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Abstract— Power grids are critical infrastructures that require
robust resilience analysis to ensure reliable and uninterrupted
electricity supply. Traditional simulation-based methods for grid
resilience analysis suffer from computational complexity and lim-
ited ability to capture the full spectrum of potential disruptions.
This paper presents a novel approach to enhance grid resilience
by leveraging transductive graph neural network (GNN) learning
to identify critical nodes and links. By leveraging the graph
structure and system features, GNNs effectively learn resilience
metrics and accurately identify critical nodes based on actual
grid operational behavior. The efficacy of the proposed approach
is demonstrated through case studies on node criticality scoring
and critical node/line identification in cascading outage scenarios.
The results highlight the advantages of learning-based methods
over traditional simulation-based approaches and their potential
to revolutionize grid resilience analysis. The contributions of this
paper include a graph-based scalable approach for fast cascading
analysis, an inductive formulation for training GNN models, and
a transfer learning-based approach to scale the model to large-
scale power systems.

Keywords: grid resilience, graph neural networks, transductive
learning, resilience metrics, cascading outage

I. INTRODUCTION

Power grids are critical infrastructures that provide essential
services to society. Ensuring the resilience of these grids is of
paramount importance to maintain a reliable and uninterrupted
electricity supply, particularly in the face of increasing threats
and uncertainties. Traditional approaches to grid resilience
analysis often rely on simulation-based methods that simu-
late system behavior under various conditions. While these
methods have provided valuable insights, one major drawback
of simulation-based resilience analysis is its computational
complexity. Power grids are complex networks with thousands
of nodes and intricate interdependencies, making exhaustive
simulations time-consuming and resource-intensive. Moreover,
simulations are typically based on specific scenarios and
assumptions, limiting their ability to capture the full spectrum
of potential disruptions and failures that a grid may experience.
This restricts the effectiveness of traditional methods that
heavily rely on pre-defined event scenarios and simulation
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parameters for identifying critical nodes whose failure can
negatively impact grid operations

To address these limitations, there is a growing interest
in leveraging machine learning techniques, particularly graph
neural networks (GNNs), to enhance grid resilience analysis.
Learning-based methods offer the advantage of capturing the
inherent complex relationships and dynamics within power
grids, without relying on explicit modeling assumptions. By
utilizing historical data, GNNs can learn resilience metrics and
identify critical nodes based on the grid’s actual operational
behavior, rather than predefined scenarios.

The introduction of transductive GNN learning for grid
resilience analysis presents a promising solution. Transductive
learning allows the algorithm to generalize well to unseen
scenarios and adapt to dynamic changes in the grid’s topology,
enabling a proactive approach to grid resilience. By combining
the expressive power of GNNs with the data-driven nature of
the approach, the identification of critical nodes can be more
accurate, efficient, and effective in enhancing grid resilience.

In this paper, we propose a novel algorithm that utilizes
transductive GNN learning for improved grid resilience anal-
ysis. We present two case studies that demonstrate the efficacy
of the approach: node criticality scoring for a power network
and identification of critical lines in cascading outage studies.
Identification of critical elements and links can be used for
strategic hardening to improve the overall resilience of the
power system. Through these case studies, we showcase
the advantages of learning-based methods over traditional
simulation-based approaches, highlighting their potential to
revolutionize grid resilience analysis.

A. Literature Review

Existing literature has explored large-scale blackout prob-
lems using historical outage data which is limited to very few
scenarios, and future failure scenarios might not be related
to past events. Other researchers resort to simulation-based
analytics which is computationally expensive and become
infeasible for large transmission systems [1].

The various techniques developed to identify critical ele-
ments in the system can be broadly classified as

1) Topological Analysis: This approach involves study-
ing the topology of power systems [2] to identify potential
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weaknesses or vulnerable points that could trigger cascading
outages. It helps in finding potential cascading paths and
predicts the extent and duration of cascading outages

2) Dynamic Simulation: Dynamic simulation models the
power system’s behavior under different operating conditions
and contingencies. It models the cascading behavior through
dynamic modeling of components of the power system [3], [4],
taking into account the physical and electrical characteristics
of the equipment. The simulation can be used to predict the
system’s response to various disturbances, including cascading
outages and identification of critical points in the system that
may trigger these cascades.

