

and primary fields ¢'™? have conformal dimension %n(n +1). Although the € system
has background charge (1 — g¢), it is not correct to to use this charge cancellation
as a selection rule for higher genus correlators in this case. The bosonization of the
/3~ system of the superstring (with different conformal dimensions) in reference [22]
shows that the correct prescription is given by writing n = Jo and considering the

anomaly of the £0 scalar ghost system.

Puncture Operators

We can obtain an infinite number of representations of the puncture operator,
each with different ghost number, by picture changing[20] the basic puncture oper-
ator P. Recall that the zero mode of y is not in the irreducible space of states, so
the picture changed state {@, xP] = 7P is not BRST exact in the irreducible space
of states. By taking infinite linear combinations of the puncture operator in the

different pictures, one obtains the coherent states specified by the 1-forms

P7=ei"5(y) . (4.13)
15



As discussed in the previous section, these operators correspond to insertions of
finite curvature at a point.

We can picture change these operators with respect to the zero mode of ¥,
(@, Pul(PTe)] = lim (0% = 108).(e"™5(¥)e)u
=—lim ¢: (1) (e e %) ¢ , (4.14)
=~ q(ne’"c)w -

Repeating this process for both @ and () yields the generally left-right asymmetric

picture-changed puncture operators ’P,(f,)—f'& = P2Pice, where

Pi =(—¢q) " (v0¢)"6(v)e’”

=P, | (4.15)
and the zero curvature 1-forms P,, with ghost charge (2n,0), are given by
Py =(9v)"6(7}
:ﬁnan o gnIpeln-le (4.16)

The 1-forms with no curvature (g = 0) are not related to the basic puncture operator
via picture changing. The Symmetric {n = @) zero curvature operators are in fact
the physical states of Distler{13] and of Verlinde and Verlinde[14} in the —1 picture.
Selection rules for correlators of these operators reduce all correlation functions of
’P,(f}, for genus g = 0 to specification of the the simplest non-vanishing correlator

given by equation (4.11); in this sense, the P, are redundant operators [23][24].

Physical States of the 3y Sector

We now make a more general search for physical states constructed from 1-

forms in the v system. Consider the Virasoro highest weights

Va y = eiaGEi(b—l)gp

(4.17)
AlVay)=(a(a+1)=bb+1))+1.

These are probably the most general forms of Virasoro Highest weights in the v
system, up to the application of screening operators. Although we have no com-
pleteness proof, this type of ansatz has proved successful in describing the Virasoro
highest weight spectrum in many CFT problems. To use these as building blocks
for the physical states |V; 5c|?, the vertex operators must be dimension one, and

they must be highest weights with respect to v. The second constraint assures that
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the state is annihilated by the Q. part of the BRST operator. These constraints in
terms of a and b are that a =b or b= —(a + 1), and for both cases ¢ — 5> 0. The
solutions are Vyp n for n € Z and Vi, _(m42) form=0,1,---. The vertex operators
Van for n negative are actually not quite physical states, because they explicitly
depend upon the zero mode &, which is not part of the irreducible space of states.
This problem is overcome by multiplying these states by the operator § 7, which
commutes with 3, 7, and the stress tensor. The vertex operators P, = V, , for
n=0,1,- - were already discussed, and are given by equation (4.16) in the n, £, ¢

basis. The new operators obtained are denoted as

R, = [ﬁ N P_(nt1y(2) =86 - -- 6“66—(n+2)¢ ,

4.18
—(n+3)¢ , ( )

Sn+1 = Vn+1,—(u+2) =1 3"’75

for n =0,1,---. These operators are various Feigen-Fuchs conjugates of the P,
operators[25]. Note that although the 1-forms S, are not 3 highest weights, they
are acceptable building blocks for physi;:al states. We can multiply the 1-forms of
(4.18) by €™ to generate the 1-forms with curvature R% and S{, which are also
suitable for creating physical states.

Are these new states independent, or are they picture changed versions of one
another? First consider the RY states; the picture changing generated by the zero
mode g relates R to RY_,,

[Q,vRic]=—gRI_,c, (4.19)

so that the basic physical state with curvature ¢ # 0 is R} = e~?¥¢e?™ and the other
RY are picture changed versions. Note that the state |Roc|® can be interpreted as
a double puncture operator in the sense that it forces the field v and its derivative
0¥ to vanish at a point.

The picture changing procedure generated by the 3y mode can in fact be de-
scribed in the 874 system without reference to 3 by using an inverse picture changing
operator § X = § ¢~ #£. In particular, § X Pr, = Pr_1, and § X R, = Rpqa.

