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ABSTRACT: Lithium metal batteries offer superior volumetric and
gravimetric specific capacities compared to those based on traditional
graphite anodes. Although advancements in solid-state electrolytes address
safety concerns, challenges remain, particularly regarding interphase
formation in lithium metal anodes. This work presents a computational
framework based on high-throughput first-principles density functional
theory and machine-learning interatomic potentials (MLIPs) including
automated iterative, active learning to enable robust computational
exploration of interphase formation between lithium metal anodes and an
inorganic solid-state electrolyte. As a demonstration, we apply the framework
to a Li/Li7P3S11 interface and find that it accurately identifies the
experimentally observed, thermodynamically stable interphase products as well as their overall spatial arrangement within a
heterogeneous, amorphous layered structure, with Li2S domains of nanocrystallinity. Our simulations show two stages, a fast and
slow diffusion reaction regime, that corroborate the relative phase formation rate of LixP, Li2S, and Li3P. Using the Onsager transport
theory, we capture time-dependent ionic diffusion within the reacting interface, including cross-correlation effects. We found that
cross-correlation effects between Li−P and P−S ionic motion significantly influence P-ion diffusion, making it highly sensitive to the
local environment and potentially leading to “kinetic trapping” of Li−P phases. The passivation of the interface is shown as the ionic
fluxes all approach zero, effectively halting interphase growth.

1. INTRODUCTION
As the global demand for energy and energy storage increases,
developing high-capacity technologies needs to be accelerated,
e.g., through fundamental understanding and predictive
modeling techniques. All-solid-state batteries (SSBs) with
lithium (Li) metal anodes have emerged as leading candidates
for high-capacity, rechargeable energy storage systems1 due to
their projected improvement in volumetric and gravimetric
energy densities.2−5 Li metal SSBs benefit from the low
electrochemical potential (−3.04 V vs SHE) and high
theoretical specific capacity (3860 mAh g−1)6 of the Li metal
anode, in addition to improved safety as compared to
conventional Li-ion batteries that rely on flammable liquid
electrolytes.7−9

Progress has been made in the design and discovery of novel
solid-state electrolytes (SSE)10−14 via prediction of their ionic
conductivity,15 thermodynamic stability,16,17 and their in
operando, ex situ characterization18−22 and modeling23−25 of
interfacial evolution. It has been shown that SSBs face
challenges from the reactivity of the SSE−anode interface,
leading to the formation of interfacial products with inferior
ionic transport and subsequently decreasing rate capability and

capacity.26,27 This issue highlights the importance of modeling
the initial stages of solid-state reactivity at the metal anode−
SSE interface to better understand the interface stability and
optimize the performance of current and future SSBs.
First-principles methods, such as density functional theory

(DFT),28,29 offer accurate predictions of thermodynamic
properties, reactivity, and electronic structure but are con-
strained by high computational costs that scale unfavorably
with system size.30 For example, ab initio molecular dynamics
(AIMD) is currently limited to picosecond time scales for
periodic systems with hundreds of atoms, particularly in
simulating interfacial reactivity.23,24,31 On the other hand,
machine-learning interatomic potentials (MLIP) have recently
demonstrated promise when trained on DFT data, such as
AIMD trajectories, and can extend into classical MD time and
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length scales.32−34 Importantly, since such ML methods
leverage DFT data to describe the shape of the DFT potential
energy surface (PES), it is possible to investigate dynamic
properties such as reactivity and diffusivity from first
principles.35−39 Researchers have developed various MLIP
models with distinct architectures to accurately capture local
bonding interactions and predict the energies of diverse
material systems.32,40−42

In this work, we present an automated, computational
framework that leverages the atomic cluster expansion
(ACE)43−45 MLIP architecture. This framework incorporates
ACE’s inherited active learning infrastructure to systematically
generate an interfacial reactivity data set intended for extended
time- and length-scale simulations, suitable for solid-state
room-temperature reactions relevant for SSBs. The framework
also accounts for crystalline and noncrystalline structures along
the chemical space of the interface, ensuring comprehensive
data set coverage.46,47 We apply the framework to gain a
fundamental understanding of atomic mechanisms that
influence the interfacial chemistry and morphology of the
Li/Li7P3S11 solid-state battery system, simulating the interfacial
reaction evolution and quantifying the products formed at the
interphase. We find that the reaction between Li and Li7P3S11
passivates through the formation of a heterogeneous, layered,
amorphous interphase with dominant phases emerging in the
sequence: Li/Li3P−LixP/Li2S/mixed Li2S−LixP/Li7P3S11. The
resulting interphase morphology exhibits regions containing
higher concentrations of phases such as Li2S and Li3P, with the
spatial distributions that align with available in situ X-ray
photospectroscopy (XPS) experimental observations.19,48

Notably, while the SEI predicted by our model is chemically

similar to experimental observations, it does not exhibit the full
crystallization of Li2S as observed in other models

38,49 but
rather nanocrystalline domains of Li2S embedded in an
amorphous matrix of the same composition. We further obtain
ionic fluxes from the simulations of amorphous interface
constituents and derive Onsager transport coefficients. Based
on this analysis, we suggest that the spatial distribution of
interfacial P species results in part from the correlative ionic
transport between Li, S, and P ions which effectively presents
“kinetic traps” for P ions. Overall, our framework lays the
groundwork for enabling long-time-scale, accurate “digital
twins” for room-temperature solid-state reactivity, uncovering
the mechanistic evolution of SEI formation.

