DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof. Reference herein to any social initiative (including but not
limited to Diversity, Equity, and Inclusion (DEI); Community Benefits
Plans (CBP); Justice 40; etc.) is made by the Author independent of
any current requirement by the United States Government and does
not constitute or imply endorsement, recommendation, or support by
the United States Government or any agency thereof.

Fermilab

Flexible Pilot Jobs Framework for Distributed High
Throughput Computing

FERMILAB-TM-2895-STUDENT

This manuscript has been authored by Fermi Forward Discovery Group, LLC
under Contract No. 89243024CSC000002 with the U.S. Department of Energy,
Office of Science, Office of High Energy Physics.

Flexible Pilot Jobs Framework for
Distributed High Throughput
Computing

Franco Terranova

Under the supervision of

Marco Mambelli

I
e

Fermilab Italian Summer School

Fermi National Accelerator Laboratory

Scientific Computing Division

ABSTRACT

Experimental particle physics has been at the forefront of analyzing the world’s largest
datasets for decades.

The high-energy physics (HEP) community was among the first to develop suitable
software and computing tools for this purpose.

GlideinWMS is a Glidein-based workload management system whose purpose is to
provide experiments like CMS at CERN, DUNE at Fermilab, and others, a way to
access and efficiently use vast amounts of computing resources.

This system wants to provide a simple way to submit jobs to a set of computing
resources, that will be provided to users behind the scenes.

Glideins are the pilot jobs executed on the worker nodes at the grid sites, performing
operations such as hardware detection, environment setup, and error handling.
After all these operations, they will launch the actual user job.

Many grid sites are supported, such as shared clusters, Google CE, and AWS.

My internship aimed to design and code a flexible pilot jobs framework that will
replace the one used by GlideinWMS, developing a modular and flexible skeleton of
the Glidein and adding further functionalities.

My project also focused on the application of machine learning techniques as support

to this management system.

i

Contents

1 GlideinWMS

1.1 GlideinWMS Architecture
1.2 Gldeins
1.3 Worker nodes

Flexible and modular Glidein skeleton

2.1 glidein_startup.sh modularization
2.2 Batstests
2.2.1 Timeout featureo

External files management

3.1 Life-cycle phases of management
3.2 Management priorityo
3.3 Tarballs handling
3.4 Filetypes
3.5 File transfer methods
3.6 File versions conversion

Job/Site matching problem

4.1 Dataset
4.2 CPU time series analysis
4.3 Memory time series analysis L.
4.4 Failure Prediction

4.4.1 Logistic Regression Model
4.5 Score calculation
Appendix A: AT techniques for the job/site matching problem

il

w W N

ENEEEN BN N

10
12
13
13
14

Chapter 1
GlideinWMS

Grid computing is becoming very useful and popular for the scientific community
with high computing demands, like high energy physics (HEP).
High throughput computing (HT'C) aims to provide an efficient and effective schedul-
ing of user jobs on top of computing resources.
Computing resources are distributed over many independent sites, and typically a
middleware layer is used for enabling communication and data management among
them. Distributed HTC aims to aggregate many unrelated HTC systems.
GlideinWMS is a Glidein-based workload management system whose purpose is to
provide a simple way to access the computing resources for the HEP community.
This system works on top of HT'Condor and its main building blocks are Glideins, a
mechanism by which one or more remote resources temporarily join a local HT'Condor

pool.

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

1.1

The GlideinWMS architecture is composed of different services, interacting with each

GlideinWMS Architecture

other as visible in Figure 1.1.

Users submit jobs to the User Pool (HTCondor schedd process).

The GlideinWMS Frontend polls the user pool to make sure that there are
enough workers to satisfy user jobs.

It then submits requests to the GlideinWMS Factory asking for the submission
of Glideins.

The GlideinWMS Factory receives requests from the Frontend(s) and other

clients and submits the Glideins to the grid sites.

The computing resources receive the Glideins and start an HTCondor startd

process that joins the User Pool.

The user jobs run on the newly added startds.

User GlideinWMS CorralWMS

\ | Worker | /|

Jobs Frontend Frontend
User Pool Glidein Factory
(Condor) & WMS Pool

v y_

T ,.'\. N
‘Grid Sites

| |

Worker | \ | Worker | |
I A =

Figure 1.1: GlideinWMS Architecture

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

The result is that users can submit regular HTCondor jobs to the local queue and
computing resources will be provided by the Glidein Factory behind the scenes.

