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Abstract. The ePIC collaboration adopted the JANA2 framework to manage
its reconstruction algorithms. This framework has since evolved substantially in
response to ePIC’s needs. There have been three main design drivers: integrat-
ing cleanly with the Podio-based data models and other layers of the key4hep
stack, enabling external configuration of existing components, and supporting
timeframe splitting for streaming readout. The result is a unified component
model featuring a new declarative interface for specifying inputs, outputs, pa-
rameters, services, and resources. This interface enables the user to instantiate,
configure, and wire components via an external file. One critical new addition
to the component model is a hierarchical decomposition of data boundaries into
levels such as Run, Timeframe, PhysicsEvent, and Subevent. Two new compo-
nent abstractions, Folder and Unfolder, are introduced in order to traverse this
hierarchy, e.g. by splitting or merging. The pre-existing components can now
operate at different event levels, and JANA2 will automatically construct the
corresponding parallel processing topology. This means that a user may write
an algorithm once, and configure it at runtime to operate on timeframes or on
physics events. Overall, these changes mean that the user requires less knowl-
edge about the framework internals, obtains greater flexibility with configura-
tion, and gains the ability to reuse the existing abstractions in new streaming
contexts.

1 Introduction

ePIC is the primary experiment at the Electron-Ion Collider [1], a highly integrated and multi-
purpose experiment featuring state-of-the-art detectors and computing [2, 3]. One key re-
quirement is a tight integration between detector and compute, with the turnaround from
readout to analysis being just 2-3 weeks. This timeline is driven by alignment and cali-
brations. Three intersecting technologies are leveraged to meet this requirement: streaming
readout, artificial intelligence, and heterogeneous computing.

Adopting a streaming data processing paradigm has wide ranging architectural conse-
quences. With a traditional architecture, data is acquired in an online workflow and stored as
large files in hierarchical storage. The processing of the data happens in a separate, offline
workflow. This decoupling between online and offline allows for discrete, coarse-grained data
units, which in turn allows for batch queue-based resource provisioning. In contrast, with a
streaming architecture, fine-grained data is collected quasi-continuously. As the data inflow
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rate may vary, dynamic resource scheduling is necessary. Furthermore, fast processing of
the entire dataset is necessary for alignment and calibration and for delivering analysis-ready
data. In exchange for this additional complexity, streaming provides some essential advan-
tages: the readout is much simpler, as no custom trigger hardware or firmware is required,
and events may be built with holistic detector information. Ultimately these give physicists a
deeper knowledge of backgrounds and an enhanced control of systematics.

The ePIC collaboration chose JANA2 [4] as its reconstruction framework. JANAZ2 is
a scalable, modern C++ reconstruction framework that uses dataflow parallelism in order
to support both traditional and streaming processing. It is a rewrite of JANA, which was
developed for the GlueX experiment at Jefferson Lab. This meant the codebase was proven
enough to be usable on day 1 for processing simulated data and developing the chain of
reconstruction algorithms, while at the same time being clean and malleable enough to be
heavily adapted for ePIC’s future streaming needs. This enabled a unified software stack for
different groups within ePIC operating on different timescales.

JANA2? has already undergone a variety of improvements in response to ePIC’s needs,
including cleanly integrating with Podio, and factoring out component configurations for
better code reuse. The focus of this paper is on building out the interfaces for streaming
readout, specifically those for performing reconstruction on timeslices and for splitting the
timeslices into physics events, although the result has much wider generality.

2 Background

The JANAZ2 reconstruction framework is organized into two layers: a ‘component’ frontend
layer and a ‘processing topology’ backend layer. Components are a family of interfaces for
the user to implement. They are meant to be independent from each other; all communication
between them is expressed through the data model. For this purpose, JANA2 provides a
container called JEvent, which manages collections of data model objects. Crucially, a JEvent
represents data that can be processed as a discrete, independent unit, and JANA?2 uses it as
its unit of parallelism. Traditionally, JEvents were used to represent physics events, but this
changes substantially in the context of streaming readout.