2. METHODOLOGY
2.1. Generalized Workflow for Interfacial Reactivity

Data Sets. In this work, we propose a novel generalized
framework for generating DFT data sets, designed to train
MLIPs with the use of active learning, to simulate solid-state
interfacial reactivity. The framework leverages the computa-
tional infrastructure provided by the Materials Project,50 which
allows for the production of large batches of accurate DFT
calculations to sample the potential energy landscape across
the interfacial chemical system. The generation of high-
throughput DFT data sets, both static and dynamic
calculations, was performed using purpose-built Python
packages, such as pymatgen,51 jobflow,52 atomate2,53

fireworks,54 and custom code (see sections “DFT
Computational Details” and “Classical Molecular Dynamics”
for specific methods used for DFT calculations and MD
simulations). The choice of the MLIP architecture can be

Figure 1. Illustration of the framework used to design an MLIP to model interfacial reactivity which includes (1) initial configurational sampling:
user-specified samples of equilibrium and nonequilibrium structural configurations based off of the reactant compositional space and
thermodynamically predict phase presence, (2) model training: iterative MLIP training with an active learning schema and validation from RDFs,
EOS, pairwise interactions, and stability screening, and (3) applications: direct simulations of interfacial structures in MD at extended length and
time scales.
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substituted if desired. The three main components of the
framework (configurational sampling, model training, and
applications) are shown in Figure 1.
The framework workflow begins with configurational

sampling as the first stage: the initial bulk reactants of the
interfacial reactivity system are selected and then employed to
identify thermodynamically favorable chemical reactions and
phases across the system’s compositional space. We benefit
from the Materials Project’s Interface Reaction16,50 and Phase
Diagram55 applications, which enable us to generate a list of
thermodynamically possible product phases that are able to
form from the bulk reactants, shown in Figure 2. These phases

are obtained in both crystalline and amorphous forms using
MPMorph.56,57 In addition to the bulk phases, we also create
explicit interfacial structures via the CoherentInterfa-
ceBuilder class in pymatgen, distinctively generated via
Miller indices and termination matches that obey symme-
try.58,59 The atomic configurations of these structures are
subsequently perturbed using AIMD simulations to sample
nonequilibrium states, capturing critical structure−property
relationships essential for informing kinetic effects for MLIP
models. The Li−Li7P3S11 specific data set is explained in
Section 2.2 “Li/Li7P3S11 Ab Initio Training Data Set.”
The second stage of the workflow involves model training:

the data set from the configurational sampling stage is
processed to train an MLIP using the ACE architecture. To
improve accuracy in reactivity mechanics and kinetics, the
training procedure emphasizes errors in interatomic forces.
The model is accepted only after achieving the required
convergence for energy and force, measured by root-mean-
squared error (RMSE) and mean absolute error (MAE)
against a test data set.32,40−42,60 We then validate the model
with several metrics: pairwise interactions, radial distribution
functions (RDF), equations of state (EOS), and interface
stability screenings. All pairwise interactions were plotted
against DFT data to reflect the model’s ability to capture the
PES. The RDFs are obtained for both the crystalline and
amorphous phases to gauge the accuracy of the interatomic
potential’s ability to map bulk phases. The EOS benchmarks
the energy, bulk moduli, and pressure predictions. Finally, the
model is screened for stability during MD simulations of

interface structures by measuring the localized errors across
extended pressure and volume ranges, whereby errors such as
void formation and phase separation are indicative of MLIP
failure modes. The four aforementioned metrics validate the
physicality properties of the MLIP’s dynamic performance and
its predictive capabilities of interphase formation. After
validation, we implemented an active learning screening
detailed in the section “Active Learning”, where we added
the data to retrain the next-generation model. We found that
this iterative scheme allows for robust simulations of the
interfacial reactivity over time.
The third stage of the workflow involves extended time-scale