All the burdens typically managed by the user, in terms of queues, grid entry points,
and provisioning of worker nodes are handled by GlideinWMS.

From the final user point of view, the user pool will just magically grow and shrink

as needed.

1.2 Glideins

A Glidein is a pilot job submitted on the worker node that acquires and prepares
the resources where the job will run, with a particular focus on hardware detection,
environment setup, and error handling.

The Glidein will finally start the job and monitor its execution.

The Glidein is requested by the Frontend, launched by the Factory on the worker

nodes, and once launched, it will join the virtual cluster and start accepting user jobs.

1.3 Worker nodes

A worker node is a machine managed by a resource manager characterized by its
resources (CPU, RAM, Disk, etc.).

Virtualization techniques are used in order to create the abstraction of virtual ma-
chines on top of the physical ones. These techniques ensure flexibility, scalability, and
safety, while creating significant cost savings.

Worker nodes used by GlideinWMS come from different sources, such as the Fermilab
Grid Computing Center, AWS, GoogleCE, and the Open Science Grid.

Chapter 2

Flexible and modular Glidein
skeleton

The Glidein structure is described by a single Bash script, whose purpose is to
handle the overall lifecycle of the Glidein.
Modular programming is a software design technique that emphasizes the separation
of functionalities of a program into independent and interchangeable modules.
Its goal is to split the code into separate parts, modules, defining their boundaries,
API, and minimizing the connections between elements in different modules.
Modularization techniques have been applied to the Glidein structure in order to go
towards a more flexible and modular structure.
These techniques make development quicker and easier, as smaller subprograms are

easier to understand, write, and design than larger ones.

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

2.1 glidein _startup.sh modularization

glidein_startup.sh is a Bash script describing the workflow of the Glidein.

It is a long shell script that performs the following operations:
e Downloads other scripts and binaries using HTTP

Validates the node

Prepares the environment, also installing user software if needed

Configures Condor daemons (policies, security, proxies, etc.)

The condor_startd process is then launched

After the modularization of the script, a new structure has been highlighted, as shown
in the following structure tree.
The file’s name will provide information about the specific functionalities handled by

the script’s functions.

glidein_startup.sh

do_start_all
spawn_multiple_glideins
setup_0SG_Globus
check file signature
parse_arguments
prepare_workdir
create_glidein config
get_data
source_data
extract_and_source_all _data
main

| glidein cleanup.sh
glidein_cleanup
early_glidein failure
glidein exit

| _utils_crypto.sh

mdbwrapper

set_proxy_fullpath

| utils_gs_filesystem

| dir id

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

copy-all
add_to_path
automatic_work dir

utils_gs_http
get_repository_url
add_periodic_script
fetch_file_regular
fetch file
fetch file try
fetch file base
perform_wget
perform_curl

| utils_gs_log

print_tail

usage

parse_options

| utils_gs_tarballs.sh

fixup_condor_dir

get_untar_subdir

| utils_log.sh

log_warn
log_debug
print_header_line
| utils_params.sh
params_get_simple
params_decode
params2file
| utils_signals.sh

signal _trap_with_arg
signal _on_die
signal_on_die_multi

signal_ignore
signal_add_child
signal_set_children
| _utils_xml.sh

construct_xml
extract_parent_fname
extract_parent_xml_detail

basexml2simplexml
simplexml2longxml
create_xml

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

2.2 Bats tests

Bats is a TAP-compliant testing framework for Bash.

It provides a simple way to verify that the UNIX programs behave as expected using
unit tests.

A Bats test file is a Bash script with special syntax for defining test cases.

Starting from the structure derived after modularization, a Bats test has been defined

for each module.

2.2.1 Timeout feature

The runtest.sh script of GlideinWMS is a runner script for the different tests, among
which also Bats tests.

A per-test timeout feature has been added to the script in order to avoid possible
problems of non-responding tests that could interrupt the execution of subsequent
tests.

A new timeout option that the user running the tests can set has been defined, and

this option will avoid this issue.

-k TOUT
sets a timeout of TOUT seconds for the execution of each test (BATS file).
A TERM signal is sent if the test is still running after TOUT seconds and
a hard kill (KILL signal) is sent 20 seconds after the previous signal if
the test did not end yet.

Chapter 3

External files management

The experiments running jobs on GlideinWMS can upload external files of different
types to help glidein_startup.sh to do its tests and support their jobs. These files need
to be downloaded and managed during their execution.

