

AMPX Status 2024

AMPX Team

J. D. McDonnell, J. Brown, C. W. Chapman,

BK Jeon, K. S. Kim, D. Wiarda

CSEWG, Brookhaven National Laboratory, November 2024

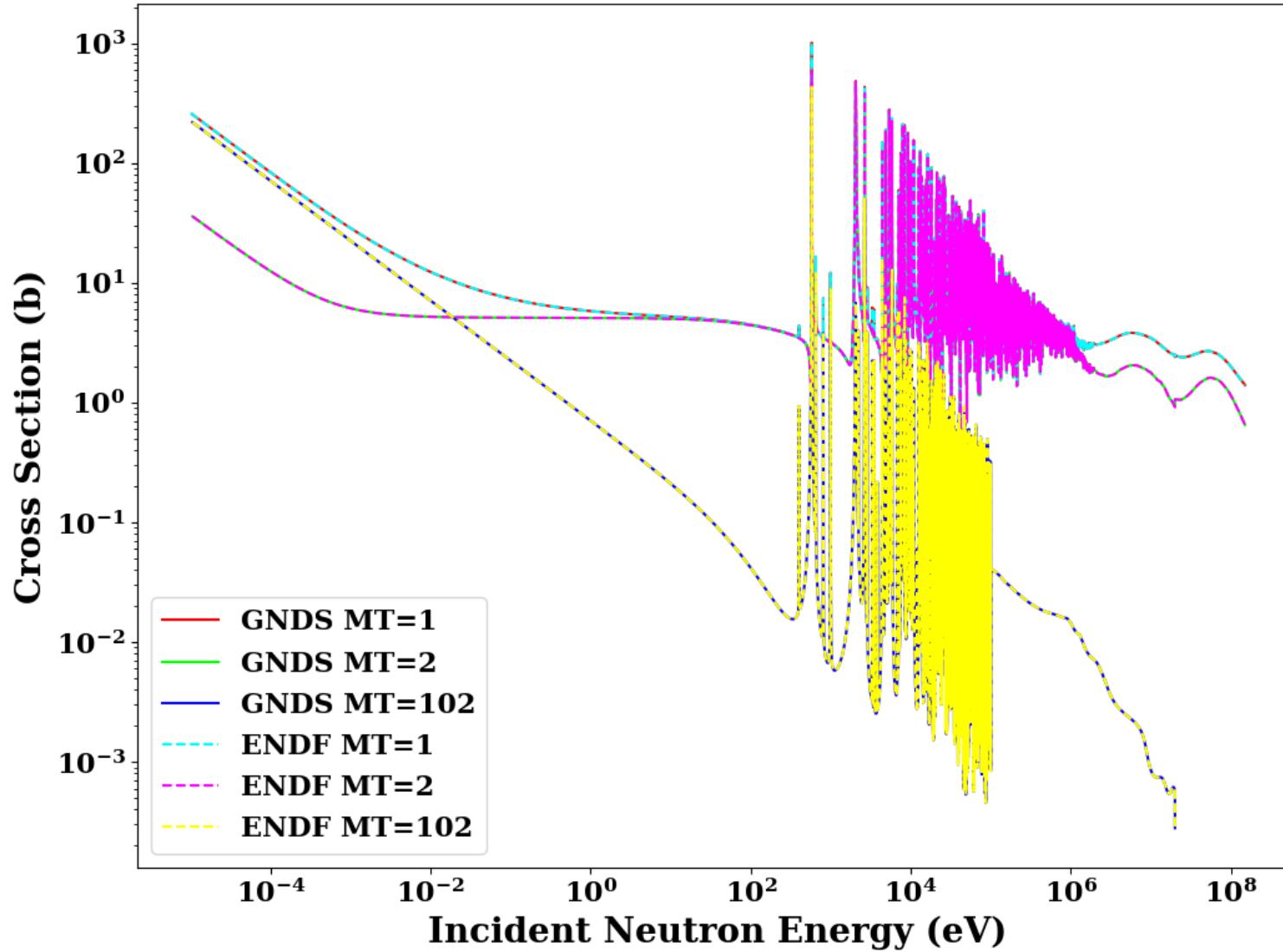
ORNL is managed by UT-Battelle LLC for the US Department of Energy