MD simulations to extract interfacial reactivity and kinetics.
The primary objective is to perform an MD simulation on a
Li/Li7P3S11 interface structure that can be extended into the
nanosecond time-scale regime for over 500,000 atoms. These
structures can include various degrees of crystallinity given the
data set the MLIP is trained on. Kinetic information, such as
diffusion coefficients and Onsager transport coefficients, can be
obtained through both small- and large-scale simulations
provided the simulation time scale captures sufficient ionic
mobility statistics.
2.2. Li/Li7P3S11 Ab Initio Training Data Set. Including

both the initial and subsequent active learning steps, a total of
11,596 structures were generated to describe the Li−P−S
compositional space. An initial set of 2,030 structures was first
generated and calculated via DFT to train the first-generation
Li−P−S potential. This initial set of structures was constructed
via the configurational sampling scheme in Figure 1, by
selecting BCC Li and Li7P3S11 as the initial reactant phases to
reflect experimental observations.18,48,61−64 The phases Li2S,
Li3P, LiP, Li3P7, LiP7, and Li3PS4 were identified as plausible
reaction products via the workflow which aligns with
experimental in situ XPS observations.18,19 The reactant and
product phases were structurally optimized in DFT, then
simulated at 300, 900, and 1500 K in AIMD for 20 ps, and
subsequently resampled every fiftieth frame to be recalculated
in DFT with more strict computational parameters (see the
“DFT Computational Details” section). The MPMorph
workflow56,57 was also applied to the aforementioned reactant
and product phases to generate amorphous structures and
systematically recomputed with static DFT at every fiftieth
frame. Interfaced Li/Li7P3S11 structures were generated via the
CoherentInterfaceBuilder from pymatgen for
the lowest energy planes with maximal surface area, which were
the (100), (101̅), and (010) planes for Li7P3S11

62 and the
(100) and (110) planes for BCC Li.65 We enumerated all
unique slab termination sites. All structures were constructed
in a “sandwich” configuration with a 1.5 Å spacing between
two bulk regions with an orthogonal unit cell of size ∼100−
400 atoms. The remaining data were systematically generated
with interfaced, disordered, and rescaled structures of these
phases via the active learning framework (see “Active
Learning” section).
2.3. DFT Computational Details. This section details the

DFT computational tools used in generating structures in the
configurational sampling stage of the workflow. All DFT
calculations and AIMD simulations were performed using the
Vienna ab initio simulation package (VASP).66−69 Crystalline
structures were first queried via the Materials Project50 and
modified and processed with the pymatgen51 Python
package. All structures were calculated with VASP workflows
provided by atomate253 and managed by Fireworks54

Figure 2. Phase diagram of the Li−P−S ternary phase space based off
of data available from the Materials Project.50 The red dashed line
indicates the initial tie-line constructed between the selected reactants
of Li and Li7P3S11. Other color lines indicate chemical reactions that
were favored thermodynamically and their respective product phases.
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for high-throughput performance. The data has numerical
parameters compatible with the Materials Project50

(v2023.11.1 database release). The Perdew−Burke−Ernzerhof
generalized gradient approximation (GGA) for solids (PBE-
sol)70 was used for all calculations, with a plane-wave energy
cutoff of 680 eV, a k-point density of 64 per Å−3, and an
electronic self-consistency convergence criterion of 1 × 10−5

eV. An ionic relaxation convergence criterion of 2 × 10−2 eV/Å
in the forces was used for all structural optimizations. The
static DFT electronic structure calculations and structural
optimizations use the StaticMaker and RelaxMaker
from the atomate253 package, inherited from the VASP
module’s static set in pymatgen.51 For more details on the
DFT calculations, we refer to Tables S2 and S3.
All AIMD simulations were performed non-spin-polarized,

using a 2 fs time step with the Nose−́Hoover thermostat in the
NVT ensemble using the Γ-point only. Structural optimizations
are conducted before AIMD simulations of crystalline systems.
Crystalline supercell structures (∼100 atoms) were simulated
at temperatures of 300, 900, and 1500 K. These temperatures
access high-temperature regimes without melting the phases,
ensuring a higher likelihood of accessing perturbed structural
configurations to maximize MLIP data set sampling.71

Structures with significant disorder, such as amorphous
structures, were simulated in AIMD via the MPMorph
workflow.56,57

The MPMorph workflow has been designed and extensively
benchmarked to systematically generate noncrystalline struc-
tures for DFT purposes.56,57,72 Random initial structures are
generated at the given phase composition via PACKMOL,73

then isovolumetrically rescaled to perform a series of 4 ps NVT
AIMD runs to fit the equation of state at the specified
temperature. A predicted equilibrium volume is acquired via
the Birch−Murnaghan equation-of-state fit. A 20 ps AIMD
production run is simulated upon ensuring energy and density
convergence by an iterative loop. For more details on AIMD
calculations, we refer to the MDMaker and MPMorphMDSet
class in atomate2.
2.4. Classical Molecular Dynamics. This section details

using Atomic Simulation Environment (ASE)74 molecular
dynamics (MD) and machine-learning-performant atomic
cluster expansion (ML-PACE) for large-scale atomic/molec-
ular massively parallel simulator (LAMMPs)75 and their input
settings to start the simulation. Classical MD simulations were
performed using ASE for smaller structures with plugs-in built
by pacemaker76−79 and atomate2.53 MD simulations
used LAMMPS for larger simulations, with plug-ins built from
pacemaker.76−79