The location, download/execution order, and attributes of these files need to be
specified. The Glidein startup script will pull these files, validate them and execute
any action requested (execute, untar, just keep them, ...).

Two XML configuration files will provide the information needed to manage these
files, frontend.zml on the Frontend side and Glidein WMS.xml on the Factory side.

In these XML descriptors, a files section will contain all the information needed.

Listing 3.1: XML files section example

<files>
<file absfname="filepath" relfname="filename" prefix="cron_prefix"
executable="boolean" after_group="boolean" period="seconds(int)" />

</files>

My modifications to the external files management consisted of the following improve-

ments:

e Execution of custom scripts during different parts of the life-cycle of the Glidein,

not only the setup
e Revised coordination of the list of custom scripts inside a life-cycle phase
e Definition of new files’ attributes

e Definition of new methods for transferring script files

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

3.1 Life-cycle phases of management

My first improvement focused on adding the possibility to deal with external files in
different phases of the life-cycle of the Glidein.

The new overall life-cycle phases for the possible management of files are the following:
e startup

e pre_job

after_job

cleanup

periodic:period

startup after_job cleanup

// \\

yd
milestone:1 milestone:2 failare:\l
\

N\

periodic

Figure 3.1: Glidein’s life-cycle phases

Using the time attribute of the file tag, the user will be able to provide this informa-

tion:
Listing 3.2: XML files section example
<files>
<file .. time="time_phasel[, time_phase2, ..]" .. />
</files>

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

Multiple comma-separated values can be provided if the same file has to be managed
in different life-cycle phases.

Two additional new possible phases have been suggested as ideas for future versions:
o failure:exit_code
e milestone:code

With the first option, the user can decide to manage an external file in front of a
failure with a certain exit code.

With the second option, the user can set some milestones during the execution of
the job (using some provided well-known functions) and ask for the management of

external files in front of these milestones.

3.2 Management priority

Users may need to affect the management order of external files.

In the current version of GlideinWMS, the after_group and after_entry boolean flags
in the file’s attributes affect the files’ handling order.

My modifications want to provide a simpler way to allow the user to alter this order,
providing this possibility also inside a life-cycle phase of the Glidein.

With my modifications, the user will be able to set the priority attribute, specifying

a priority value using a string code representation or an integer representation.

Listing 3.3: files’ priority section example

<files>
<file .. priority="e-g-" .. />
<file .. priority="27" .. />
</files>

The following syntax meaning has been associated with the string code representation:

e: entry

g: group

+: after/post

-: before/pre

=: in that exact moment

10

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

Order String code represen- Integer code represen-
tation tation
Factory pre_entry e-[g-] 10
Frontend pre_entry pre_group e-g- 20
Frontend pre_entry group e-g= 30
Frontend pre_entry after_group e-g+ 40
Entry e=|g-,g+,g=] 50
Frontend after_entry pre_group e+g- 60
Frontend after_entry group e+g= 70
Frontend after_entry after_group e+g+ 80
Factory after_entry e+[g+] 90

Table 3.1: Files’ priority ordering

The user can also choose to specify the priority value using the integer code repre-
sentation with an integer value in the range [0, 99].

The predefined integer values are purposefully chosen as multiples of 10, so that in-
termediate values can be used to control in a more granular way the file handling

order.

File: file_1list

#

Version: 3.11.0

Time OrderedFileName RealFileName Type Period Prefix Id
T T
startup 10_condor_vars.sh condor_vars.sh exec

startup 40_condor_file.sh condor_file.sh exec

Listing 3.4: Example of file descriptor

A global file descriptor is used internally to handle the ordering of files considering
both the life-cycle phase and the file priority.

11

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

3.3 Tarballs handling

The user can group files in a tarball and provide it to GlideinWMS, which is going
to handle it properly.

Listing 3.5: XML tarball files section example

<files>
<file type="untar:folder_name" cond_attr="cond_attr"
absdir_outattr="attr_name" .. />
</files>

The new format allows the user to specify the destination folder as a qualifier (by
default it will be the name of the tarball itself).

The user can also specify the types of files and all the information of files contained
inside a tarball, for them to be handled properly.

These files will not be downloaded, since this will happen only for the tarball in which

they are contained, but the proper values will be added in the file descriptor.