The basic puncture operator P is the picture changed version of an unphysical

operator,

Pyc=[Q,&(Pyc)?] , (4.20)

where (Pye)? = e ?#cdc. In this sense, the puncture operator is locally exact but

globally non-trivial. This relation is actually the first of a hierarchy of picture
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changing relations using the mode &o,

(Poc)" = [Q, E(Poc)™™] . (4.21)

This has an interesting physical interpretation. The operator |(Poc)”|? forces ¢, 7,
and their first n — 1 derivatives to vanish at a point. The relation (4.21) tells us
that the order of vanishing for ¢ and « is redundant information as long as the order
of vanishing is the same for both fields.

Another very interesting set of relations for the P? and R} that can be easily

derived are

Plc=—(Q, Pi_;cdc , R}_jc= ~[Q, R}cdd], (4.22)

for n=1,2---. These relations imply that states based on these 1-forms are BRST
exact and hence decouple from the physical spectrum. However, this is not quite
correct, because of the existence of contact terms in the operator algebra of these
states(14]. The contact terms are due to an incompatibility of world sheet supersym-
metry with a global holomorphic decomposition of the operator algebra[26]. The
unusual dependence on the ¢ ghost field of the 2-forms [ |P28c|* may be related to
this; because of the d¢ dependence, these 2-forms are technically not part of the
irreducible space of states for the sphere and the torus . Turning the argument
around, equations (4.22) show that the only contribution to correlators of the Py
and R, will be from the contact term algebra.

No such relations seem to exist between the S,, although we have no proof
that such a relation cannot exist. Rather, the S, states obey another interesting

recursion relation,

Sn = [‘i Y1]5n+1c6c(z) y
Y, = (90 + b)e¥dE .

(4.23)

The operator Y7 can be interpreted as a screening operator; although there is no
highest weight state that can be constructed from it, the 2-form [ ;1Y) is in the
BRST cohomology of the irreducible space of states. To see this, we first picture
change the identity operator 1 (which is not a highest weight) with respect to the

zero mode &g,

[Q, €] = cO¢ — e¥(Ox0¢ + b) = 6(8)[cOB — (Ix B¢ +b)] . (4-24)

The 1-form version Y, = € of this state is trivially obtained [8] by considering the
action of a diffeomorphism, 9[Q, £] = [@, 9¢]. Then the 1-form Y1 is obtained by
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subsequently picture changing Yo,

(Q, £8€) = —2Y1 +0(--) . (4.25)

The operator [ |Yp|? plays the role of screening operator in reference {13].

Physical States of the 3y and Weyl Sectors

Consider the construction of possible physical states which include dependence
on the fields ¢, 7, x, 1, i.e. the Weyl sector of the theory. Recall that the Weyl
sector is generated by constraining the curvature R in order to fix ¢. This is the
simplest gauge constraint which respects background general covariance and leaves
the zero mode ¢ unfixed. Since some information about the Weyl mode remains
even after integration over the Lagrange multiplier field =, there is hope that new
non-trivial states can be constructed by using the fields in this sector.

A similar set of fields and BRST symmetries arises if one introduces a Lorentz
mode # into the pure gravity theory by using zwei-beins as the basic gravitational
degrees of freedom, and uses the spin connection as the gauge fixing constraint. In
this case however, it seems that one can also gauge fix the Lorentz mode to £ =0
directly and obtain a Lorentz sector with no propagating fields. Therefore, any
non-trivial dynamics which arises from the Weyl sector will have to be intimately
related to the existance of a non-vanishing cosmological constant, which prevents
us from eliminating the zero mode ¢o.

The field ¢ is almost completely redundant, and its BRST transformation prop-
erty 65¢ = 1 + - - - makes it unlikely that a BRST invariant state independent of
o can be constructed. {One exception of course, is the area operator e??.) We
will therefore focus on using the other three fields yx, 7 and ¢ of the Weyl sector to
construct BRST covariant holomorphic 1-forms.

With the y, 7 system, we can construct screening operators with non-vanishing

curvature. Consider the holomorphic 1-form
Ul =el"dy . (4.26)

Under BRST variations it transforms as a total derivative, and we can use it to
construct a 2-form physical state U?4% = [ {77777, For ¢ and § non-vanishing, this
is a well defined on-shell operator . BRST invariance of these operators relies on
the supersymmetry variation of [@,, x] = 7. [t does not seem possible to construct

new BRST invariant 1-forms by multiplying the U7 by dimension zero primaries of

19



other fields in the theory. Nor does it seem that these operators correspond to a
BRST invariant physical state, since the O-form version of these fields is not a ¢ and
~ highest weight. Nevertheless, they may serve a useful role in the calculation of
correlation functions by cancelling fermion charge.