The most commonly used component interfaces are JEventSource, JFactory, and JEvent-
Processor. A JEventSource reads from a file or socket and inserts the data into a JEvent. Thus
users create a JEventSource for each input file or message format. A JFactory operates on
an individual JEvent, running an algorithm to compute new results using the existing data
(which might have come from the JEventSource or from other JFactories), and adding them
to that JEvent. Finally, a JEventProcessor writes data from a JEvent to a file or socket. If that
data hasn’t already been created, JANA2 will run the corresponding JFactories to produce it.
Together, these components are enough to create a basic reconstruction chain.

Under the hood, JANA?2 builds a dataflow-parallel processing topology consisting of ar-
rows, queues, and pools. Arrows represent fixed tasks that modify JEvents using the user-
provided components, and may run either sequentially or in parallel. Rather than having a
direct connection to each downstream arrow, the connection between two arrows is interme-
diated by a queue. This allows asynchronous processing, so that no worker thread is left
waiting for a task to finish when there are other tasks available. The entry and exit vertices of
the topology are pools, which recycle JEvents in order to avoid expensive initializations and
to control the total number of in-flight events (and hence memory consumption). This setup
is inspired by Kahn Process Networks [5].

The processing topology paradigm that JANA?2 uses under the hood was designed for
streaming readout from the beginning and had already been integrated successfully into an
SRO project with TriDAS [6]. What it lacked was a coherent concept at the user-facing layer:
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Components such as factories, processors, and sources could only operate on physics events,
and everything else was implemented as custom arrows. Apart from being inconsistent, this
design exposed a great deal of internal complexity, resulting in a higher learning curve and
surface area for bugs. It also conflicted with JANA2’s plugin architecture, as individual
plugins cannot directly modify the processing topology while staying independent of each
other. The ePIC streaming readout project presented a long-awaited opportunity to improve
this design.

2) Source O - O Tap 2)
(4)

(1) (2) (3) (5) (6) 7)

Figure 1. The simplest JANA2 processing topology. (1, 7) A pool of empty events. (2) An arrow
that reads a (raw) event sequentially using a JEventSource. (3, 5) Event queues. (4) An arrow that
calculates reconstruction results in parallel using JFactories. (6) An arrow that writes a (reconstructed)
event sequentially using a JEventProcessor.

Figure 1 shows the typical topology that is used for traditional physics-event process-
ing. It consists of three arrows, Source, Map, and Tap. JEvents start their life in the
pool on the far left. When JANA?2 fires the Source arrow, an empty JEvent container is
popped from the pool. It is passed to the JEventSource: :Emit callback which attempts
to fill it with data from file. If that succeeds, the JEvent is pushed onto the downstream
queue; otherwise it is returned to the pool. Next JANA2 fires the Map arrow, which calls
JEventProcessor: :ProcessParallel (), which in turn calls any necessary JFactories.
Unlike the Source arrow, which is constrained to one worker thread at any time, multiple
worker threads may run Map. Map always succeeds, upon which the JEvent is pushed down-
stream, triggering Tap, which calls JEventProcessor: :ProcessSequential () to write
the results for that event to file (sequentially). Finally Tap clears the JEvent and pushes it
back to the pool where it originated.

3 Design Principles

Several key design principles were employed during this work. The first is preserving sym-
metry between interfaces. In the simplest case, an algorithm that might have been written for
physics events might very well be repurposed for timeframes. The framework should handle
both cases with maximal consistency and minimal reconfiguration. Similarly, timeframe or
‘DAQ event’ sizes are often driven by hardware details, and don’t necessarily have a physical
meaning from the reconstruction’s perspective. The framework must be able to accommodate
these without imposing constraints upstream.

