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Abstract

In this work we have introduced an optimized Debye-Griineisen model that revolutionizes the
determination of the Debye temperature and Griineisen parameters. Unlike conventional methods,
our model requires only the 0 K energy volume data for a material as input, eliminating the need
to determine the bulk modulus and its pressure derivative, which often pose challenges due to
numerical uncertainties. This unique feature sets our model apart from existing approaches and
streamlines the process, enabling accurate predictions of thermal expansion behavior across
various materials. To demonstrate its effectiveness, we showcase its excellent agreement with
measured coefficients of thermal expansion (CTE) for the nickel-cobalt-chromium-aluminum-
yttrium (Ni-Co-Cr-Al-Y) bond-coating system. Additionally, we apply our approach by
conducting a high-throughput search for potential bond-coating materials among 90,000
compositions within the aluminum-cobalt-chromium-iron-nickel (Al-Co-Cr-Fe-Ni) system. From
this extensive search, four compositions are synthesized, and the measured CTE values agree very
well with theoretical predictions, hence validating our approach. The current optimized Debye-
Grineisen model combined with Density Functional Theory (DFT)-based thermodynamic
database enables reliable and efficient high-throughput calculations of CTE of Ni-based alloys
without expensive phonon calculations.

Keywords: Debye-Griineisen model; Density functional theory; Bond coating materials;
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1 Introduction

Density Functional Theory (DFT) 1,2 is a quantum mechanical method utilized for predicting
electronic and ground-state properties of materials. It relies on the concept of total electron density,
derived from solving the Kohn-Sham! equations. Regular DFT computations are typically
conducted at 0 K, offering valuable insights into various material characteristics, including total
energy, electronic density of states, and interatomic force constants.

However, many applications require predictions of a material's thermodynamic properties at finite
temperatures. Within the framework of DFT, two common approaches are often considered: the
quasi-harmonic phonon approach®#, where interatomic force constants are typically calculated at
0 K, and the Debye-Griineisen approach®>®, which requires only the 0 K static energy volume as
input. The phonon approach, based on lattice dynamics, is highly accurate in determining
vibrational free energy for mechanically stable solids. However, the phonon approach is
computationally demanding and often struggles to address the effects, such as intrinsic anharmonic
effects that go beyond the quasi-harmonic approximation, along with issues of imaginary phonon



frequencies in high-temperature phases of some materials that are mechanically unstable at 0 K 7.
Since this research primarily aims to predict the coefficients of thermal expansion (CTE) for
complex high-entropy materials, phonon calculations are considered too computationally
expensive.

In contrast, the Debye—Griineisen approach offers a simplified alternative for calculating the
vibrational free energy contribution. Although its computational cost requirements are negligible
compared to the phonon approach, its current implementation may sacrifice some accuracy for
efficiency. This compromise stems from uncertainties in determining important input parameters
such as the Debye temperature and the Griineisen parameters. For example, one may need to resort
to using an artificial scaling factor for the Debye temperature®, and there has been ambiguity in
the expressions for the Griineisen parameters, with variations among the Slater®, Dugdale-
MacDonald®, and Vashchenko-Zubarev® expressions. For instance, Kang et al. ° found that the
high-temperature entropy-derived Debye temperature used for phase diagrams can differ from the
low-temperature elastic-constant or heat-capacity-derived Debye temperature by a factor of 0.94.
Music et al. ! used low-temperature elastic constants to calculate the Debye temperature, while
Ma et al. 12 applied the bulk modulus as proposed by Moruzzi et al. °, along with Slater’s high-
temperature Griineisen parameters, for the CoCrFeMnNi high-entropy alloy system. A further
inspiration for this work is to circumvent the uncertainty arising from fitting DFT numerical data
using the equation of state 34, An additional consideration is to calibrate the parameters resulting
from the choice of DFT functionals, which can contribute significantly to this uncertainty in certain
cases.

The primary objective of this work is to address these challenges by developing an optimized
model that enhances the accuracy of the Debye-Grlineisen approach while minimizing its
associated uncertainties. We aim to create a robust methodology to determine the Debye
temperature and the Griineisen parameter accurately, thereby improving the predictive power and
applicability of the Debye-Griineisen model. This optimized model integrates the volume
dependence of the Griineisen parameter within the Debye-Grineisen framework, eliminating the
need for researchers to determine additional parameters beyond the 0 K energy-volume data.

This advancement enables the utilization of DFT outputs through two methods:

i) Direct Method: This approach predicts a material's thermodynamic properties solely based
on 0 K energy-volume data. Additionally, it facilitates the construction of thermodynamic
databases used in the indirect method. This procedure has been applied to build a
thermodynamic database using the energy-volume data obtained from previous work®® on
over 3,000 atomic structures involving 26 elements, including Al, boron(B), carbon (C), Cr,
copper (Cu), hafnium (Hf), lanthanum (La), manganese (Mn), molybdenum (Mo), nitrogen
(N), niobium (Nb), oxygen (O), phosphorus (P), rhenium (Re), ruthenium (Ru), sulfur (S),
silicon (Si), tantalum (Ta), titanium (Ti), vanadium (V), tungsten (W), Y, and zirconium (Zr).

if) Indirect Method: This method utilizes the thermodynamic database from the direct method
to rapidly predict a material's thermodynamic properties, eliminating the need for specific
DFT calculations for the material. Consequently, it enables high-throughput predictions of a
material's thermodynamic properties across various compositions.