Preliminary tests of the fitted potential were conducted
using pacemaker adapted with ASE, a nonparallelized
version of the MD code. All ASE-based MD simulations were
performed with the Langevin thermostat80 and a 1 fs time step.
Custom code ASE PACE in atomate2 was also adapted to
accelerate these simulation workflows. Simulations were
consistently performed in the NVT ensemble for all of the
ASE-MD simulations.
Extended time-scale MD simulations used the ML-PACE

implementation in the LAMMPS simulation software.75 A
Langevin thermostat80 was used for all MD simulations with
the Li−P−S ACE MLIP, using a 1 fs time step unless
otherwise noted. We simulate a system comprising 500,000
atoms, constructed via the CoherentInterfaceBuild-
er class in pymatgen, for a duration of up to 10 ns with the

lowest energy surfaces (100/100) for Li/Li7P3S11, as this
interfacial contact is the most likely case observed in
experimental studies.18,19 All simulation results and interfaced
structures were rendered with Ovito81 3.8.3.74. We do not
recommend using the potential developed here with time steps
greater than 1 fs/step. Unstable behavior was observed for
simulations at 1500 K with 2 fs time steps, even with
reasonable starting geometries.
2.5. Active Learning. The active learning step begins with

the use of AIMD and MLIPs to sample disordered local
configurations present in the bulk and in the interface. The
integration of AIMD and MLIPs permits the flexible sampling
of highly disordered states, significantly reducing the overall
computational runtime. The first batch of actively learned
configurations comes from simulations of the original bulk
crystal structures at elevated temperatures, employing isovolu-
metrically rescaled lattices. The second batch comes from
MPMorph MD simulations of accessible phases composition,
which were also simulated under similar elevated temperatures.
The configurations generated serve as a basis for exploring
nonequilibrium configurations accessible for the bulk phases
during solid-state reactivity. The third batch of configurations
are sampled from MD simulations of interface structures of
>100,000 atoms. Simulations of interface structures pose
significant challenges due to their inherently large size, which
can lead to computational constraints when utilizing electronic
structure-based calculation methods. To address this, we
divided each frame of the MD simulations into smaller subcells
containing approximately 100 atoms each. Each subcell is
padded by a smaller layer of vacuum (0.5 Å) to prevent
overcoordination near the new periodic boundary conditions
(PBC) of the subcell. These subcells are therefore populated
with local environments present only in the interphase, aiming
to faithfully represent the high disorder and dynamically
reactive state. The final stage of the active learning component
involves selecting relevant structures from the three batches of
configurations mentioned before. We utilize the D-optimality
criterion,43 as proposed by Lysogorskiy et al.,82 implemented
in pacemaker44,45 to identify necessary structures from
previous AIMD/MLIP sampling methods for recomputation in
static DFT. The D-optimality criterion is based on the B-
matrix, a reduced symmetrically invariant representation of
spherical harmonic basis functions that captures the con-
tinuous interactions within a cluster of atoms (see “ACE
Potential Architecture” for details). When a configuration is
well-represented in a data set, the weights and coefficients for
the B-matrix are well-tuned and refined; conversely, if these
interactions are not well-captured by the data set, the
coefficients for the basis functions are poorly defined and
undertrained. The D-optimality criterion evaluates the
certainty of the model describing new structural configurations
based on the enclosed space defined by the trained B-matrix.
The extrapolation grade, γ, measures how well-defined a
configuration is in the model via the D-optimality criterion.
Configurations where the D-optimality criterion evaluates an
extrapolation grade of 1 < γ < 2.5 were chosen to propagate the
next generation of training data. This range of γ was chosen to
ensure that the structures found from the active learning loop
fall outside the confidence interval of the current ACE model.
The data are recalculated with the same atomate2
StaticMaker to ensure compatibility within the initial
training data (see “DFT Computational Details”). This active
learning loop is applied three times in this study; however, it
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could theoretically be performed for as many iterations as
needed to develop a more precise MLIP.
2.6. Model Training and Parametrization. The training

parameters of the ACE model in this work include 350 basis
functions per element, a cutoff radius of 6.0 Å, and the Finnis−
Sinclair-shifted-scaled embedding in pacemaker, using the
exponential parameters implemented by Erhard et al.’s work.83