3) Statistical Analysis: Probabilistic analysis involves as-
sessing the likelihood of cascading outages occurring in the
power system. It analyzes historical outage data to identify
patterns and correlations that could indicate the likelihood of
cascading outages. This method can also be used to develop
predictive models to estimate the probability and severity of
cascading outages [5], [6], [7].

In contrast to earlier works, [8] addresses this issue using a
data-driven method incorporating a security index to score the
cascading outage. In addition, they use deep convolution and
depth-first algorithms to reduce computational burden and find
scenarios for cascading outages. Few works have proposed
graph-based network approaches for risk and vulnerability
assessment. In general, a combination of these techniques can
be used to model cascading outages in power systems and
identify strategies to prevent and mitigate them.

B. Research Gap and Contributions

The primary challenge of resilience analysis is the nonlinear
and dynamic behavior due to multiple interconnected compo-
nents and systems, and the failure of one component can lead
to a cascading effect that can rapidly spread throughout the
system. This behavior of the system can quickly become com-
plex and unpredictable. Cascading failures are often triggered
by events that are unpredictable, such as natural disasters or
cyber-attacks. This makes it difficult to prepare for and respond
to such events, as it can be difficult to accurately predict when
and where they will occur. Furthermore, obtaining complete
and accurate information about the system’s state and topology
can be challenging during emergencies, further complicating
the response efforts. While various methods exist, such as
contingency analysis and dynamic simulation, they have their
limitations. Improving resilience often requires significant re-
source investments, such as increasing redundancy, improving
system monitoring, or implementing new protection devices.
Resource constraints can limit the ability of system operators
and planners to implement measures to prevent and mitigate
cascading failures. The detailed challenges and risk assessment
methodologies is discussed in [9].

Addressing these challenges requires a collaborative effort
between system operators, researchers, and policymakers to
develop effective risk management strategies and improve
the overall resilience of power systems. Advances in data

analytics, machine learning, and real-time monitoring can also
help in detecting and preventing cascading failures.

Though there is a large literature on Cascading on the
graphs and modeling them using the graph topology [10], [11],
they are not scalable which limits their application to large
power systems. For graph-based models, several methods are
available for the identification of critical nodes/links based on
an iterative approach that explores each node/link of a graph
at a time. The authors in [12] proposed a scalable graph-
based model for identifying the critical nodes in the graph
that can be used to train on a small or subset of the graph
which can be further scalable to the large graph. For the post-
outage recovery, whether the current outage leads to a further
outage, a forward and backward Markov tree algorithm has
been proposed in [13]. Another approach proposed in [14]
is a Markovian influence graph for transmission line outage
data using the transitions probability matrix for modeling
the cascading line outage generation. In real word scenarios,
all these graphs become large and it becomes infeasible to
use traditional approaches. This motivates us to explore the
graph neural network-based approaches to make the proposed
algorithm scalable and more generalized.

Based on the identified gaps in literature, the paper has the
following contributions,

1) We propose a resilience analysis framework to identify
critical elements in a power system using a graph neural
network approach. This graph-based method exploits the
local neighborhood information of nodes and links for
fast and scalable cascading analysis.

2) The formulation has an inductive nature which is utilized
to train the GNN model on a portion of the power system
and the trained model is applied to the rest of the system.

3) Finally, a transfer learning-based approach is proposed
to scale the model trained on a smaller system to larger
power systems utilizing the transductive nature of the
proposed algorithm.

The paper is organized as follows. Section II provides
an overview of the system model and problem formulation.
Section III presents the proposed resilience analysis framework
using graph neural networks and transductive learning. Section
IV discusses the experimental setup and presents the results
for various power system models. Section V concludes the
paper and outlines future research directions.