AMPX Development for 2024 and ENDF/B-VIII.1

- Focus on Thermal Neutron Scattering Library
- AMPX Development Highlights
- Transport libraries for SCALE 7.0.0

TSL Files: Mixed Elastic Scattering

- AMPX development to process files with mixed elastic scattering into SCALE MG and CE formats
 - This capability is implemented and undergoing SQA review
- Coordination with transport code developers to utilize these data is ongoing


TSL Files: Storage of Simple Bragg Edge Tables

- New format for SCALE CE libraries now accommodates a table of Bragg edge energies, instead of full double differential representation. This allows a significant reduction in the CE library size.
 - Estimated to reduce CE library size by 20 – 40 %
- “On-the-fly” sampling of Bragg edge tables during transport has been implemented by the SCALE team and is undergoing SQA testing.

AMPX Development Highlights: GNDS-2.1 Support

- AMPX needed updates to accommodate the GNDS-2.1 format, in which ENDF/B-VIII.1 was released (alongside an ENDF-6 version)
 - Changes to the “tags” for locating resonance data
 - Changes to the “tags” for locating covariance data
- GNDS “low level access” libraries available via <https://code.ornl.gov/RNSD/gnds>
 - Update pending review
- *** Successfully processed point data and covariance data for the GNDS version of ENDF/B-VIII.1, without encountering issues.