Listing 3.6: XML section example of files in tarballs

<files>
<file .. type="executable" tar_source="tar_filename" .. />

</files>

12

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

3.4 File types

After the overall improvement of the management of external files, new file types have
been defined.

e source files, including bash files to be sourced
e library:type, including library types to be used (e.g. library:shell)
New possible ideas about file types have been proposed.

e web files, to create custom web dashboards for different purposes, such as mon-
itoring the execution of the job.
The web_group attribute can be used to let the user provide web files of different
web dashboards.

The Glidein would have to start a Web server and serve these pages.

Listing 3.7: XML web files example

<file .. type="web" web_group="group_name" .. />

e container:type, to let the user specify the information of custom containers that
will be launched during the execution of the Glidein. Note that the Glidein has
already the option to run a script in a users container. This additional type

would be to support custom containers, e.g. to run services.

3.5 File transfer methods

New possible methods have been proposed for transferring files:
e Git repository
e URL (FTP, Cloud Storage)

e Database access information

13

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

3.6 File versions conversion

We have to plan for upgrades and compatibility since both some internal formats
used by the Glidein and the configuration files changed. The GlideinWMS systems
have many Factories and Frontends talking together and providing different Glidein
components. It is unreasonable to expect all to upgrade at the same time. But it is
reasonable to ask to upgrade the Factories first. The main Glidein components come
from the Factory and we’ll be able to operate also with older Frontends if the new
Glideins can handle different versions of XML descriptor files.

Factory and Frontend operators have sometime long and complex XML configuration
files. We want to reduce their effort caused by upgrades. The operators will be
requested to convert the format to the new version when upgrading.

A converter script has been defined to let the user move to the new format.

<files>

file untar="True
untar_options cond_attr="conf_sw" dir="dir
name" absdir_outattr="attr_name

</files>

<files>

<file type="untar:folder_name" cond_attr
"cond_attr" absdir_outattr="attr_name'

</files>

Figure 3.2: File versions converter

14

Chapter 4

Job/Site matching problem

What if we can use artificial intelligence to predict what is the best site where the
Glidein should be spawned?
The Frontend, in fact, will have to choose toward which site the Glidein should be
launched.
Currently it will request Glideins on all sites that state to provide enough resources.
We aim to allocate the Glidein to the site that provides the largest amount of re-
sources while minimizing the probability of failure.
Some sites give information about the number of resources that are going to provide
for the job, while some others don’t.
The workflow we want to follow to solve the job/site matching problem is the follow-

ing:

e Predict the amount of CPU and Memory that is going to be provided by each
site: CPUProvided, MemoryProvided

e Consider only the sites for which the resources provided are enough for our job,

which means:
CPURequested < CPUProvided
MemoryRequested < MemoryProvided

e Calculate the probability of failure of each site: Ppyyre
e (Calculate a cumulative score that allows us to take this decision

More details about the analysis can be found in Appendix A.

15

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

4.1 Dataset

To perform our analysis, we considered the dataset hepcloud-classads-slots, available

through Kibana, containing different information about classads.

4.2 CPU time series analysis

A time series analysis was performed comparing different forecasting methods to pre-
dict the average total hourly CPU that a certain site could provide.

The analysis has been performed on the overall data, regardless of the site, to train
a general model that could generalize the site-by-site average total hourly CPU fore-

casting.

200
|

150
|

Average Total Cpus

50

T T T T T
50 100 150 200

o

Time

Figure 4.1: Average hourly total CPU time series

Exploring the time series with the auto-correlation function, a possible seasonality
with a period of 24 hours was highlighted.

Going towards the decomposition of the time series, the additive decomposition and
multiplicative decomposition were compared, choosing the one that was able to follow

more accurately the nature of the series, separating seasonality, from trend, and noise.
Additive decomposition: X; =T; + S; + E;

Multiplicative decomposition: X; =T x S; x E;

By analyzing the residues of the two decomposition methods, the additive decompo-
sition seemed to provide better results.

Different forecasting methods have been compared:

16

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

e Holt-Winters method with additive decomposition
e Manually-created regression model for time series
e Yule-Walker method

e Least squares method

Among the different models, the Holt-Winters method and the Least squares method
seemed to achieve better results.

A cross-validation comparison and a residues analysis have been performed to deter-
mine the best method to filter our time series and forecast the next values.

After this comparison, the Least squares method was chosen as the forecasting method

for the next values of the time series.