These advancements streamline the application of DFT in thermodynamic calculations and
establish a robust theoretical framework for understanding and predicting material behavior under
diverse thermodynamic conditions, including variations in temperature and pressure.



The structure of this work is as follows: In Section 2, the direct approach is detailed, covering the
optimized Debye-Griuneisen model and the procedure for computing the CTE using the energy-
volume curve as the sole input, alongside the establishment of a DFT database. Section 3
introduces the indirect approach, which allows for the prediction of the CTE for a material of
specified composition. This approach leverages an existing DFT database, obviating the
requirement for additional DFT calculations. Section 4 showcases the proposed methodologies by
comparing their predictions with experimental data. Finally, Section 5 presents the conclusions
drawn from the present research findings.

2 Direct DFT Approach

2.1 Calculate CTE by DFT when the Helmholtz Free Energy is Readily Available

For a given material, if the Helmholtz free energy as a function of both temperature and volume is
known, thermal expansion can be directly estimated by observing the increase in equilibrium
volume along the Helmholtz free energy versus volume curve as temperature rises. At a specific
temperature, the equilibrium volume is typically determined by minimizing the Helmholtz free
energy with respect to volume. For isotropic materials, the equilibrium length of the sample can
be calculated as the cubic root of the equilibrium volume. The linear CTE can then be estimated
as the first derivative of the equilibrium length with respect to temperature, divided by the
equilibrium length.

Nowadays, it has become routine to use DFT to estimate the Helmholtz free energy by’
F(V,T) =E.(V) + F,;, (V,T) + F,;(V, T) Eqg. 1

In this formulation, F(V,T) represents the Helmholtz free energy per atom at a given volume V and
temperature T; Ec is the static total energy at 0 K; Fip is the vibrational contribution; and Fe is the
thermal electronic contribution that can be calculated based solely on the electronic density of
states. A detailed description of the formulation for Fe can be found in the referenced prior
works*16:17,

In this work, we aim to determine Fyi, in Eq. 1 by improving the Debye-Griineisen approach®. In
this approach, the expression of the vibrational free energy follows:

Fu,(V,T) = ngQD(V) + kBT{B In [1 —exp (— QDT(V)N -D <6DT(V)>} Eq. 2

where kg represents the Boltzmann’s constant, D is the Debye function, and the Debye
temperature @, (V) is expressed as:

Vo 14

0,(V) =0, (_) Eq. 3
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where 6, represents the Debye temperature at the 0 K static equilibrium volume Vo, which is the

zero-pressure volume point obtained from the DFT energy versus volume curve and y is the so-
called Griineisen parameter, which is the focus of the next subsections.



2.2 Volume Dependence of the Griineisen Parameter

In the original Debye-Griineisen model proposed by Moruzzi et al. °, the Griineisen parameter y in
Eq. 3 is often treated as a constant under zero-pressure conditions. However, this approximation
does not hold well if temperature range is wide, especially for materials with high anharmonicity,
such as Mo and W®. To improve the accuracy of the Griineisen parameter expression, researchers
have explored various approaches. For instance, to model the pressure dependence of the melting
temperature, Burakovsky and Preston®® proposed treating y as an analytic function of V3,
capturing the effects of volume changes more realistically.

In this work, we propose to reconsider the volume dependence of the Griineisen parameter to
improve the agreement with experiment if involving wide temperature range. After making a few
tries, an excellent solution is found to express the volume dependence as:

1

Y =70 (VKO) Eq. 4

Here, y, represents the Griineisen parameter at the 0 K static equilibrium volume Vo, which is the
zero-pressure volume point obtained from the DFT energy versus volume curve, and § is a
constant which is referred to as the Griineisen exponent. This formulation is inspired by the
expression of the Debye temperature in Eq. 3, which relates the Debye temperature to the relative
volume (V/Vo) in the power form.

By introducing this expression for the volume dependence of the Griineisen parameter, we achieve
a more accurate and realistic depiction of its behavior with respect to volume changes, particularly
in capturing intrinsic anharmonic effects beyond the quasiharmonic approximation. This
refinement enhances the accuracy in describing thermodynamic properties, addressing limitations
in Moruzzi’s Debye-Griineisen model®, which treats the Griineisen parameter as a constant.

2.3 Calibrating the Parameters for Pure Elements

A preliminary test was conducted using this approach to calculate the ¢ parameter through the
phonon model for highly anharmonic systems, such as Mo and W. However, the results were
unsatisfactory, likely due to the phonon model's limited ability to fully capture intrinsic
anharmonic effects.

Alternatively, for pure elements or species commonly used as reference systems with abundant
experimental data, we accordingly calibrated the parameter 0,, y,, and & to reproduce the
experimental CTE, aided by the calculated energy-volume curves at 0 K by DFT. During the
process of calibrating the parameters, @,, y,, and &, the thermodynamic calculations have been
performed using the Density Functional Theory Took Kit (DFTTK) package'®. The calibrated
Debye temperature and Griineisen parameters for a selection of 28 pure elements, including silver
(Ag), Al, gold (Au), C, cadmium (Cd), Co, Cr, Cu, Fe, Hf, magnesium (Mg), Mn, Mo, Nb, Ni,
lead (Pb), platinum (Pt), Re, antimony (Sb), Si, tin (Sn), Ta, Ti, V, W, Y, zinc (Zn), and Zr, are
collected in Table 1 where the equilibrium atomic volume V, calculated by DFT in this work is
also listed.