The model fitting was conducted in a hierarchical manner, with
low-body order fits completed first and higher-body functions
added and fitted iteratively. The model training is performed in
two stages: an initial coarse model is obtained by placing κ =
99% weight on the force loss function; the second stage places
90% weight on the force loss function. As we are primarily
concerned with modeling reactivity while retaining MD
stability, we have chosen a much heavier force weighting
than conventional MLIP models that target relative energetics.
After training, the model undergoes a set of benchmarks and

validation to evaluate the model’s stability and accuracy against
DFT data (see the “Model Validation” section). If the model
fails, then the active learning stage is initiated, and new
structures are generated and processed through pace
select (a built-in function of pacemaker). This function
uses the extrapolation grade to identify a set of relevant
structures to augment the current set (see the “Active
Learning” section). DFT single-point (static) calculations are
then performed on these structures. The next iteration ACE
potential is refit with the same parametrization listed above.
This process continues until the final potential reaches the
desired performance metrics, with convergence achieved when
the loss function Λ reaches below the 0.2 threshold. The final
potential, which comprises 1,634 basis functions, has its
architecture detailed in Table S1.
2.7. Onsager Ionic Transport Analyses. To study ionic

diffusion�including correlated ion transport during interfacial
reactions�we compute the Onsager transport matrix
proposed by Fong et al.84,85 and performed in the context of
solid-state reactions by Karan et al.86 We performed MD
simulations on amorphous structures, corresponding to the 20
stable crystalline polymorphs in the Li−P−S phase diagram
from the Materials Project, with a target supercell size of 100
atoms. The Onsager transport coefficients can be calculated
from MD trajectories using the differential form of the Green−
Kubo relations:84
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Here, V, T, and kB are the volume, temperature of the system,
and Boltzmann constant, respectively. rα

i (t) − rα
i (0) is the

displacement of the αth particle of specie i at time t. Diagonal
terms of L (Lii) provide a measure of the net transport of ion i,
while off-diagonal terms (Lij) measure the cross-ion transport
effects, which lead to a coupling between the ionic fluxes of
different species.
The motion of an ion across the interface can be quantified

by its ionic flux, which in the framework of linear irreversible
thermodynamics is given by

=J Li
j

ij j
(2)

Here, L = {Lij} is the Onsager transport matrix and j is the
chemical driving force on ion j across the interface, which we
approximate as the distance between Li and Li7P3S11 phases
from the chemical potential diagram87 (refer to the Supporting
Information for numerical values chemical potential gradients
used). Accurate statistics for fitting Onsager coefficients
typically require extended time-scale simulations and we refer
to Karan et al.86 for more details.

3. RESULTS AND DISCUSSION
3.1. Model Validation. A central goal of this work is to

establish benchmarks for assessing the accuracy of MLIPs in
modeling solid−solid reactivity. Model validation of MLIPs is
currently standardized by RMSE and MAE values in energy
and force prediction.46,47,88 The RMSE for the final generation
ACE model is 119.5 and 269.8 meV/Å, for energy and forces,
respectively.18 The MAE values are 81.5 meV/atom for energy
and 166.6 meV/Å for forces. These metrics are gathered by a
90%−10% split of the training and test data prior to model
training. Although these metrics are considered inadequate
among large universal interatomic potential models and some
small-scale interatomic potentials, the higher training error is
attributed to the emphasis on reactivity prediction and
nonequilibrium structures, a domain which previous models
have not accessed. We refer to benchmark Figure S1 of the
final ACE potential against DFT data for details.
While energy and force errors are suitable equilibrium

metrics, practical use of MLIP dynamics requires a different set
of near- and nonequilibrium metrics. We choose the EOS and
RDF as metrics of near-equilibrium properties and the
transport coefficients as a nonequilibrium metric. We include
the pairwise interaction energy plot to validate the model
smoothness and stability at compressed pairwise regimes.
These are measurable properties for which the model is not
trained. The benchmarks are carried out for Li2S, Li3P, LiP,
Li3P7, LiP7, Li7P3S11, and Li.
For the pairwise interactions shown in Figure 3, we observe

a smooth, continuous fit for the trained ACE potential, and it

displays an overall good agreement with the DFT data for the
reference system. The discrepancies between DFT and the
ACE model for Li−S interactions likely stem from under-
sampling, as these interactions are present only in Li2S,
Li7P3S11, and active learned interphase structures. Notably, the
curvature of the pairwise interactions closely aligns with DFT
calculations, whereas the differences in binding energy well
depth are more pronounced�both likely resulting from the
model’s training emphasis on forces. For the EOS in Figure 4,
the model performs a satisfactory fit compared to the DFT