A second principle is modeling the data stream as a (mostly) time-ordered sequence of
signals. Informally we can think of these as ‘hits’, although within JANA?2 they generalize to
include reconstructed quantities such as tracks. In the most basic SRO setup, timeframes are
a partitioning of this sequence, and physics events are a partitioning of the timeframe. This
cleanly generalizes as a hierarchy of subsets, where the exact levels in the hierarchy depend
on the particular experiment. In the simplest case, event building consists of drawing verti-
cal bars on the time axis, as shown in Figure 2. However, there are two more complicated
scenarios the framework must handle. Firstly, when detectors have different response laten-
cies, the partition boundaries need to be shifted in accordance with each detector’s physics.
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This requires adding a new component interface for expressing this logic to the framework.
Secondly, events may overlap, or experience ‘edge effects’, e.g. where part of a physics
event is stranded on the wrong side of a timeframe boundary. This has consequences for data
lifetimes, but nonetheless remains compatible with an event hierarchy.

A third principle, drawn straight from the ePIC Software Statement of Principles, is user-
centered design. There are several aspects to this. One concrete goal is code reuse: Just as one
factory implementation should be reusable for multiple detectors, so too should it be able to
operate on either a timeframe or a physics event. Another goal is to enable configuration that
doesn’t require recompilation: ideally, the full ePIC reconstruction chain could be rewired
from a text file. These goals dovetail with the stylistic choice within the JANA2 codebase
to minimize use of templates and type system trickery for the sake of easier debugging. To-
gether, they steer the design away from a sophisticated representation of an event hierarchy

within the type system.
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Figure 2. A cartoon view of event building, wherein a stream of detector hits and corresponding
reconstructed values is recursively partitioned. This gives rise to the event hierarchy.

4 Event Levels

The first step to generalizing the JANA?2 framework for streaming readout is to understand
that JEvent represents a container for any data that is meant to be processed as a discrete
independent unit, and does not always contain a physics event. Thus a JEvent can repre-
sent physics events and timeframes, but in principle also any other partitioning of the data
stream. JEvents are tagged as belonging to a particular event level. These event levels form a
hierarchy, which may be experiment-specific. The predefined event levels are:

enum class JEventLevel {

Run, Subrun, Timeslice, Block, SlowControls, PhysicsEvent, Subevent, Task

}

While Timeslice, Block, PhysicsEvent, and Subevent are obvious, the rest deserve some
explanation. Tasks are distinct from Subevents because Subevents may be understood to
have a particular physical meaning in the context of a particular experiment, e.g. interactions,
whereas Tasks specifically have no physical meaning and simply indicate very fine grained
data to be processed in parallel. Run and SlowControls are more interesting. Both tradi-
tionally represent an interval of validity for data which is usually either side-loaded from a
database or interleaved with the event stream. Both of these cases, however, are isomorphic
with a streaming merge. Representing such intervals of validity explicitly within the frame-
work allows for unified and considerably simpler handling of all three cases, and prevents
users reaching for more brittle and less performant mechanisms, such as ‘barrier events’.
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Different experiments use different event hierarchies, and possibly use the same terms
inconsistently. For instance, in some experiments, a Block might be bigger than a Timeslice,
and there might be additional levels such as SuperTimeframe or DAQEvent. Consequently
JANA? supports both user-defined event levels and user-defined event level orderings. An
additional complication is that event levels might only have a partial ordering. For instance,
consider a PhysicsEvent that belongs to one Timeslice and one SlowControls interval, but the
Timeslice and SlowControls have no relationship to each other.

5 Hierarchical data access and lifetimes

Having defined an event hierarchy, the next step is providing child events access to their par-
ents’ data. To prevent races, parent-level data must be immutable, and must have already been
calculated upstream rather than on-demand. Because hierarchies are only partially ordered,
any JEvent may have multiple parent events, though at most one at each level. For simplicity
of implementation and clarity, the child JEvent does not ‘inherit’ the data collections of its
parent. Instead, the caller must request the data from the parent explicitly.