Indeed, when treating § = 0 in Eq. 4, the Griineisen parameter from the optimized model becomes
a constant, thus recovers the result by Moruzzi et al.,> who treat the Griineisen parameter as a
constant. However, as indicated in Table 1, the values of § for the 28 pure elements obtained from



the optimized model are significantly different from zero, ranging from negative value of
-0.3061 for Fe to 5.6326 for C (diamond). These far from zero values of ¢ imply the importance
of the volume dependence of the Griineisen parameter.

To demonstrate the ability of the optimized approach, Figure 1 showcases the comparison between
the calculated CTE based on the calibrated parameters and experimental CTE using Al, Co, Cr,
Ni, Fe, and Hf. These figures demonstrate the success of Eq. 4 for the accurate description of CTE.
Additional data for the CTEs of the elements Ag, Au, C, Cd, Cu, Mg, Mn, Mo, Nb, Pb, Pt, Re, Sh,
Si, Sn, Ta, Ti, V, W, Y, Zn, and Zr are presented in Figure S1 in the supplementary materials.
Being different from the original Debye-Griineisen model proposed by Moruzzi et al., the
Grineisen parameter by the optimized Debye-Griineisen model is no longer a constant. To avoid
confusion and maintain clarity in terminology, we propose introducing an effective Griineisen
parameter based on the logarithmic derivative of the Debye temperature with respect to the
logarithm of the volume. Aided by Eg. 3 and Eq. 4, we obtain:

-rafi7) [+ am () .S
yeff - )/O VO n VO ) )
Using Al, Co, Cr, Ni, Fe, and Hf, Figure 2 showcases a comparison between the effective
Grineisen parameters obtained from the optimized Debye-Griineisen model and the Griineisen
parameters determined by the Slater®, Dugdale-MacDonald®, and Vashchenko-Zubarev®
expressions. Additional data for the Griineisen parameters of the element Ag, Au, C, Cd, Cu, Mg,
Mn, Mo, Nb, Pb, Pt, Re, Sb, Si, Sn, Ta, Ti, V, W, Y, Zn, and Zr are presented in Figure S2 supplied
in the supplementary materials.

It is observed that the Griineisen parameters obtained from the optimized Debye-Griineisen model
naturally span from the low-temperature values derived from the Dugdale-MacDonald or
Vashchenko-Zubarev expressions to the high-temperature values derived from the Slater
expression. The optimized Debye-Grineisen model thus resolves the ambiguity for users in
selecting the appropriate expression for the Griineisen parameter when applying Moruzzi’s
Debye-Griineisen model. Consequently, the optimized Debye-Griineisen model provides a
consistent and continuous representation of the Griineisen parameter, ensuring a smoother
transition between different temperature regimes and capturing a more comprehensive temperature
range of material behavior.

2.4 Determining Parameters for Compounds

To apply the Debye-Griineisen model to a compound, the most challenging aspect is how to
accurately determine the Debye temperature and Griineisen parameter, considering ambiguity and
precision. In this study, we propose a procedure to determine the Debye temperature while
adhering to Eqg. 3 and Eq. 4. We propose to determine the parameters 0, y,, and § for acompound
through the geometric average of those obtained for the constituent pure elements or species
discussed in the previous subsection. Doing so eliminates the ambiguities for the determinations
of 0,, y,, and 6 for each specific composition. The procedures are given below:

We propose to determine @, for a compound in Eq. 3 by:



0, = H [90(1') (V‘;/E)i))y(i)lXi Eq. 6

where 6, represents the 0 K Debye temperature of the compound, 0, (i) represents the 0 K Debye
temperature of the element or species i, V, (i) represents the 0 K equilibrium atomic volume of the
element or species i, and V; represents the 0 K equilibrium atomic volume of the compound. Here

NY @ )
we note that the term (V"V—(l)) in Eq. 6 accounts for a volume correction to the Debye temperature
0

of an element when its environment changes from the pure element to the compound; in other
words, the atomic volume of the element is modified to the average atomic volume within the
compound.

The variable x; in Eq. 6 denotes the normalized composition of the compound, and y (i) in Eq. 6
is the Grilineisen parameter for the element or species i, given by the following equations:

A0
Y® =10 (7¢5) Eq. 7

where 7y, (i) represents the Grlneisen parameter at the equilibrium volume of the element or
species i and §(i) represents the Griineisen exponent of the element or species i. Here again, the

6(i)

Ve . .

term (V ?i)) serves as a volume correction when the environment changes from the pure
0

element to the compound.

Following the scheme of the geometric average, the Griineisen parameter and Grlineisen exponent
of a compound can be determined, respectively, by:

Yo = l_[[y(i)]"i Eq. 8

l

and

o= [sr Fa.9

This geometric averaging approach provides a way to account for the contributions of individual
elements or species in determining the overall properties of the compound.