II. SYSTEM MODEL AND PRELIMINARIES

The proposed approach exploits the graphical representa-
tions of a power system and identifies critical elements based
on desired properties and metrics. The graph representation
along with the GNN-based learning approach is discussed in
the following subsections:

A. Problem Formulation

We consider a graph G = (V, E), where V is the set of
nodes/vertices that represent buses in the system and E is the
set of edges/links, representing transmission lines that connect
neighboring buses. The features for each node can include

Authorized licensed use limited to: Kansas State University. Downloaded on June 27,2025 at 20:55:57 UTC from IEEE Xplore. Restrictions apply.



standard power system information such as the bus type, Base
voltage, zone, Voltage limits, etc. while the features for each
edge can include information such as the line resistance and
reactance, line ratings, tap, shift, and status. The graphical
representation can be used to analyze the power transmission
line outages in this system as a link classification task, where
the goal is to predict whether a transmission line will fail under
certain conditions. Critical points are components or elements
within a system that are vulnerable to failure and have the
potential to initiate cascading failures. Identification of these
critical lines/links can guide hardening solutions to protect the
system and prevent cascading failure scenarios.

Contingency analysis methods can be employed to identify
critical components, which involve analyzing the system’s
behavior under disruptive events that cause failure of specific
components while assuming all other components remain oper-
ational. Disruptions can occur due to various factors, including
stress, hazards, external attacks, or sudden load increases.
However, identifying critical nodes/links is a challenging com-
binatorial problem that is NP-complete, as discussed in [15].

In this paper, we present a transductive GNN-based learn-
ing approach to the critical nodes/links identification. Graph
Neural Network (GNN) is a neural network architecture that
leverages the properties as well as the structure of graphs. A
high-level flow for the identification of critical components
using GNNs for power systems is shown in Fig.1.

Data Preprocessing
Graph Construction
Feature Engineering

| GNNs Modd Training]

Add Features
Node: [Bus type
Base Voltage, Volt-
age limits, ---1.
Edge: [Line resistance
and reactance, Line
Ratings, Tap, shift, - 1.
Labels: Generated from
Contingency Analysis

‘ Identify Top N Critical demeﬁts‘

[ Validation & Testing |

Learning Based Resilience Analysis Flow Chart

Fig. 1.

Preliminaries on GNN and the proposed approach will be
explained in detail in the subsequent sections.

B. Preliminaries of Graph Neural Networks

A GNN typically operates on graphs by creating a com-
putation graph using the graph’s structure information and
incorporating node features. The basic computation graph for
a 6-bus system is illustrated in Fig.2. Assume we have a
graph G = (V, A, X), where V is the vertex set, A is the
adjacency matrix, and X is a matrix of node features, where
node v € V and N(v) represents the set of neighbors of v.
A node embedding is a vector representation for each node
in a graph to capture essential information about the node’s

-
GNN Layer 1

Target Node
®—0C e e
oo |
1
Input graph [ oty S Y S W
Computation graph
Fig. 2. Input and Computation graph

features and its relationships with neighboring nodes in the
graph. GNN involves the learning of a function f that maps
the graph G to a space R™*¢, where m is the number of
nodes and d represents the dimension of the node embedding.
f updates the node representations iteratively by integrating
information from neighboring nodes.

Graph Neural Networks (GNNs) perform two crucial tasks,
namely message passing and neighbor aggregation, to process
graph-structured data. The basic idea is that each node con-
structs a computation graph based on the information from
its neighbors, with the node embedding generated at each
layer. The input feature of a node is represented as the Layer-
0 embedding, denoted by hSﬁ) € RY, while the embedding
in Layer-k incorporates information from nodes that are &
hops away. For example, in Fig.2, hq(,o) would be the input
feature for node A, hg,l) would include features from the
immediate neighbor nodes of A (nodes B and C), and h5}2)
includes features of neighbors of B and C. For this study, we
limit the maximum hop distance to 2. The process can be
mathematically formalized using the following equations.