Forecasting Least Squares Method

250
|

200
|

100
|

50
|

NS

—— Least Square method
—— Original Series
T T T T T

0 50 100 150 200

Time

Figure 4.2: Time series filtering and forecasting

17

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

4.3 Memory time series analysis

The same approach was used for the time series analysis of the data regarding the
memory allocation, where the Holt-Winters method seemed to provide the best re-

sults, with an additive decomposition and the following parameters:

Parameter Value
«a 0.30
B 0.03
0 0.70
Initial intercept 11352
Initial slope 10580

Table 4.1: Parameter choices for the Holt-Winters method

A regressive model was used to obtain the initial values of intercept and slope.

4.4 Failure Prediction

As previously mentioned, we also want to find a way to minimize the probability of
failure when we allocate a Glidein to a node.
Different probabilistic classification methods were compared to predict the failure of

a node in a certain site:
e Linear regression for classification
e Logistic regression
e Linear discriminant analysis
e Quadratic discriminant analysis

Past data regarding failures and non-failures of the Glidein has been analyzed to train
our supervised algorithm.

Among the features considered to train our classifiers, factors regarding the amount
of resources of the worker nodes and information about the time needed for the job
to be executed have been used.

During the training phase, all algorithms seemed to perform moderately and simi-
larly.

A K-Fold cross-validation and a site-by-site cross-validation were faced to determine

18

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

the best classifier, using as metrics the accuracy’s mean and standard deviation, and
the ROC curve.

In front of this comparison, it emerged that the linear regression method for classi-
fication performed quite badly, while other methods seemed to have similar metrics’
values.

A robustness analysis was performed by introducing wrong information to determine
how robust each model was.

Data was altered by flipping at each iteration the class value of a sample.

The model was trained on the altered data and its accuracy was tested on real data.

0.8
|

Accuracy
0.6
1

0.4

qda

200 400 600 800 1000

Values changed

Figure 4.3: Models’ robustness comparison

The logistic regression method has shown a higher degree of robustness, needing a

higher number of values changed before losing a large amount of its accuracy.

19

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

4.4.1 Logistic Regression Model

A choice of a different threshold value than the default one provided by the model was
performed to improve the prediction of failures and achieve a good trade-off between

accuracy and sensitivity.

e
-

0.9
1

Accuracy and Sensitivity
0.8
1

0.7

— gim
— Ida
—— qda
TTTT T T I T T T I T T T T T T T T T T T T T T T I T T T T TT T TT T TTTITT]
05 055 06 065 07 075 08 085 09 095

0.6

Probability Threshold

Figure 4.4: Accuracy/Sensitivity comparison

A probability threshold equal to 0.68 has been chosen, allowing the model to improve
decisively its sensitivity while losing a few percentages of accuracy.

The following results were achieved with the logistic regression.

Accuracy Sensitivity

0.81 0.93

Prediction outcome

P n total
p’ 6554 486 7040
actual
value
n’ 3626 15117 18743

total 10180 15603

Table 4.2: Accuracy, sensitivity and confusion matrix

20

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

4.5 Score calculation

A resources_score taking into consideration the number of resources forecasted has

been defined as follows:

CPU—min(CPUs) Memory—min(Memories)
max(CPUs)—min(CPUs) x50 + max(Memories)—min(Memories) x50

resources_score —=

The CPU and memory values forecasted with the corresponding methods are scaled
in the range [0, 50] to give them the same weight.

The resources_score will be a value ranging from [0, 100].

The overall score taking into consideration also the probability of failure will allow

this probability to decrease the resources_score depending on its value.
score = resources_score X (1 — Priture)

The site with the highest score will then be chosen for the allocation of the Glidein.

21

CONCLUSIONS

An approach to solve the problem of the allocation of grid resources is to create a
homogeneous virtual private pool of computing resources and use a standard batch
system to manage them.

In order to gather resources, batch system components are packaged as pilot jobs and
sent to the Grid pools.

My project at Fermilab mainly regarded the modification of the pilot jobs structure,
providing a more elastic and personalizable skeleton, and the improvement its fea-
tures.

The following achievements were accomplished:
e Designed a flexible, modular, and customizable structure of the Glidein
e Added unit tests
e Redesigned the custom script management
e Applied Al techniques for the job/site matching problem

The modifications made to the design of the Glidein will be included in release 3.11.0
of GlideinWMS.

The other improvements will be considered in further releases.

22

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere and deep gratitude to my supervisor,
Marco Mambelli, working on the Scientific Computing Division, for his kind and
constant support during my internship project. It has been an absolute privilege to
work with him.