2.5 True CTE vs Mean CTE

It is worth mentioning that there are two types of definitions for linear CTE, the true (differential)
CTE and the mean (average) CTE?. The true CTE, mostly used by the theoreticians, corresponds
to the first derivative of the curve of the linear thermal expansion with respect to the temperature,

by:

1 dL(T)

ar = mT Eq. 10



Here, L(T) represents the length of the sample as a function of temperature.
The mean CTE, mostly used by the experimentalists, is defined as the slope of a secant through
two points of the curve of linear thermal expansion, by:
_ 1 L(T) — L(298.15)
M = 1(29815) T —298.15

Eq. 11

In this equation, L(298.15) represents the initial length of the sample at 298.15 K.

2.6 Building the DFT Database

With this procedure, a comprehensive thermochemical database is constructed based on the
previous high-throughput first-principles calculations of energy versus volume curves and
electronic density of states, over 3,000 atomic structures (containing mainly the binary and ternary
and a few quaternary compounds) for Ni, Fe, and Co alloys with Al, B, C, Cr, Cu, Hf, La, Mn, Mo,
N, Nb, O, P, Re, Ru, S, Si, Ta, Ti, V, W, Y, and Zr?t,

The database includes both the stoichiometric crystalline phases, the disordered phases (treated
with special quasirandom structure (SQS) approach?*24), and the dilute solution phases as listed
in Table 2. For the magnetic structures, Co, Fe, and Ni are treated as ferromagnetic.
Antiferromagnetic states for Cr and Mn are treated with supercell containing two Cr and 58 Mn
atoms, respectively.

The thermodynamic data collected in the database include temperature, atomic volume, Gibbs
energy, entropy, enthalpy, linear CTE, heat capacities, bulk modulus, and more as a function of
temperature.

2.7 Details of DFT Calculations

The DFT calculations were performed using the Vienna Ab initio Simulation Package (VASP)?°.
The projector augmented wave (PAW-PBE) potentials under the generalized gradient
approximation (GGA) for exchange-correlation potential was utilized?®2’. Convergence tolerance
of 10 eV was utilized for electronic relaxation while the tolerance of 10* eV was utilized for
structural  relaxation. For  structural relaxation, we employed the first-order
Methfessel-Paxton method with a Gaussian smearing of 0.2 eV for Brillouin zone integration, in
addition to the default energy cutoff determined with the VASP key setting of “PREC=accurate”.
Following the structural relaxation, high-accuracy total energy calculations were conducted using
Bloch’s tetrahedron method, employing a plane wave expansion with an energy cutoff of 400 eV.
The k-points mesh was determined based on a reciprocal density of 5,000 points per atom.

3 Indirect/High-Throughput DFT Approach to Calculate CTE

When the need arises to determine the CTEs for hundreds or even thousands of materials within a
time scale of minutes, employing the direct DFT approach for CTE calculations becomes
unfeasible. This section outlines an alternative indirect approach for predicting the CTE of a given
material, utilizing the database described in the previous section. With this method, our objective
is to estimate the CTE of a specific material within the timespan of just one-tenth of a second,
relying solely on its composition. The procedure is as follows:



Let us use (7](]' =1, ...,n) to represent the overall atomic composition of a given n-component
system, where j indexes the element in the system. For such a system, we can employ the Dantzig
algebra?®, following the previous work?., to calculate its phase equilibrium. The phase fractions as
a function of temperature are predicted by performing a constrained minimization of the following
objective function in terms of the Gibbs free energy, which at zero pressure equals to the Helmholtz
free energy at equilibrium volume:

G(T) = z FO(TYGO(T) Eq. 12

Here, G represents the Gibbs energy per atom of phase o, m is the number of phases, and f is
the phase fraction of the ath phase. The minimization with respectto f¢ subjects to the following
two conditions:

m
C = z £o(M)xs Eq. 13
i=o
where x; represents the composition of the jth element in the oth phase, and
m
Y=t £q. 14
o=1
At the given temperature, two important outcomes from the above minimization process are:
i) if f?equals to one at o = k and all other f? (o # k) equal to zero, it means that the
system will be stable at the single phase k; and
i) Otherwise, if more than one f?’s are not zero, the system will consist of a mixture of

multiple phases with £ being the phase fraction of the corresponding phase.
For a system made of multiple phases, we can approximate the CTE as:

07=Zf"(T) _ U+de0(7)v_ Eq. 15

For the calculations performed in this work, the term dfd—T(T) has been neglected, as it only becomes

significant near the phase transition temperature, where the CTE exhibits considerable uncertainty.
The variable V9 in Eq. 15 is the atomic volume of ath phase, and a? is the CTE of the ath phase
that can be computed using Eg. 1 with Eq. 10 or Eq. 11. V in Eq. 15 is the averaged atomic volume
of the system:

V= Zf TV Eq. 16



4  Results and Discussions

4.1 Benchmark Calculation

Verification of both the direct and indirect DFT approaches has been carried out using the bond
coating materials of NiCo17Cr14AlY and NiCoCrAlY, and the superalloy René N5, for which
experimental data are available from studies by Haynes et al.,?° and Taylor and Walsh®. CTE is a
key consideration for bond coating to ensure optimal performance and durability of the coated
structure. René N5 is a high-performance material®* known for its excellent mechanical properties,
particularly at high temperatures. It's commonly used in aerospace applications, such as in jet
engines and gas turbines. René NS5 is typically made of the y (gamma) phase, which is the face
centered cubic (FCC) phase of Ni.

