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Abstract

Understanding greenhouse gas emission dynamics in lawn soils is essential for improving climate change
mitigation strategies in urban and suburban environments. This project measured fluxes of carbon dioxide
(CO»), methane (CH4), and nitrous oxide (N,O) fluxes from turfgrass soil columns amended with biochar,
compost, biochar-compost blend, control (no amendment) in a controlled greenhouse mesocosm
experiment. This project simulated contrasting water saturation regimes consisting of normal irrigation
with sprinkler, transient half or full saturation by water table manipulation, and subsequent drying phase
under both sod or seeded grass conditions. Compost-amended columns (compost or biochar-compost
blend) exhibited higher average CO> fluxes (6 umol m™ s!) compared to biochar or control columns (4.5
— 5.0 umol m? s™) across all saturation levels under sod conditions. Seeded grass conditions generally
resulted in less CO; emissions. The CO; fluxes were positively correlated with air temperature and
negatively correlated with soil moisture. Biochar-amended columns retained high soil moisture (~95 %)
throughout experiments, demonstrating superior moisture retention compared to compost. CH4 and N>O
fluxes exhibited temporal increases (5-8 nmol m™ s') during saturation and drainage phases, indicating
their sensitivity to hydrologic conditions. These findings suggest that temperature and amendment types
are primary driver of CO; emissions, while CH4 and N2O fluxes are more responsive to water saturation

dynamics in lawn soils.



Project Description

This report presents key findings of soil greenhouse gas emissions affected by soil hydrologic conditions
(water saturation by water table) and organic soil amendments (biochar, compost, and biochar-compost
blend). Two separate soil mesocosm experiments were conducted representing urban soil installed with
grass sod and urban soil seeded with grass seeds, respectively. Specific objectives were to 1) investigate
the impacts of varying soil hydrologic conditions (water saturation) on GHG emissions by controlling
water table in the soil columns, 2) investigate the effects of the organic amendments on GHG emission
fluxes and 3) explore the effects of redox chemistry on GHG emissions.

Task 1: Soil mesocosm experiment with grass sod

Briefly a total of 12 soil columns (5-gallon bucket) packed with garden soil and surface-amended with
biochar, compost, biochar + compost, or no amendment as control received three different water table
conditions (full saturation, half-saturation, unsaturated condition) under grass sod setting (Figure 2a).
Overall saturation condition began with normal irrigated condition for all columns (24 days) followed by
saturation treatments (2 weeks) for selected columns and then drained and dried (24 days) for all columns.
LI-COR trace gas analyzers (LI-7810 for CO, and CHa, LI-7820 for N,O, LI-COR, Inc., Lincoln, NE,
USA) were used in conjunction with a LI-COR smart chamber (LI-8200-01S) to measure soil GHG
fluxes (Figure 2b). Detailed methodologies were documented in a MS thesis (Salinas, 2024) and a
submitted manuscript (Salinas et al., 2025).
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Figure 1. Experiment setup: (a) Water reservoir connected to Mariotte bottle and (b) GHG flux
measurements using LI-COR instruments.

Key findings

Our results indicated that compost amendment (compost and bio-com) elevated CO, emissions as the
soils undergo transient soil saturation followed by drying phase (Figure 2). The saturated conditions by
raising water table resulted in lower CO, emissions. Positive correlation between air temperature and CO;
emission was profound while there was a negative correlation between soil moisture and CO, emission.
Biochar amendment showed the strong moisture retention and resulted in lower CO, emission. In general,
soil CO; emissions are produced through root respiration, plant leaf respiration, and soil microbial activity
(Hanson et al., 2000). In lawn environment, root respiration and microbial decomposition of organic
matter (e.g., compost) can account for most of the soil respiration (Carbone et al., 2008). The compost
amendment containing labile C in current study was likely attributed to the higher CO, emission than



relatively inert biochar (containing stable C), thus stimulating higher soil respiration from the compost-
amended columns (Cross et al., 2011).
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Figure 2. Soil moisture content, CO» flux, and air temperature: (a) full saturation, (b) half-saturation, and
(c) unsaturated.