Figure 3. Binding energy curve illustrating pairwise interactions
between all pairs in the Li−P−S system.
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counterpart, as evidenced from the matching EOS fit
curvatures. This EOS fit also illustrates the extensive
volumetric coverage within which the model performs similarly
to DFT, showcasing its functionality across a wide range of
volume and pressure variations. The latter is particularly
important for a reactive solid-state interface, where the final
products exhibit a significantly different volume than the
original. This broad coverage reflects the model’s stability
under dynamic configurations with compromises made to the
precision of energy predictions. The pairwise interaction curves
and EOS reveal model stability in the highly compressed limit.
The RDFs also suggest robust crystalline stability for all the
phases at 300 K, showing excellent agreement with the
reference data. Figure 5a,b demonstrates that low-symmetry

structures such as Li3P7 and Li7P3S11 show dynamical stability
in agreement with DFT at finite temperatures. We performed
the stability screening metric by first sampling all identifiable
crystalline phases in the data set, acquired their amorphous
counterpart, and also generated different sizes (1000−7000
atoms) of Li/Li7P3S11 interfaces with distinct termination
planes. All phases listed above were screened in 1 ns NVT and

NpT ML-MD runs to ensure no void formation and phase
separation occurred.
3.2. Interphase Formation Simulation and Transport.

For the extended time- and length-scale interphase formation
simulation, we construct a unit cell with the lowest energy
surfaces (100/100) for Li/Li7P3S11 with 500,000 atoms and
performed a simulation at 300 K in the NpT ensemble (see
Methodology: “Classical Molecular Dynamics” for details). As
Figure 6 shows, the simulation initially presents a fast diffusion

regime, followed by a slow diffusion regime. The fast diffusion
regime completes within 20 ps and forms an approximately 6
nm thick barrier layer of the interphase. We find that the
barrier layer grows into the Li metal and the Li7P3S11 SSE at
different rates and that the growth rates change as a function of
time. In the fast diffusion regime, the growth into the Li layer is
slower than into the Li7P3S11 layer. This behavior is reversed as
the process enters the slow diffusion regime, whereby the
growth into Li occurs at a faster rate than that into the SSE.
This difference in growth direction may be attributed to fast
transport of Li in the SSE Li7P3S11. As the passivation layer
builds, the Li diffusion within it slows down and growth
increases into the Li layer.
Figure 7 presents the net ionic flux over the interface for the

three elemental species during the 10 ns NpT simulation. This
data evidences the fast and slow diffusion regimes observed
within the simulation, whereby fast diffusion is observed as a
sharply peaked flux of Li toward the Li7P3S11 SSE (negative
direction), and P and S ions show a strong reverse flux toward
the Li metal anode (positive direction). Both Li and S ions
exhibit a significantly larger flux at the beginning of the
interface reaction, compared to P ions. In the slow diffusion
regime, the individual magnitude of flux for the three ions is
similar, with P being the smallest in magnitude. In this slow
diffusion regime, the ionic flux exhibits small fluctuations
around the zero-flux axis, indicating that ions remain mobile
but diffuse at a significantly slower rate. Overall, Li ions
continue migrating toward the SSE, while S and P ions move
toward the Li metal anode. All three flux curves gradually
approach the zero-flux axis, suggesting that the 10 ns
simulation nears interphase passivation.

Figure 4. Equation of state for the known crystalline structures in the
Li/Li7P3S11 chemical space, plotted with respect to normalized
volumes.

Figure 5. Radial distribution functions for (a) Li3P7 and (b) Li7P3S11
using the ACE MLIP and AIMD at 300 K, performed for 20 ps. See
Figure S2 for the other Li−P−S phases.

Figure 6. NpT simulation of the (100)/(100) Li/Li7P3S11 interface
over 10 ns using molecular dynamics with the final generation of fitted
machine-learning interatomic potentials (MLIP). The snapshots
showcase the evolution of the simulation at specific timestamps.
The fast diffusion regime, observed within the first 20 ps, indicates the
initial formation of the interphase and the growth of the interphase
across the original interface boundary. In contrast, the slow diffusion
regime reflects the stabilization of the interphase region extending up
to 10 ns.
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We performed multiple small-scale MD simulations with the
final ACE MLIP model and obtained the Onsager transport
coefficients for an amorphous configuration corresponding to
each stable phase in the Li−P−S compositional space
according to the Materials Project. The flux of Li, P, and S
ions in the phases was calculated via eqs 1 and 2, as described
in the Onsager Ionic Transport Analyses section and the
Supporting Information. Figure 8 demonstrates three key
takeaways: (1) the Li-ion flux across the relevant Li−P−S
ternary phase space is consistently negative (from Figure 8a),
indicating migration toward the SSE only; (2) in contrast, S
ions exhibit consistently positive flux in these phases (see
Figure 8b), signaling migration toward the Li metal anode; and
notably, (3) P ions exhibit flux behavior that varies
directionally depending on the phase composition (see Figure
8c). Specifically, P ions tend to move toward the anode in S-
rich regions and toward the SSE in Li-rich regions. This

Figure 7. Net flux for Li-, P-, and S-ion species across the Li/Li7P3S11
interface throughout the 10 ns NpT simulation. Positive flux denotes
ion migration toward the Li metal anode; negative flux denotes ion
migration toward the Li7P3S11 SSE.