Test of ENDF/GNDS Processing: Point Data

Test of ENDF/GNDS Processing: Covariance Data

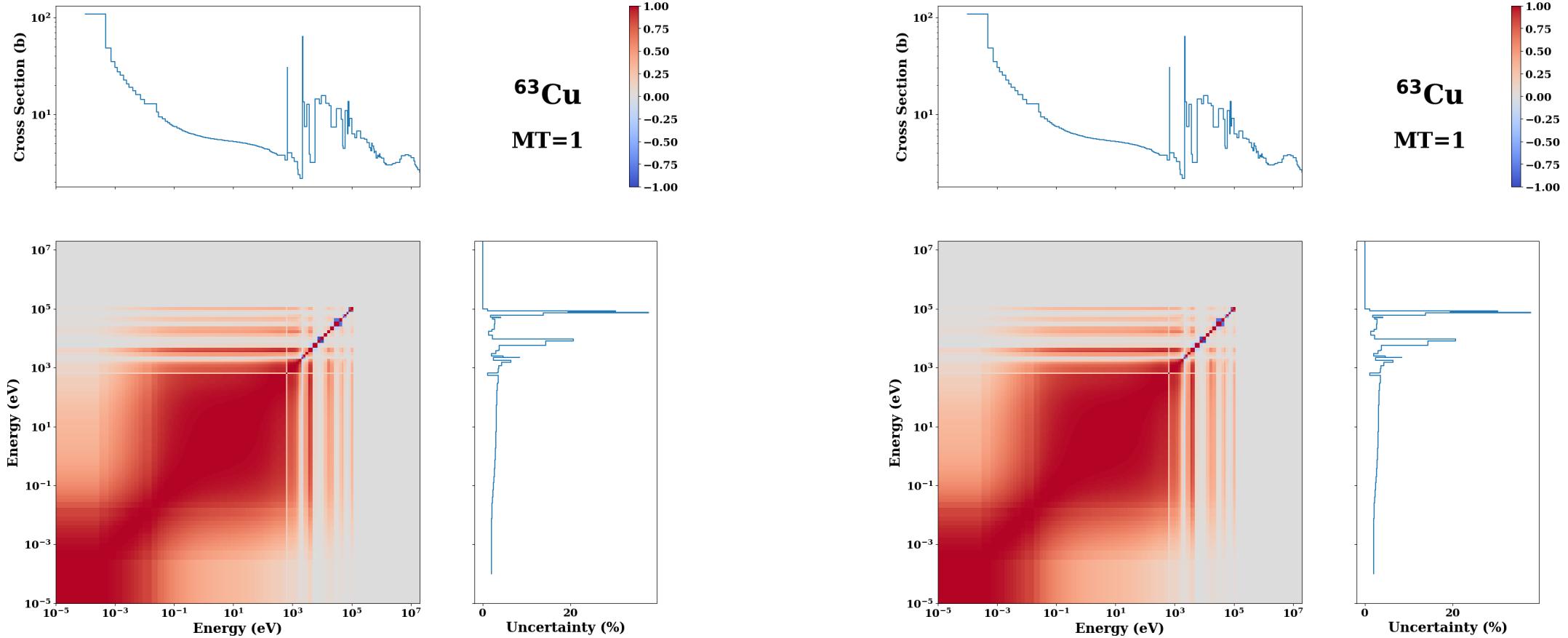


Figure 2: ^{63}Cu covariance: ENDF (left), GNDS (right)

Continuing Effort for GNDS-2.1 Support

- Sharing of code between AMPX and SAMMY
 - Using AMPX code for ENDF format I/O in SAMMY under development
 - GNDS format I/O will immediately follow
- Finalization of GNDS-2.0 support and testing
 - Special attention to kinematics data, TNSLs
- Reimplementation of ExSite's “ENDF Listing” functions
 - Strategy: C++ command line utility that can read evaluation files, producing the XML listing.
 - ExSite will then call that utility when gathering evaluation files

AMPX Development Highlights: Miscellaneous

- Small fixes needed to accommodate processing of ORIGEN reaction resources from JEFF-3.3 and TENDL-2021.
 - ORIGEN reaction resource utility (priosec) now only writes multigroup libraries in the BOFF format
 - Corrected handling of MT=18 in pre-actinides in radionuclide production files
- Sunsetting of “legacy” sequences for CE library processing (jamaican and platinum), embracing of modernized sequences
 - Under final SQA testing
- Update of ExSite templates to facilitate CE workflow with the new sequences and new options available

Preparation of Libraries for SCALE 7.0.0: CE

- In the current SCALE CE format, the CE libraries would be a burden to ship
- This will be mitigated by storing Bragg edge tables, as well as taking advantage of soft linking of duplicate data that the HDF5 format allows.
- The SCALE team is considering a “curation” of the TSL files to ship with SCALE 7.0.0
 - Everything in ENDF/B-VIII.1 will be processed by AMPX
 - All files will be made available in the public data repository, even if not shipped with SCALE 7.0.0

<https://code.ornl.gov/scale/data/db-public>

Preparation of Libraries for SCALE 7.0.0: MG

- ENDF/B-VIII.1 MG transport libraries in the 258-group and 61-group structures are under preparation
 - Each library has a 10 eV thermal cutoff
 - Validation plan being prepared
- ORIGEN reaction resource libraries prepared in 258-group and 61-group structures
 - JEFF 3.3 activation library
 - TENDL2017
 - TENDL2021

Conclusions

- AMPX development addresses new features, especially those introduced in the Thermal Neutron Scattering Libraries
- GNDS-2.1 format support ongoing
- ENDF/B-VIII.1 CE and MG libraries for SCALE 7.0.0

AMPX available at

<https://code.ornl.gov/scale/code/scale-public>

Acknowledgements

This work was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the US Department of Energy; and the Nuclear Regulatory Commission.

The work on Bragg edge table data and sampling was supported by the DOE/NRC Collaboration for Criticality Safety Support for Commercial-Scale HALEU for Fuel Cycles and Transportation (DNCSH).