We are left to discuss the field %, which transforms under BRST as a dimension

0 primary field plus additional terms proportional to v or 8v. Define the operator
Oy =0---3% . (4.27)

It is a primary field with conformal dimension %n(n 4+ 1) and is independent of
the zero mode 3. Now define the field W(n,a,b) = O}3Va s, where V43 is given
by equation (4.17). To be the 1-form component of a physical state, it must be
conformal dimension one, and have a non-singular operator product with the y9x8¢

term in the supersymmetry charge Qs

a(n+1)+a(a+1)=b(b+1),

(4.28)
a=b>n+1.
To satisfy the second constraint, introduce an integer p = 1,2, - such that a =
b+ n + p. The conformal dimension constraint can be solved in terms of p,
plp—1)
b=—(n+1)— 07—~ . 4.29
(n+1) - BB (4.29)

If b is non-integral, then it is not clear how to impose the independence of the zero

mode & in the path integral. So define the positive integer m.

plp—1)
so that b= —(n+1) —m and a =p — m — 1. For a given m, there are an infinite

number of solutions to the constraints (4.28). Define Wi, p to be the holomorphic
1-form component of the resulting physical states. The simplest cases are m =1,

for which n = %p(p —3) with p=4,5,---,
320=3) sp2)x —(Lp(p—3143)
Wi, =02 eP—x=l7plp ¢ (4.31)

The m = 2, 3, 4 series start at (n, p) =(6,8),(3,9), (14, 16) respectively. Each holo-
morphic 1-form W,, , can be multiplied by e?" to create 1-forms W, , which carry

non-vanishing curvature.
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States constructed out of these 1-forms are BRST invariant, but are they
BRST exact (and therefore spurious)? We now consider whether the Virasoro
highest weight field W(n, a, b)e?™ is the supersymmetry variation of another Vi-
rasoro highest weight field. Examination of terms in Q, and charge conservation
of the bosonic vertex operators implies that the field can be the variation of either
Wn+1,a—1,b-1)e", or W(n,a —1,b—1)dc for ¢ =0. In the first case, the
OPE of v9x8¢ with W(n +1,a — 1,5 —1) is non-singular, for p > 3 . In the second
case, the relavant OPEs are also non-singular. The conclusion is that the states
constructed from the 1-forms W,  may be in the cohomology; they are not BRST

exact in an obvious fashion.

5. Discussion

The pure 2-D gravity theory has an additional symmetry which alters the
quantization procedure relative to the system of gravity plus matter. The impact
of this additional symmetry in the quantization procedure is quite significant, since
it seems to imply that the gauge fixed path integral has no conformal anomaly.
The resulting conformal field theory for pure gravity has essentially the same field
content as 2-D gravity coupled to a ¢ = —2 matter system[13]. However, there are a
number of important differences between the two models. The pure gravity theory
has a different (larger) BRST symmetry (due to a larger set of constraints), which
has a smaller cohomology of physical states than the gravity plus ¢ = —2 system.
Also, the Weyl sector of the theory, which leads to states in the cohomology, is not
part of the gravity plus ¢ = —2 system. Recall that we were led to this system in
the gauge fixing procedure by fixing the curvature R. This constraint leaves the
zero mode ¢g of the Weyl mode unfixed, as required.

The moduli space of the pure gravity theory is much smaller than ordinary
string theory moduli space. Only one point in string moduli space is required to
represent the gauge orbit of the pure gravity theory, although one still has to inte-
grate over the area of each surface. It is not clear whether it is necessary to include
the compactification boundary points in the formal definition of moduli space. If
we choose to do so, then each topology of boundary requires a representative in
the gauge fixed path integral. At the very least, including the compactification
boundary will change the relative weights that each genus contributes to the path
integral.
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We have not attempted to calculate correlation functions of the states in the
BRST cohomology that have been found. The correlation functions of some of
the states represented by PJ in this paper were calculated in references [13][14] in
different ways. As discussed in section 4, contact terms can be the only contribu-
tion to correlators of the operators. The PJ states for ¢ # 0 are picture changed
versions of the simplest primary puncture operator P, and do not describe addi-
tional information about the system. Note that the ¢ = —1 cases correspond to the
curvature insertions required to describe the path integral on the boundary of the
compactification of moduli space.

The P? states are the most likely candidates for the $2" type operators in the
matrix model approach[13][14]. With this identification, the states generated by
R, and S, should have a similar type of interpretation. There is no ghost num-
ber cancellation argument which prevents these states from contributing to non-
vanishing correlation functions. A precise determination of these correlation func-
tions is clearly required for a better understanding of their role in the theory. Note
that it is possible that the extra states could represent a redundant parametrization
of the P, physical states. Another central issue to resolve is whether the 1-forms
W, p generate new primaries, or states redundant with the Prn.

There is in principle no reason not to use left-right asymmetric combinations
of holomorphic and antiholomorphic operators as physical states. Each sector could
then satisfy a different set of selection rules for non-vanishing correlators, because of
differing cancellation of bosonic charges. Correlators in the matrix model approach
are derived by varying couplings in the partition function which correspond to dif-
ferent potentials. The specific heat of the partition function satisfies a differential
equation (the string equation) for each critical potential. The asymmetric matrix
models(27) are specified by two independent string equations. The left-right asym-
metric vertex operators might therefore generate deformations of the pure gravity

theory that correspond to the asymmetric models.
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