In particular for the direct DFT calculations, these three alloys have been treated as random FCC
alloys with the SQS approach??24, The comparisons between the predictions and experimental data
from Haynes et al.,?® and Taylor and Walsh®® are depicted in Figure 3. It is notable that the
experimental data fall neatly between the predicted CTEs obtained from both direct and indirect
DFT calculations. The moderate volume jumps observed in the indirect DFT calculations stem
from the discontinuous changes in phase fractions associated with the indirect approach. The
observed discrepancy between predicted CTEs from the indirect approach and those from the
direct approach can be partly attributed to the neglect of the sudden volume jump across phase
transition due to the usage of Eq. 15.

4.2 Verification of the Indirect DFT Approach

To support the proposed indirect DFT approach, we conducted CTE calculations for two series of
alloy systems, as documented by Haynes et al.,?° and by Taylor and Walsh®. The comparison with
the measured CTEs, specifically the mean CTE, reported by Haynes et al.,?° for Nil0Cr19AlY,
Ni20Cr19AlY, NiCol7Cr14Al, and Ni7Crl13AlY is presented in Figure 4. Additionally, a
comparison with the measured CTEs reported by Haynes et al., for Ni25AlI+Hf, Ni40Al,
Ni50Al+Hf, and Ni50Al is shown in Figure 5. Furthermore, we compared the predicted CTEs with
the measured values reported by Taylor and Walsh® for a set of alloys (the compositions of these
alloys are listed in Table 3), and these comparisons are illustrated in Figure 6 and Figure 7.

From these comparisons, it can be confidently asserted that the agreement between the predictions
and experimental measurements is outstanding. The kinks observed along the CTE curves
represent phase transitions. In sum, these comparisons serve to demonstrate the capability of the
proposed optimized Debye-Griineisen model to accurately predict the thermal expansion behavior
of complex materials.

4.3 High-Throughput Screening for Bond Coating Material

Being able to efficiently predict the CTE across a wide range of compositions and temperatures is
invaluable for materials research, especially for applications like searching for potential bond
coating materials. By utilizing the indirect approach outlined in Section 3, researchers can expedite
the screening process and analyze a vast number of compositions. This approach enables efficient
exploration of a larger design space and can lead to the rapid discovery of novel materials with
desirable properties. We applied this methodology to search for a potential bond coating material
within the Al-Co-Cr-Fe-Ni system among 90,000 compositions for target application temperatures
from 1000 °C to 1200 °C.



Remarkably, these predictions can be completed within the scale of an hour of a standard central
processing unit (CPU). The predicted CTEs for the 90,000 compositions by the indirect approach
are provided in the supplementary materials as csv files.

4.4 Experimental and Direct DFT Verification for the High-Throughput Screening Result

In this work, we have selected four compositions, AlieC018CrisFe1gNizs, Al2oC018CrieFeisNios,
Al22C018CreFe1oNiss, and AlxsCo10CrioFesNisg for experimental validation. These compositions
were chosen to undergo direct DFT calculations and synthesized for conducting CTE
measurements.

4.4.1 Experimental Setups for the Measurements of CTE

The alloy ingots for experiment validation were synthesized via arc-melting using high-purity
(99.99 wt.%) Al, Co, Cr, Fe, Ni metals, and reactive elements Y and Hf. The elemental blend was
melted five times on a water-cooled Cu hearth under a Ti-gettered high-purity argon atmosphere
to ensure compositional homogeneity, then cast into ingots measuring 2" x 2.5" x 0.5".

For the assessment of oxidation resistance, square plates (10 mm x 10 mm x 3 mm) were sectioned
from the cast ingots using electrical discharge machining (EDM). Samples underwent
metallographic preparation, involving grinding with silicon carbide (SiC) papers followed by
polishing with 0.05 um colloidal alumina. Prior to oxidation testing, samples were rigorously
cleaned with acetone and air-dried. For testing, samples were placed in alumina crucibles which
have been pre-oxidized at 1150 °C for over 1,000 hours to prevent additional oxidation weight
gain during evaluation. The discontinuous oxidation experiment was performed at 1150 °C in a
chamber furnace under atmosphere environment for up to 1000 h, with exposure intervals of 100
h. The procedure included ramping the furnace temperature to 1150 °C, then swiftly inserting the
samples and exposing them for 100 h, and then turning off the furnace, letting the samples cool
down to room temperature before removing them from the furnace. The weight of the samples is
measured twice, with and without the crucible, using a analytical balances with 0.01 mg precision.

The phase composition of the alloy and oxide scale was studied using X-ray diffraction (XRD) in
a diffractometer (X’Pert Pro, PANalytical, the Netherlands) fitted with Cu Ko radiation at 45 kV.
The spectra were collected in the 26 range of 20~100 degree, with a step size of 0.02 degree, and
a scanning speed of 0.5 degree/min. The microstructure and chemical composition of samples were
examined using scanning electron microscopy (SEM) (JEOL JSM-7600F, Japan) equipped with
energy dispersive X-ray spectroscopy (EDS).