Message Passing: Each node u receives messages from its
neighbors and aggregates them to update its own state:

m® = msG® (W(l)hgk*1)> cu € N(v) (1)

where, M SG is the message passing function and W is
the trainable parameter. Node Update: Each node v updates its
own representation using its previous state and the aggregated
messages from its neighbors:

h{) = CONCAT (AGG ({mgp ueN (u)}) ,m§f>> 2)

where, CONCAT and AGG are the concatenation and
sggregation function respectively.

The message-passing mechanism involves propagating in-
formation between adjacent nodes in the graph using the
adjacency matrix. This way, each node gradually incorporates
more global information about the graph structure into its
embedding by recursively aggregating information from neigh-
boring nodes. The neighbor aggregation operation computes
an aggregation function over the embeddings of a node’s
neighbors, producing a summary representation of its local
neighborhood. Thus, each node can consider the collective
properties of its immediate neighbors, in addition to its own
input features, when computing its embedding. In summary,
GNNs provide an effective framework for learning expressive
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node embeddings for downstream tasks by leveraging both the
local and global information encoded in the graph.

In this work we explore two variants of GNNs namely,
the Graph Convolutional Network (GCN) and GraphSAGE.
GCN extends the generalized GNN framework by incorpo-
rating multiple graph convolutional layers to capture local
neighborhood information. By propagating information across
the graph and aggregating neighboring node features, GCN
learns to capture higher-order dependencies and gain a deeper
understanding of the critical nodes in the power network.
This enables us to accurately classify nodes based on their
importance and impact on grid resilience. GraphSAGE, on
the other hand, adopts a neighborhood sampling approach to
enhance scalability and generalization. By sampling a subset
of neighboring nodes for each node and aggregating their
features, GraphSAGE reduces computational complexity while
retaining the ability to capture essential information from the
graph. This allows us to effectively model large-scale power
systems and accurately predict critical nodes.

III. PROPOSED APPROACH

In this section we build two GNN models for power system
resilience studies namely:

1) Generalized Power GNN (GP-GNN): To identify Crit-
ical nodes in the power network based on generalized
criticality score.

2) Cascading Outage GNN (CO-GNN): To identify critical
transmission lines that could initiate cascading outages.

The general approach is as shown in Fig.3. The training
phase involves building a GNN model based on the input graph
and output metrics. The input graph is defined by the graph
structure G and feature vectors h). For each node, the multiple
GNN layers are executed to generate a node embedding h! Vv
based on the message passing and aggregation described in
Section.IL.B. The final step is to train the model to convert the
embeddings h!, into the desired metric ¥, /y. € R. This trained
model is then used to predict the output metrics for unlabelled
nodes and links and also for analysing larger systems.

v : Node Index
e:Link/Edge Index

Transfer Learning
based Prediction

Propose Approach for GP-GNN and CO-GNN

A. Generalized Power GNN: Identifying Critical Nodes

In order to identify critical nodes in a power network based
on a generalized criticality score, we propose the Generalized
Power Graph Neural Network (Generalized Power GNN)
approach. The objective of this approach is to classify nodes
in the power system as critical or non-critical, considering the
overall structure of the power system graph.

For the generalized power GNN, we use a graph robustness
metric called effective graph resistance (I,) as the output
metric y,. Ry is a metric that quantifies the resilience of a
graph. It is calculated by summing the effective resistances
between all pairs of nodes in the graph thus taking into account
both the number of paths between nodes and their lengths.
This metric provides an intuitive measure of the presence
and quality of backup possibilities within the system and thus
can be effectively used for resilience studies. A spectral form
equation for R, is given by (3),

2 ‘&1
R”_im—lgfi 3)

where, \; are eigenvalues of the Laplacian matrix of graph
G with m nodes, and c is the number of connected components
in the graph. This expression in (3) is normalized, enabling
comparison of the metric across graphs of varying dimensions.