His valuable advice, critical criticism and active supervision encouraged me to sharpen

my research methodology and was instrumental in shaping my professional outlook.

I also want to express my gratitude towards Prof. Simone Donati and Prof.
Giorgio Bellettini, for providing such a wonderful environment filled with continu-
ous encouragement and support. I would also like to thank the entire group behind
the Fermilab Italian Summer School and the Fermilab’s Scientific Computing Divi-

sion for their constant encouragement and assistance they have provided me.

23

References

[1] GlideinWMS project, available at https://github.com/glideinWMS/

glideinwms

2] GitHub PR for the Glidein modularization, available at https://github.com/
mambelli/glideinwms/pull/12

GitHub PR for the external files management modifications, available at https:
//github.com/glideinWMS/glideinwms/pull/210

[3] Job/site intelligent allocation, GitHub, available at https://github.com/
glideinWMS/contrib/tree/main/AIforJobSiteAllocation

[4] Marco Mambelli, “GlideinWMS Overview” presentation, available at https://
glideinwms.fnal.gov/presentations/intro/GlideinWMS. pdf

[5] GlideinWMS website, available at https://glideinwms.fnal.gov/doc.prd/
index.html

(6] GlideinWMS API Documentation, available at https://glideinwms.fnal.gov/
api/

[7] Development workflow, available at https://github.com/glideinWMS/

glideinwms/wiki/Development-Workflow

8] Igor Sfiligoi, “Structural overview of the GlideinWMS,” Fermilab, (2008).

24

https://github.com/glideinWMS/glideinwms
https://github.com/glideinWMS/glideinwms
https://github.com/mambelli/glideinwms/pull/12
https://github.com/mambelli/glideinwms/pull/12
https://github.com/glideinWMS/glideinwms/pull/210
https://github.com/glideinWMS/glideinwms/pull/210
https://github.com/glideinWMS/contrib/tree/main/AIforJobSiteAllocation
https://github.com/glideinWMS/contrib/tree/main/AIforJobSiteAllocation
https://glideinwms.fnal.gov/presentations/intro/GlideinWMS.pdf
https://glideinwms.fnal.gov/presentations/intro/GlideinWMS.pdf
https://glideinwms.fnal.gov/doc.prd/index.html
https://glideinwms.fnal.gov/doc.prd/index.html
https://glideinwms.fnal.gov/api/
https://glideinwms.fnal.gov/api/
https://github.com/glideinWMS/glideinwms/wiki/Development-Workflow
https://github.com/glideinWMS/glideinwms/wiki/Development-Workflow

Appendix A: Al techniques for the
job/site matching problem

Artificial intelligence can be a key instrument for the prediction of the best allocation
of jobs to grid sites.

We want to allocate the Glidein to the site that provides the largest amount of
resources while minimizing the probability of failure.

In this appendix, a more detailed comparison of time series forecasting methods of

CPU and Memory, and more details about the classifiers’ comparison are reported.

A.1 CPU Time Series Analysis

The autocorrelation function of the time series has been explored to discover a pos-

sible seasonality in the time series.

|

1

|

1

ACF
02 00 02 04 06 08 10
|

L

T T T T T T
0 20 40 60 80 100

Lag

Figure 4.5: Auto-correlation function

Seasonality with a period of 24 hours was suggested by the analysis.
Highlighted the possible period of the time series, its decomposition has been per-

formed.

25

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

Xi=Ti+Si+Ei

Decomposition of additive time series

Xi=Ti*Si*Ei

Decomposition of multiplicative time series

observed

100 100 200

seasonal
0 20

Time

y o
1 ¢ s
4 2 4
.
3
h-T| -
2.] W 2 e W
z
g -
g
8 4 g =1
£]
§ §
g & -
g | o

Figure 4.6: Decompositions comparison

To determine the best decomposition structure, the residues of the two models were

analyzed and compared.