Ownership and lifetimes of parent data are tricky. Any JEvent may either be independent,
or be the parent of at least one other JEvent. If it is independent, its owner is whatever arrow
or queue or pool currently has a unique reference to it, and its data gets cleared whenever it
gets returned to the pool, so its data lifetime is the same as its in-flight time. If the JEvent
is the parent of another JEvent, however, its ownership is shared among the children, and its
lifetime must cover the lifetimes of all child events. Only when the last child event is returned
to the pool, can the parent event be cleared and recycled as well. For this purpose JANA2
uses an internal reference counter. However, the condition of all children being finished is
not sufficient: there might be more child events within the parent’s interval of validity that
have not yet been emitted. Thus there is an additional flag to indicate when a JEvent has been
fully ‘released’ by its earlier owner so that the reference counting may come into play. The
component interfaces are designed to keep this complexity encapsulated inside JANA?2 itself.

The current design supports overlapping events by allowing references to hit objects to
be handed over to multiple child events. However, it does not support edge effects, e.g.
where part of a physics event is at the wrong side of a timeslice boundary. The design could
be extended to handle this case, at the expense of additional complexity, by adding sibling
relations analogous to parent relations, and deferring recycling until both siblings are also
ready to be recycled. This way, a physics event would have access not only to its own parent
timeslice, but also the adjacent timeslices. A simpler solution at the user level is to clone the
boundary data from the timeslices on either side, at the cost of higher memory usage.

(1) () 3) (9)

Timeslice
level

PhysicsEvent

Figure 3. An example timeslice-splitting topology.
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6 Unfolders and Folders

Figure 3 depicts a simple processing topology that accepts timeslices and splits them into
physics events. While in the previous example, the source emitted PhysicsEvents, now it
emits Timeslices. The first Map arrow runs any timeslice-level factories needed for splitting.
A new arrow, named Unfold, merges the streams of full Timeslices and empty PhysicsEvents,
producing a new stream of full PhysicsEvents that have a Timeslice as a parent. These are
then passed to Map, which runs any PhysicsEvent-level factories needed for reconstruction.
Finally, Tap writes out the reconstructed PhysicsEvents, and potentially the parent Timeslices
as well. The PhysicsEvent is returned to its pool, and once the last PhysicsEvent for a given
Timeslice is returned, that Timeslice is returned as well.

The key feature here is a new component interface, JEventUnfolder, which is JANA2’s
abstraction for splitting a stream of parent events into child events. It takes its name from
functional programming, where it is a common pattern for operations that start with an initial
value and repeatedly apply a function to generate new values until a termination condition
is met. This terminology has also been adopted by FermilLab’s Meld framework [7] for the
same purpose. JANA2’s implementation is slightly different than its functional program-
ming namesake because all JEvents are pooled and recycled. Thus it consumes as input two
streams (full parents and empty, parentless children) and produces one stream (full, parented
children). JEventUnfolder’s principal callback signature is:

enum class Result { NextChildNextParent, NextChildKeepParent, KeepChildNextParent };

virtual Result Unfold(const JEvent& parent, JEvent& child, int child_index);

Here, the parent event must be immutable because there may be other child events ref-
erencing it downstream. The child event must be mutable, on the other hand, because the
JEventUnfolder needs to insert data collections into it, and there are no other references to
the child event in the whole topology. The child’s index, i.e. the number of children al-
ready emitted downstream with the same parent, is provided for convenience. The Result
enum expresses termination but also memory ownership transfer, while keeping the imple-
mentation details out of the hands of the user. Intuitively it can be understood as “at least
one of the two events will be released downstream.” Splitting can be accomplished using
just NextChildNextParent and NextChildKeepParent. The KeepChildNextParent case en-
ables JEventUnfolder to be used for joining two (already full) streams (e.g. SlowControls
and Timeslice) rather of splitting one into the other.

This callback signature was designed to minimize memory used at any point in time to at
most one parent and one child. It also preserves liveness: the component will not deadlock
even if the user configures JANA?2 to run with exactly one parent and one child event in-flight.
The Unfolder arrow runs sequentially because the JEventUnfolder component needs local
state in order to track its progress within the parent event. Unlike other JANA2 components,
there can only be one JEventUnfolder at a given level in a topology. This is because of the
termination logic: while many JEventUnfolders could all theoretically modify a child event
by looking at its parent event, only one gets to decide when the parent event has been fully
processed.