The problem is framed as a node classification task within
a graph structure, where each node is a bus in the power
network. The output of the approach is a criticality score
Y» € R based on R, of the residual graph (Graph obtained
by removing the node of interest). Higher the criticality score,
larger is the impact of that node on the system.

B. CO-GNN: Cascading Outage Graph Neural Network

To address the classification of power transmission lines
as critical or non-critical, we propose the Cascading Outage
Graph Neural Network (CO-GNN) model. The lines that
contribute to multiple outages and lead to blackouts are
called as critical lines and are the vulnerable sets in the
transmission system. For resilience studies, the time in which
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the cascade propagates is also important as fast cascades as
more severe compared to slower propagating outages. So the
Outage Indices developed in [16] are leveraged to quantify
the cascading criticality. The advantage of the above indices
is that they quantify the outage in terms of time in addition to
number of outages. The outage indices are as defined below,

1) Load Shedding Index (rrg): Ratio of Total Load Shed
to time till blackout/Islanding.

2) Line Outage Index (rpp): Ratio of number of line
outages to time till blackout/Islanding.

Previous works determine these indices using extensive
simulation based approaches, which is not computationally
efficient and consumes a high amount of time for real large
scale networks. In this work these indices are used as criticality
scores and we propose the GNN approach to learn these
indices in a fast, accurate and efficient way.

The objective of CO-GNN is to solve the link classification
problem, which involves predicting the criticality of edges
between nodes. Given a training set of labeled edges E, where
each edge e connecting nodes (4, j) has a binary label y; ; (1=
critical; 0= non-critical), the CO-GNN model learns to classify
the edges based on the node feature vectors.

The update function in CO-GNN can be expressed as:

Y = o(D~2 AD~ 2 ROW®) (4)

where h(!) represents the node feature matrix at layer 7, W ()
is the weight matrix at layer [, A is the adjacency matrix of
the graph with added self-loops, and D is the degree matrix of
the graph with self-loops. The activation function ¢ introduces
non-linearity to the model.

The LO-GCN model learns to predict the probability of an
edge being critical based on the node feature vectors h; and
h; by computing a score z; ; given by,

zi; = f(h] Why) (5)

where f represents an activation function.
The probability of observing the binary label y; ; given the
predicted score z; ; is determined by the sigmoid function:

Py | 215) = 0(2i5)" (1 = o (z,5)) 7 (6)

The CO-GNN model is trained using cross-entropy loss
function, that measures dissimilarity between predicted scores
and observed labels. The loss is calculated over the labeled
edges in the training set £/ and minimized using gradient-based
optimization methods, such as stochastic gradient descent.

C. Transfer Learning for Scalable Resilience Analysis

Transfer learning is a method that leverages knowledge
learned from a smaller power system and applies it to a larger
system, thus enhancing model performance and reducing data
requirements. It has proved to be a promising tool for various
smart grid applications [17], [18]. In the proposed work, we
use transfer learning for pre-training a GNN model on a
source power system and then fine-tuning it on a target power

system with limited labeled data. By transferring learned
representations from the source to the target system, GNNs
can effectively capture structural and operational similarities
between different power systems. This enables improved pre-
dictions of critical system states, fault detection, and other
resilience-related tasks, even when data availability is limited
in the target system. Transfer learning in GNNs for power
systems holds great promise in addressing data scarcity issues,
facilitating knowledge transfer, and enabling more accurate
and efficient analysis of diverse power grid scenarios.

IV. RESULTS

The proposed Generalized Power GNN and CO-GNN based
algorithms are trained on a 39-bus New England test system
and validated using larger real-life power systems like the 118-
bus test network and US-Power grid network. Critical lines and
outage metrics for the 39-bus test system and the 118-bus test
system were obtained using extensive simulations using the
dynamic cascading model [16]. Outputs were compared with
existing simulation and analytical algorithms for accuracy and
computation burden. The algorithms were implemented using
Python programming on a personal computer equipped with a
2.93 GHz Intel processor and 4 GB RAM.