The CTE for each alloy was measured using 5 x 5 x 10 (mm) specimens. Specimens were tested
in a Netzsch (Burlington, MA) DIL 402 CL dilatometer using an alumina push rod with a pushing
load force of 200 mN. The measurement temperature ramp from 50 °C to 1300 °C with a heating
rate of 2 °C/min. The measurements were conducted under flowing argon gas with flow rate of
50 ml/min to inhibit oxidation.

4.4.2 Experimental Results

For these four compositions, the CALculation of PHAse Diagrams (CALPHAD) method®? was
employed to determine the phase fractions using TCNI8 database, revealing that they consisted
exclusively of FCC and B2 phases within the interested temperature range from 1000 °C to
1200 °C. Subsequently, direct DFT calculations were conducted for both the FCC and B2 phases




using the SQS approach. In this method, it should mention that the B2 phase was treated with two
sublattices, utilizing the site compositions obtained from the CALPHAD analysis.

In Figure 8, the calculated CTEs are compared with the measurements. The calculated CTEs are
derived as an average between the FCC phase and B2 phase, utilizing the respective phase fractions
(between parenthesis in each subplots) given in each figure panel of Figure 8, estimated by
CALPHAD at 1150 °C. To mitigate the impact of significant data uncertainty arising from the
measurements, a smoothing process was applied. The collected data underwent averaging over
temperature intervals of 150 °C.

Post-CTE microstructure analysis (see Figure S2 in the Supplementary Materials) revealed no
evidence of precipitation, segregation, or the formation of additional phases in any of the four HEA
samples, underscoring their phase stability during CTE measurement. Supporting this, XRD
analysis (see Figure S3 in the Supplementary Materials) indicated consistent structural integrity
across all samples post-CTE, with no detectable formation of new phases or significant changes in
phase distribution. Minor a-alumina peaks were observed, likely due to minimal oxidation from
trace oxygen (ppm levels) in the argon gas used during CTE measurement. However, this oxidation
is negligible, as all four samples exhibit strong alumina-forming properties, creating dense,
protective a-alumina layers that provides excellent oxidation resistance.

DSC analysis over the temperature range of 80 °C to 1450 °C was conducted to confirm the
absence of phase transitions during CTE measurements, indicating that the alloys maintained
structural stability. The observed bumps in CTE values, as shown in Figure 8, are thus attributed
to shifts in phase fractions rather than discrete phase transformations. XRD results corroborate a
general trend of increasing FCC content and decreasing BCC content across all alloys post-CTE,
consistent with compositional shifts without altering primary phase stability.

In particular, post-CTE micrographs (see Figure S3-S8 in the Supplementary Materials) illustrate
this phase evolution within the Al1sCo18CrisFe1gNiss alloy, where a notable increase in a ‘needle-
like” phase was observed. This needle-like morphology is attributed to the growth of an Al-poor
FCC phase, emphasizing the alloy's tendency for compositional redistribution under thermal
cycling conditions without compromising the bulk structure. Together, these findings confirm the
high thermal and structural stability of the alloys, even in the presence of minor oxidation, and
underscore the robust phase consistency of the HEAs under study.

For high temperature applications, CTE is a very important property parameter to minimize
thermal stress due to the mismatch in CTE between joint components or between base alloys and
coatings. Experiments show that a low mismatch in CTE between the bond coating and a-Al203
at 1150 °C leads to significantly longer service time against spallation?. It is intuitively expected
that low CTE values would contribute to lower creep rate of an alloy in general. The present work
addressed the urgent need in developing reliable and efficient models in predicting CTE for wide
ranges of alloy compositions. Our optimized Debye-Griineisen approach considers the volume
dependence of the Griineisen parameter, and excellent agreement is achieved between model
prediction and experiments for a variety of alloy compositions. Furthermore, the current optimized
Debye-Griineisen model combined with DFT-based thermodynamic database enables robust
high-throughput calculations of CTE of Ni-based alloys and hence greatly accelerates
high-temperature alloy design.



1. Summary

In conclusion, this paper presents an optimized Debye-Grineisen model that simplifies the
determination of the Debye temperature and Griineisen parameters. By requiring only the 0 K
energy volume data for a material as input, this model eliminates the need to determine the bulk
modulus and the pressure derivative of the bulk modulus, overcoming challenges associated with
numerical uncertainties and setting itself apart from existing models. Through this streamlined
process, our optimized Debye-Griineisen model enables accurate predictions of thermal expansion
behavior across various materials.

Our study demonstrates the effectiveness of the optimized model by showcasing its excellent
agreement with measured CTE for the Ni-Co-Cr-Al-Y bondcoat system. Additionally, we validate
the approach through a rigorous process, conducting a high-throughput search for potential
bondcoat materials among 90,000 compositions within the Al-Co-Cr-Fe-Ni system. Meticulously
screening compositions based on criteria such as CTE and corrosion resistance, we synthesize and
measure four compositions, demonstrating excellent agreement with theoretical predictions.

The optimized model offers versatile applications: researchers capable of computing the
energy-volume curve using DFT can directly predict the CTE. Conversely, for materials with
arbitrary compositions, the CTE can be predicted without performing DFT calculations for them.
This is achieved by utilizing a comprehensive database compiled from pre-existing DFT
calculations, providing a valuable tool for expedited material property prediction and exploration.