ACF Additive Decomposition ACF Multiplicative Decomposition

ol nmﬂ‘,.w,hVmwm. i

i

l

ACF
02 00 02 04 06 08 10
i
02 00 02 04 06 08 10

|
S TN T PO
T

1
T
L T

Histogram Multiplicative Decomposition

Histogram Additive Decomposition

o 1 2 3 4 o 1 2 3 4

Lag Lag

Residues multiplicative decomposition

Residues additive decomposition

150

0000 0.002 0004 0005 0008 0010

-atnf

Tor Tamn

Q-Q Plot Additive Decomposition Q-Q Plot Multiplicative Decomposition

‘Sample Quanties

8 |

g ° g

. ® T X HER
- 2 .t 4
o "o N 2

‘ R 577
K]

8 @ s 84

s | < g |

T T M T
3 0 100 150 0 50 100 150 2 . o ' 2
ndex Ind Theoraical Quantios

Theoretcal Quanties

Figure 4.7: Decompositions’ residues’ comparison

Considering the scatter plot, the ACF, the histogram (by overlapping the empirical

density and the theoretical gaussian density), the Q-Q plot, and the metrics high-

lighted in Table 4.3, the additive decomposition seemed to be the best decomposition

method.

Non-explained variance

Shapiro-Wilk test p-value

Autocorrelation function’s variability

0.62
0.64

Additive decomposition

Multiplicative decomposition

0.002
le-8

0.24
0.23

Table 4.3: Decompositions’ residues’ comparison

26

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

A.1.1 Forecasting methods

Different forecasting methods have been compared.
The Holt-Winters method with additive decomposition highlighted the following op-

timal values for the parameters:

Parameter Value
e 0.32
B 0
¥ 0.72
Initial intercept -0.74
Initial slope 5.43

Table 4.4: Parameter choices for the Holt-Winters method

The initial intercept and slope were obtained with a linear regression.
A range of parameters close to the ones provided by the model was explored, but
still, the previous values have been chosen to go on with the analysis.
The partial auto-correlation function of the time series was explored to build a manual

regression method.

Partial Autocorrelation Function

1 1 1

02 03 04 05

|

_""VH'WUWWLQW%W

Partial ACF

-01 00 01

T T T T T
0 2 4 6 8

Lag

Figure 4.8: Partial ACF

The PACF highlighted two lags as possible interesting previous values to forecast the
next one.

A manual linear regression method has been trained, though rejected due to the low
value of the coefficient of determination.

Furthermore, the Yule-walker regression method has been considered to try to forecast

our time series. Not realistic results were though obtained with this method.

27

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

The Least squares method determined that 23 lags could be the optimal number of
lags to consider.

The Holt-Winters method and the Least squares method were compared using a
residues analysis and a cross-validation, considering the mean square error as metric,

and the Least squares method has been the best method to forecast the average total
hourly CPU.

Comparison Forecasting Capability

N/
r‘/// \- -/\‘; ' \ /
/ /
*>e -7{- \“\ /
* N/ \ .

|

. L\ AVARE

8 | ©
\ N
\ /l
—— Additive Holt-Winters ° \ /

Least Square Method
T T T T
5 10 15 20

150
|

res.hw
100
|

Figure 4.9: Cross-validation comparison

Mean square error

HW method 47.40
LS method 36.96

Table 4.5: Mean square error CV comparison

A.2 Memory Time Series Analysis

The time series analysis of the average total hourly memory was performed using
the same methodology as the one shown in the previous chapter, determining the

Holt-Winters method with additive decomposition as the best forecasting method.

28

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

A.3 Failure classification

Different probabilistic classifiers have been compared for predicting the failure of the
Glidein.
Performing a cross-validation comparison and using as metrics the accuracy and the

ROC curve, the following results were obtained.

Accuracy’s Mean Accuracy’s Std AUC
Linear Regression 0.33 0.07 -
Logistic Regression 0.84 0.04 0.90
Linear Discriminant Analysis 0.83 0.04 0.91
Quadratic Discriminant Analysis 0.85 0.04 0.90

Table 4.6: CV comparison

ROC Curve
o
‘_- — ——
rd
rd
rd
rd
o] e
o Pid
rd
7
rd
Z o | -7
2 ©° -7
k=] -
©0 P
5 < | e
" o
N]
e — gim
— Ida
o | qda
o
T T T T T T
1.0 0.8 0.6 0.4 0.2 0.0
Specificity

Figure 4.10: ROC Curves Comparison

After a site-by-site cross-validation and a robustness comparison, the logistic regres-
sion was chosen as the best classification method for our purpose, even if performance
site-by-site were much more volatile than the general case, as indicated by the stan-

dard deviation.

Accuracy’s Mean Accuracy’s Std

Logistic Regression Method 0.75 0.23

Table 4.7: Site-by-site CV comparison

As previously stated, the probability threshold has then been varied in order to obtain

a better trade-off between accuracy and sensitivity.

29