Figure 8. Correlated ionic flux calculated with respect to the host composition system from MD simulations with the final generated fitted MLIPs
for (a) Li ions, (b) S ions, and (c) P ions at 900 and 1200 K. The positive direction is defined as movement toward the Li metal anode. (d)
Schematic representation of the resulting Li/Li7P3S11 interface exhibiting a heterogeneous layered amorphous structure morphology. In particular,
we note the formation of LixP-rich phases within the Li2S matrix which may be the result of kinetic trapping due to the strong influence of the local
environment on P-ion flux.
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dependence on the local environment necessarily originates
from the cross-correlation transport coefficients. Figure S9
describes the mean absolute Onsager transport coefficients for
P correlated with Li, P, and S in phases with the compositional
system Li−P, Li−P−S, and Li−S at 900 K, calculated using the
same Onsager coefficients derived from Figure 8, and shows
the magnitude of the P−P cross-correlated motion to be
consistently lower than Li−P-correlated transport and on par
with P−S. In summary, the direction and magnitude of P-ion
migration depend on the local environment, resulting in the
potential trapping of LixP phases within the SEI.
Prior in situ XPS studies from Wenzel et al.18 and Wood et

al.19 indicate an early formation of LixP and Li2S species within
the interphase, with Li2S identified as the majority specie. As
the reaction proceeds, LixP species are observed to transform
into the thermodynamically stable composition of Li3P.
Wenzel et al.18 observed that LixP forms first, followed by a
sharp increase in Li2S, which becomes the dominant SEI phase.
Over longer time scales, Li3P emerges as the main P species as
the initial LixP phases undergo further reduction. Wood et al.

19

found that the interphase consists of Li3P, Li2S, and other
reduced P species, forming a heterogeneous layer structure
following the order of Li metal anode/Li3P/Li2S/SSE.
In general agreement with experimental results, we identified

a heterogeneous, layered amorphous interphase structure,
exhibiting pockets of nanocrystalline Li2S. Figure 9 plots the
evolution of the average coordination number of select ion
pairs along the interface over the 10 ns ML-MD simulation. As
shown in Figure 9a, the highest average number of Li-ion
coordinations to P occurs in a narrow region near the Li metal
anode, with a peak coordination number of 9.65 observed at

1.9−2.1 nm. As a comparison, the coordination of Li to P in
Na3As-structured Li3P is 11. A secondary peak in coordination
is observed in a band around 1.5 nm, followed by a gradual
decrease in the average Li−P coordination toward the Li7P3S11
SSE. Figure 9c showcases the conjugate coordination (i.e., how
many P are bonded to Li) and further illustrates this thin, high-
coordination Li−P region at 1.9−2.1 nm near the Li metal
anode, with a lower Li−P coordination zone located between
0.8 and 1.7 nm. Similar P−Li coordination numbers were
reported in modeling studies by Camacho-Forero and
Balbuena23 and Ren et al.,49 supporting the identification of
Li3P as the likely dominant phase close to the Li metal.
Compositional analysis of Li−P clusters within the interphase
layer (Figure S5) reveals an average composition of Lix = 4.35P,
where the elevated Li content (x > 3) likely reflects the
kinetically slow formation of Li3P. Among the stable Li−P
binary compounds (Li3P, LiP, Li3P7, and LiP7), Li3P uniquely
lacks P−P coordination. The partial RDF analysis of the Li3P−
LixP-rich layer (see Figure S8d) shows the lack of P−P
coordination and Li−P RDF peak occurring at 2.49 Å which
also supports the predominant formation of Li3P.
Figure 9b displays the average S to Li coordination, which

peaks at 8.25 in the SEI close to the Li metal anode, which
should be compared to the coordination number of 8 Li to
each S in antifluorite-structured Li2S. The two regions with the
highest average S−Li coordination are separated by a layer of
Li−P-rich phases.
The simulation also shows localized nanocrystalline Li2S

domains starting to form between 1.7 and 2.0 nm from the Li
metal (cf. Figure S3), at the beginning of the slow diffusion
regime. Notably, this is the only crystalline phase observed in

Figure 9. Spatial density distribution of averaged coordination numbers of (a) P sites with Li, (b) S sites with Li, (c) Li sites with P, and (d) P sites
with P throughout the NpT 10 ns ML-MD simulation of Li/Li7P3S11. Note that the positive side of each plot depicts the Li metal region, and the
negative side of each plot represents the Li7P3S11 SSE region. The dashed line indicates the approximate boundary between Li metal and the SEI.
The z-coordinate is shifted relative to the center of the initial Li/Li7P3S11 interface. See Figures S6 and S7 for other species, full coordination
numbers, and site presence.
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the SEI for the duration of the 10 ns simulation, with small
nuclei forming within 1 ns and crystallizing into larger sites as
the simulation proceeds. These nanocrystalline regions range
from 3 to 6 nm radii, with a maximum detected size of 6.56
nm, and exhibit minimal P-ion defects (see Figure S3) with a
well-defined periodic structure embedded in the amorphous
Li2S matrix. Between the nanocrystalline domain of Li2S and
the Li7P3S11 SSE domain, we observe a disordered, likely
amorphous configuration of mixed Li2S and LixP phases at
various stoichiometries.
Figure 9d shows that regions in the SEI closest to the SSE