The CH4 emissions were temporal depending on water saturation conditions and subsequent drainage
(Figure 3). Biochar-amended columns yielded the lowest CH4 emission. In the unsaturated columns, there
was a sharp peak of CHy4 from control columns (up to 271 nmol m™ s') upon drying over the same period.
Previous studies suggested that lawn field is a sink for CH4 emission, but it was not the case in current
study [21, 22]. The N»O flux was low close to zero while there were intermittent releases from saturated
columns and its emission was more pronounced with compost (4.73 nmol m? s!) and biochar columns
(up to 3.69 nmol m? s™).
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Figure 3. CH4 and N,O flux: (a) full saturation, (b) half-saturation, and (c) unsaturated.

Task 2: Soil mesocosm experiment with seeded grass

The same soil material from task 1 was used for task 2 and Texas Bermuda turfgrass was seeded instead

of sod. For task 2, soil redox probes were installed midway of each soil column. Simulated hydrologic

cycles began with normal irrigated condition (day 1-8) followed by saturation treatments (day 9-20) and

then drained and dried (day 21-46). Task 2 extended the drying period to see its effects on GHG
emissions and the data were extrapolated into cumulative GHG emissions over the 46 days period.

Key findings

Similar to task 1, compost-amended columns (compost and biochar-compost blend) resulted in higher
CO; emissions than biochar and control columns while unsaturated columns showed higher CO»

emissions than full and half saturated columns. Extending dry period (day 21-46) increased cumulative

CO; emissions while there were less CO, emissions during saturation period (day 9-20) (Figure 4).
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Figure 4. Cumulative CO, emissions: (a) biochar, (b) biochar-compost blend, (c) compost, and (d) control
(no amendment).

The CH4 emissions were found right after drainage events on full-saturated columns (Figure 5). By
amendment, compost or biochar columns showed a steep pulse from full-saturated columns and lesser
extent from half-saturated columns, indicating the positive role of water saturation in triggering CHs4
emissions. It was notable that biochar-compost blend columns showed the least CH4 emissions.
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Figure 5. Cumulative CH4 emissions: (a) biochar, (b) biochar-compost blend, (c) compost, and (d) control
(no amendment). Note that emissions data were presented in CO,-equivalent.



The N>O emissions were higher in half-saturated columns and overall unsaturated columns showed the
least (Figure 6). By amendment types, compost columns showed the highest N.O emission followed by
biochar columns. The pulses of N,O emissions were found at the beginning of saturation period (day 9-
10) from half-saturated columns while there were continuous, steady increase during the drying period in
all columns.
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Figure 6. Cumulative N>O emissions: (a) biochar, (b) biochar-compost blend, (c) compost, and (d) control
(no amendment). Note that emissions data were presented in CO,-equivalent.

The redox potential (Eh) responded to temporal water saturation conditions. During the wet period, full
and half-saturated showed a negative Eh range while unsaturated columns stayed positive range (Figure
7). Note that it took some time (~ 10 days) from water saturated columns (negative Eh) reached back to
aerobic condition (positive Eh) under the drying period.
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Figure 7. Redox potential (Eh in mv): (a) biochar, (b) biochar-compost blend, (¢) compost, and (d) control
(no amendment). Note that emissions data were presented in CO»-equivalent. Box and whisker plots on
the left column.

Conclusions

This project used biochar and/or compost as organic amendments for grass sodding (task 1) or seeding
(task 2) and evaluated them for GHG fluxes under contrasting water saturation conditions. Our results
indicated that compost amendment (compost and bio-com blend) can elevate CO; emissions as the soils
undergo transient soil saturation followed by drying phase. Biochar alone did not increase soil CO»
emissions while maintaining higher soil moisture content than compost or unamended soils. For urban
lawn soil management in the context of GHG emissions, blending compost with biochar may be
beneficial in reducing CO» emissions. Temporal increases in CHs and N>O emissions are expected in
saturated lawn soils followed by drying conditions while their emissions are limited under normal
irrigated conditions.
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