In summary, our optimized Debye-Griineisen model presents a novel and robust approach to
thermal expansion prediction, enhancing accuracy across a wide range of materials. Its
effectiveness is evidenced by the excellent agreements with measured CTE for both the
Ni-Co-Cr-Al-Y and Al-Co-Cr-Fe-Ni systems, establishing a promising avenue for future research
in material science and engineering.

Looking ahead, the versatility of this optimized Debye-Griineisen model offers promising
applications. For researchers equipped with DFT capabilities, it provides a direct pathway to
predict CTE with minimal computational effort. For those working with arbitrary or new
compositions, predictions can be made using a comprehensive DFT-based database, offering a
rapid and cost-effective means of material exploration and property prediction.
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Figure 1. Comparison of the true linear coefficient of thermal expansion (a;) described by the present optimized
Debye-Griineisen model with the Moruzzi model® employing the Griineisen parameters determined by the Slater®,
Dugdale-MacDonald®, and Vashchenko-Zubarev® expressions. The dots plotted in the left panels represent the
experimental CTEs for pure elements®-3: (a) Al, (b) Co, (c) Cr, (d) Fe, (€) Hf, and (f) Ni.
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Figure 2: The effective Griineisen parameters (y.s5, see Eqg. 5 in the main text) as described by the present optimized
Debye-Griineisen model. For comparison, the Griineisen parameters calculated using the expressions by the Slater?,
Dugdale-MacDonald®, and Vashchenko-Zubarev® are also shown for (a) Al, (b) Co, (c) Cr, (d) Ni, (e) Fe, and (f) Hf.



NiCoCrAlY(AI56Co51Cr31Ni78)

(a) le-5 NiCol7Cr14AIY(AI51Co36Cr38Ni90Y1) (b) 1le=5
---- ar,single-5QS
257 ay,single-SQS
-------- ar,mixed-structures
2.0{ —— aum,mixed-structures
* Haynes:ay
;‘LS
[ ---- ay,single-SQS
8] .
1.0 —— am,single-SQS
Fo R e ar,mixed-structures
Fi )
0.5+ § —— ay,mixed-structures
;' e Taylor-Walsh:ar
i
0_0_,' v Taylor-Walsh:am
0 200 400 600 800 1000 1200 1400 1600 o] 200 400 600 800 1000 1200 1400 1600
T(K) T(K)
(c) 1le-5 ReneN5(AI30Co16Cr17Nil45Ta5W3)
2.0
1.5
T
X
1.0 -
o 5
i ---- ag,single-SQS
05 f — = am,single-SQS
r
’ - ar,mixed-structures
,.‘ —— am,Mixed-structures
00,,’ & Haynes:ay
: 600 800 1000 1200 1400 1600

0 200 400
T(K)
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DFT approach (see Section 3).
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Figure 8: The comparison of the linear CTEs predicted by the optimized Debye-Griineisen model with the measured
CTEs of this work for the four compositions within the Al-Co-Cr-Fe-Ni system. In the graph, experimental data points
are denoted by dots. The dotted line represents the mean CTE calculated using the direct DFT approach, determined
as a weighted average between the FCC and B2 phases. Conversely, the solid line represents the instantaneous CTE
calculated using the direct DFT approach, obtained again by a weighted average between the FCC and B2 phases. The
long dashed line represents the mean CTE calculated by the indirect DFT approach (see Section 3) and the dot-dashed
line represents the instant CTE calculated by the indirect DFT approach (see Section 3). The numbers between
parenthesis are phase fractions at 1150 °C obtained from CALPHAD approach using TCNI8 database.



Table 1: Calibrated Parameters (Refer to Eq. 3 and Eq. 4 and Associated Notes for their Definitions) for the
Optimized Debye-Griineisen Model, Alongside the DFT Equilibrium Atomic Volume at 0 K (Vo) for Selected Pure

Elements
0y Vo

Element | (K) Yo ) (A3/atom)

Ag 218.08 2.1103 0.4486 17.8484
Al 392.03 2.0108 0.9283 16.4676
Au 175.27 2.4249 0.7783 17.9583
C 1615.6 0.5762 5.6326 5.7068
Cd 130.6 1.7327 0.3923 23.0563
Co 356.02 1.9813 1.6945 10.8095
Cr 506.47 1.2781 1.9289 11.8436
Cu 322.98 1.932 0.6662 12.0183
Fe 380.63 1.7992 —0.3061 11.378
Hf 186.79 0.998 2.2638 22.4418
Mg 322.64 1.37 1.0325 22.9086
Mn 390.26 3.2397 1.7662 11.0853
Mo 333.39 1.3904 3.1012 15.756
Nb 287.33 1.5835 0.2444 18.1155
Ni 395.76 2.035 0.4897 10.8666
Pb 90.81 2.2911 0.7807 31.9081
Pt 233.61 2.293 0.9573 15.6064
Re 287.33 2.5247 0.5422 14.9315
Sh 180.26 0.6417 —0.7596 31.9165
Si 814.81 0.434 4.874 20.4463
Sn 155.75 1.6454 2.8147 28.412
Ta 213.56 1.4078 2.4935 18.321
Ti 349.95 1.1881 1.4772 17.3724