show an increase in the P−P coordination number relative to
the original Li7P3S11 coordination, suggesting the formation of
P-rich Li−P phases such as LiP, Li3P7, and LiP7. The lack of
P−S coordination in Figure S7f,h shows that polyanion groups,
such as P2S7 and PS4, are not present in the SEI but remain in
the Li7P3S11 layer. At the boundary between the interphase and
the Li7P3S11 SSE, the SSE exhibits increased disorder, losing its
partial crystallinity and periodicity. In summary, we find that
the SEI forming between the Li metal anode and Li7P3S11
adopts a heterogeneous amorphous layered configuration of
Li/Li3P−LixP/Li2S/mixed-Li2S−LixP/disordered-Li7P3S11/
Li7P3S11, as shown in Figure 8d.
Finally, we comment on the rate of reaction, which is

undeniably faster than anticipated from room temperature
experiments. The interface develops passivation within 10 ns,
which is significantly faster than observations by Wenzel et
al.,18 where the deposition of Li on the Li7P3S11 powder found
that the relative molar fraction of the phases in the SEI still
fluctuates after 1 h. Our simulation also does not capture the
SEI morphology after cycling of the SSB system. We suggest
that one reason for the increased rate of reactivity is the well-
known tendency for MLIPs to overestimate diffusion and ionic
mobility, as discovered by Zheng et al. when attempting to
reproduce diffusivity data from amorphous AIMD calcula-
tions.72 It is also possible that the atom-perfect interface
matching in the simulations increases the rate of reaction.
We also caution that the MLIP will not overcome any of the

inherent limitations of its training data, e.g., the DFT level of
theory. For example, the functional of choice here: PBE, does
not account for long-range dispersion interactions, and they are
therefore missing in the MLIP. An explicit dispersion
correction could be incorporated into the model afterward or
adjusted in training. Additionally, simpler functionals like PBE
struggle to describe stretched radical bonds89 and tend to
predict incorrect charge transfer between reactant and product
atoms during bond breaking and formation. Both effects are
exacerbated in small subcell representations of the partly
reacted interface, which may not be charge balanced. While
higher-level approximations in DFT or wave function methods
alleviate both issues, they are currently inaccessible in solid-
state calculations at a high-throughput scale. Other effects like
periodic boundary condition errors shown by Zhong et al.90,91

demonstrate issues that plague energy and force accuracy for
amorphous structures.

4. CONCLUSION
This study presents a framework that integrates a DFT-based
data generation scheme with an active learning loop to
efficiently sample the potential energy surface for training
customized machine-learning interatomic potentials (MLIPs)
using the Atomic Cluster Expansion (ACE) method. We
demonstrate this approach by modeling the interphase reaction

between a Li metal anode and solid-state electrolyte Li7P3S11.
We observe atomistic passivation of the final heterogeneous
layered interphase within the 10 ns time frame of the NpT
simulation conducted at 300 K, which indicates that the MLIP
overestimates ionic diffusion. Nevertheless, our MLIP model
exhibits strong predictive capabilities in terms of the chemical
and morphological character of the resulting SEI. It
successfully identifies the early formation of LixP, followed
by Li2S, which are thermodynamically stable under ambient
conditions and have been observed experimentally.18,19 As the
reaction progresses, LixP preferentially transforms into Li3P.
The interphase reactivity exhibits two distinct kinetic regimes:
an initial fast diffusion regime that occurs within 20 ps,
followed by a slow diffusion regime characterized by the
emergence of a heterogeneous layered structure with the
sequence of phases including Li, Li3P−LixP, Li2S, mixed Li2S−
LixP, disordered Li7P3S11, and Li7P3S11. Our simulations
demonstrate that the formation of the heterogeneous layered
interphase is primarily driven by the rapid formation of LixP,
which is subsequently followed by the formation of Li2S. Using
Onsager analyses of cross-correlated ionic mobility across
amorphous phases of varying interfacial compositions across
the interface, we find that Li and S ions exhibit consistent
directional flux, irrespective of the composition. In contrast,
the flux of P ions exhibits a strong dependence on its local
chemical environment, which enables the kinetic trapping of
LixP phases within the SEI. Li2S is observed to initially form an
amorphous layer, from which nanocrystalline domains begin to
form from the amorphous matrix. Future research will focus on
extending the simulation time scale to explore other kinetic
phenomena.
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