The ‘unfold‘ combinator has an inverse, ‘fold‘ or ‘reduce‘, which aggregates results from
child events and appends them to the parent event. For instance, subevent-level results would
be reduced into physics-event-level results for building histograms. (Arguably the histogram
itself is conceptually a reduction from physics-event-level results to run-level results, al-
though this is not how it is implemented in practice.) To do these reductions, JANA?2 provides
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JEventFolder. JEventFolder consumes one stream (of parented full children) and emits two
streams (parents, and unparented children). Its principal callback signature is:

virtual void Fold(const JEvent& child, JEvent& parent, int child_index);

JEventFolder is simpler than JEventUnfolder because it doesn’t need a termination con-
dition. This also means that multiple JEventFolders at the same level could in principle be
used simultaneously. The Fold arrow runs sequentially because the JEventUnfolder main-
tains local state. This local state is necessary due to the collection immutability constraints
imposed by Podio. Waiting until the final child event has completed before writing accumu-
lated collections to the parent event is desirable for correctness, as otherwise, user code could
attempt to read collections upstream while they are being written downstream. While JEvent-
Folder guarantees liveness, it has mildly less predictable memory usage than JEventUnfolder,
because it may accumulate results from children with multiple parents at once.

7 General Processing Topologies

Figure 3 depicted a timeslice-splitting processing topology. The user-provided JEvent-
Sources, JEventProcessors, and JFactories have just one modification compared to their coun-
terparts in the traditional processing topology of Figure 1 — they are tagged as belonging to an
event level. As it turns out, the wiring, or connections between the arrows, can be determined
automatically, so that no further configuration is required. This holds true for more complex
processing topologies as well. Figure 4 shows a more complex topology that uses timeslices,
physics events, and subevents.

The algorithm works on an imaginary grid of possible arrows. Each row in the grid is
a level in the user’s event hierarchy. Within each row, the possible arrows always have the
ordering Source, Map, Unfold, Fold, Map, Tap and the only way to move between
levels is via Unfold and Fold. Thus JANA?2 can collect all user-provided components, sort
them by level, and connect them in a single pass. This minimizes the necessary configuration
and plays well with JANA2’s plugin architecture. It has been demonstrated that JANA2
can correctly wire up either the traditional processing topology or the timeframe-splitting
topology based only off of a flag in the input file. Nevertheless, there are certain cases where
the wiring is ambiguous, and advanced users may wish to add custom arrow types which the
algorithm cannot handle. For these cases, JANA?2 allows the wiring to be specified explicitly.

8 Conclusion

The ePIC detector will use a streaming readout architecture. This places additional require-
ments on the reconstruction framework, in particular the ability to read and process time-
frames, split them into physics events, and process and write the physics events. The ePIC
collaboration chose the JANA?2 reconstruction framework since it could be used in produc-
tion immediately, while meanwhile being heavily adapted for ePIC’s longer-term streaming
needs. One major set of improvements introduced the concept of an event hierarchy and
added the ability to use existing JANA?2 components at different event levels. To move be-
tween streams of different levels, this added two new component abstractions, Folder and
Unfolder, which among other uses, allow the user to express arbitrary logic for splitting
timeframes into physics events. The overall design allows JANA2 to automatically wire the
correct processing topology based off of the components that the user has provided, up to
and including the input file itself, thereby minimizing extra configuration. Future work in-
cludes extending this design to explicitly support components that offload their computations,
particularly machine learning tasks, onto heterogeneous hardware such as GPUs.
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Figure 4. An example of a subevent topology. Here, the user provided a Timeslice-level JEventSource,
a Timeslice-to-PhysicsEvent JEventUnfolder, a PhysicsEvent-to-Subevent JEventUnfolder, a Subevent-
to-PhysicsEvent JEventFolder, and a PhysicsEvent-level JEventProcessor. JANA2 was able to activate
the correct arrows and wire the topology automatically. The greyed-out boxes indicate components that
were not provided by the user, but form the abstract grid used by the wiring algorithm.
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