A. Generalized Power GNN

Table.I gives the accuracy and computation time for ranking
the top 5% nodes using effective graph resistance metric, R,.
For the IEEE 39-bus test system, we trained the 39 node graph
using both GCN and GraphSage architecture incorporating
70% node information for training + validation and predicted
the remaining 30%. For the larger systems, we used the entire
trained model of the IEEE Bus 39 system and used a transfer
learning approach to train it with partial information of the
larger system. We add 40% nodes and lines (Training +
validation) from the 118 and US-Powergrid systems, and test
it on the remaining 60% system.

TABLE I
PERFORMANCE ANALYSIS FOR GENERALIZED POWER GNN

Power System | Method Accuracy Computation
Model (%) time (s)
Simulation 100 10
39-Bus GCN 92.3 2.688
Graphsage 100 2.14
Simulation 100 25
118-Bus GCN 94.4 2.689
GraphSage 944 2.179
US- Powergrid Simulation 100 64212
(4941 nodes) GCN 928 16
GraphSage 96 10

B. Cascading Outage GNN

The CO-GNN is tested for 39-bus and 118-bus test cases.
In the 39-bus test system, we trained the IEEE Bus 39 system
using both GCN and GraphSage architecture incorporating
70% node information for training + validation and predicted
the remaining 30%. For the 118 bus system, we used the
entire trained model of the IEEE Bus 39 system and used a
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transfer learning approach to train it with partial information
of the larger system. We add 40% nodes and lines (Training +
validation) from the 118 systems, and test it on the remaining
60% system. Table.II gives the accuracy and computation time
for different models.

TABLE I
PERFORMANCE ANALYSIS FOR CO-GNN

Power System | Method Accuracy Computation

Model (%) time (s)
Simulation 100 60

39-Bus GCN 92.9 2.688
Graphsage 100 2.14
Simulation 100 180

118-Bus GCN 100 2.358
GraphSage 100 2.687

From Tables.I and II, its can be observed that accuracy
of GNN-based prediction of top 5% critical nodes and lines
is very high and is acceptable for power system resilience
studies. The computation time for simulation-based analysis
is very high while that for the proposed approach is very
small thus indicative of its benefits in real-time analysis.
Theoretically, the computation complexity of the proposed
algorithm is independent of the size of the graph m, and
depends only on size of the feature vector d. Thus, with respect
to graph size, the overall time complexity of the proposed
framework is O(1). The time complexity of conventional
simulation or analytical based approaches is dependent on the
number of nodes/links in the graph. For instance, an exhaustive
search to identify a critical link is of order O(m?®). This
improved time complexity makes the proposed method more
efficient than any of the conventional approaches for reslience
analysis and improvement.

V. CONCLUSION

In this paper, we propose a novel approach for enhancing
grid resilience by identifying critical nodes and links using
transductive GNN learning. The proposed algorithms, GP-
GNN and CO-GNN, address the limitations of traditional
simulation-based methods and provide a more efficient and
accurate approach for grid resilience analysis. The algorithms
were evaluated on IEEE 39-bus test system, the 118-bus test
system, and the US-Power grid system. The results demon-
strated the effectiveness of proposed algorithms in accurately
identifying critical nodes and lines. The Generalized Power
GNN achieved high accuracy in ranking the top 5% criti-
cal nodes, with performance comparable to simulation-based
methods but significantly lower computation time. The CO-
GNN algorithm also achieved high accuracy in predicting
critical nodes and lines, outperforming simulation-based ap-
proaches in terms of computation time.

Overall, the proposed algorithms offer a data-driven frame-
work that leverages the power system’s graph structure and
system data to identify critical elements and enhance grid
resilience. The computational efficiency and accuracy of the
algorithms make them suitable for real-time analysis and
proactive planning of mitigation strategies. Future work can

focus on further improving the scalability of the algorithms
to even larger power systems and incorporating additional
factors, such as dynamic operational data and uncertainty
analysis, to enhance the resilience analysis. Furthermore, the
application of the proposed algorithms can be extended to the
distribution system using a heterofunctional graph analysis.
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