\Y 394.84 1.4753 1.4026 13.4901
W 312.2 1.6224 1.9152 15.9379
Y 240.46 0.9587 0.6664 32.8007
Zn 210.28 1.7363 —0.3987 15.3875
Zr 251.04 0.8885 3.1579 23.4251




Table 2: Ordered and Disordered Structures included in the Database

Structure

Range of Elements

L1,-AsM (), D022-AsM (y”), and D0x-AsM (3)

A=Ni, Co, Cr, and Fe and M (#A)= Ni, Co, Cr, Fe, Al,
B, C, Cr, Cu, Hf, La, Mn, Mo, N, Nb, O, P, Re, Ru, S,

Si, Ta, Ti, V, W, Y, and Zr

C14-A2M, AsM, MC, (A,M)5C, and (A,M)zsCe

A, M (#A)= Ni, Co, Cr, Fe, Al, B, C, Cr, Cu, Hf, La,
Mn, Mo, N, Nb, O, P, Re, Ru, S, Si, Ta, Ti, V, W, Y,

and Zr

M'AGML and G'AxMy

A=Ni, Co, Cr, and Fe and M (#A) = Al, B, C, Cr, Cu,
Hf, La, Mn, Mo, N, Nb, O, P, Re, Ru, S, Si, Ta, Ti, V,

W, Y, and Zr

Binary fcc XM (y) at x=0.333, 0.5,

0.625,0.667,0.75, and 0.875

X=Fe, Co, Ni, and Cr, and M= Al, C, Co, Cr, Cu, Fe,

Hf, Mn, Mo, Nb, Ni, Re, Si, Ta, Ti, and W

Ternary fcc X1sM13Z13 and XasMysZis

X=Fe, Co, Ni, and Cr, and M,Z=Al, C, Co, Cr, Cu, Fe,

Hf, Mn, Mo, Nb, Ni, Re, Si, Ta, Ti, and W

Binary bce My3Zy/3 and ternary bee XizMisZiys.

X=Fe, Co, Ni, and Cr, and M,Z=Al, C, Co, Cr, Cu, Fe,

Hf, Mn, Mo, Nb, Ni, Re, Si, Ta, Ti, and W

Binary fcc-based dilute solution NiynM at N=31, 107,

and 255

M= Al, C, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Re, Si,

Ta, Ti,and W




Table 3: The Alloy Compositions (Weight Percentage) of Taylor and Walsh®

Alloy Ni Co Cr Al Y Mo

LN-4 80 0 20 0 0 0
LN-5B 94.4 0 0 4.89 0 0
LN-11 49 22.08 15.54 12.61 0.62 0
LN-21 48.6 22.83 20.01 7.53 0.58 0
LN-33 68.6 0 19.57 10.9 0.41 0
LN-46 53.6 14.82 19.03 11.24 0.43 0.53
LN-49 53 15 19 13 0.5 0.5
LCo-7 0 64 24 12 0.5 0
LCo-22 31.75 39.5 20.17 7.54 0.64 0
LCo-22+Al 29 38 21 11 0.5 0
LCo-29 0.12 74.2 16.94 7.79 0.5 0
LCo-40 0.11 63.7 26.6 8.97 0.54 0
LCo-49 42 28 15 14 0.5 0
TM-309 42 25 23 10 0.5 0
NiCo 57 43 0 0 0 0
Ni 100 0 0 0 0 0
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Figure S1. Comparison of the true linear coefficient of thermal expansion (ay) described by the
present optimized Debye-Grineisen model with the Moruzzi model [1] employing the Griineisen




parameters determined by the Slater [2], Dugdale-MacDonald [3], and Vashchenko-Zubarev [4]
expressions. The dots plotted in the left panels represent the experimental CTEs for pure elements:

Ag, Au, Cd, C, Cu, Mg, Mn, Mo, Nb, Pb, Pt, Re, Sb, Si, Sn, Ta, Ti, V, W, Y, Zn, and Zr.
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Figure S2. Comparison of the effective Griineisen parameters (v, See EQ. 5 in the main text)
described by the present optimized Debye-Griineisen model with the Moruzzi model [1]
employing the Grineisen parameters determined by the Slater [2], Dugdale-MacDonald [3], and
Vashchenko-Zubarev [4] expressions for pure elements: Ag, Au, Cd, C, Cu, Mg, Mn, Mo, Nb, Pb,
Pt, Re, Sb, Si, Sn, Ta, Ti, V, W, Y, Zn, and Zr.
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Figure S4. XRD results for four samples before and after CTE measurement.

(a) (b)

Figure S5. Microstructure (a) before and (b) after CTE measurement for
Al16C018Cr14Fel8Ni34.
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Figure S6. Microstructure (a) before and (b) after CTE measurement for AlI22Co018Cr6Fe10Ni44.

(@) (b)

Figure S7. Microstructure (a) before and (b) af{ér CTE measurement for AI26C010Cr10Fe6Ni48.
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Figure S8. Microstructure (a) before and (b) after CTE measurement for
Al16C018Cr14Fel8Ni34.

I

The attached cvs files contain the calculated mean and true CTE values for 90,000 Al-Co-Cr-Fe-
Ni alloys at 1000 °C, 1050 °C, 1100 °C, 1150 °C, and 1200 °C.
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