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Abstract: This paper develops an exact solution of burst pressure for defect-free, thick-walled 

pipes using the flow theory of plasticity in terms of the average shear stress yield criterion (or 

Zhu-Leis yield criterion). The pipe steel is assumed to obey the power-law strain hardening rule, 

and large plastic deformation is described by the finite strain theory. On this basis, internal 

pressure is obtained as a power series function of the effective strains on the inside and outside 

surfaces of the thick-walled pipe with use of the second Bernoulli numbers. At burst failure, the 

Zhu-Leis flow solution of burst pressure is determined as a power series solution, and the burst 

effective strains, the burst effective stresses, and the burst pressure are functions of the diameter 

ratio (Do / Di), strain hardening exponent (n), and ultimate tensile strength (UTS). Similarly, the 

Tresca and von Mises flow solutions of burst pressure are also determined as a power series 

solution in terms of the Tresca and von Mises yield criteria. A general closed-from exact solution 

of burst pressure is then proposed for the three yield criteria, and the results showed that the 

proposed exact solution matches well with the power series solution for each yield criterion. 

Moreover, the von Mises flow solution is an upper bound prediction, the Tresca flow solution is 

a lower bound prediction, and the Zhu-Leis flow solution is an intermediate prediction that 

agrees well with the finite element analysis results of burst pressure for thick-walled pipes. Two 

datasets of full-scale burst tests are then utilized to evaluate and validate the proposed flow 

solutions of burst pressure for both thin and thick-walled pipes. 
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1. Introduction 

Transmission pipelines are the critical infrastructure of a nation and used as an efficient and 

safe vehicle to transport large volumes of crude oil, natural gas, refined petroleum products, or 

hazardous liquids over long distances. In general, transmission pipelines are constructed from 

carbon steel pipes and can range in size from several inches to several feet in diameter [1]. Most 

transmission pipelines are large diameter, thin-walled pipes with a diameter to wall thickness 

ratio D/t ≥ 20 [2, 3], although there are many applications where pipes or tubes have small 

diameters and thick walls with a ratio of D/t < 20 [3-5]. Because of high internal pressure, these 

pipelines are potentially dangerous to human life and the environment. Accordingly, pipeline 

structural integrity becomes extremely important for pipeline systems and has attracted broad 

attentions [2-10]. To ensure the safe operation of pipelines, a pipeline design and integrity 

management plan requires the accurate yield and burst strengths of the pipes to be available so 
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that the maximum operating pressure will be less than the maximum load-bearing capacity or 

burst pressure of the pipes. Therefore, an accurate burst pressure prediction model is essentially 

needed for the pipeline design and management. 

Extensive theoretical, numerical and experimental investigations have been performed over 

the past century in order to accurately estimate burst pressure of cylindrical pressure vessels or 

pipes, and many analytical and empirical prediction models were developed for predicting burst 

pressure of defect-free pipes with internal pressure. For thick-walled pressure vessels, Hamada et 

al. [4] and Christopher et al. [11, 12] presented a good technical review of burst pressure models, 

while for thin-walled line pipes, Zhu and Leis [13] and Law and Bowie [14] evaluated available 

burst pressure models. Recently, Zhu [8, 15] performed a comparative study on the traditional 

strength criteria versus the modern plastic flow criteria used in the pressure vessel design and 

analysis, Wang et al. [7] evaluated a set of burst prediction models using their burst test data for 

structural steels exhibiting a yield plateau, Sun et al. [9] reevaluated existing burst pressure 

models for large diameter, thin-walled pipelines in various grades, and Oh et al. [16] proposed a 

new numerical model for thin-walled pipes from the finite element analysis (FEA). 

The above-noted literature reviews [4-15] determined that most of available burst prediction 

models were developed from either a simple analysis using a strength theory in terms of ultimate 

tensile stress (UTS) and/or yield strength (YS), or using an empirical curve fit of experimental 

data for one or more specific steels. It was concluded that no single model can provide an 

accurate prediction of burst pressure for all ductile steels, or has been broadly accepted by the 

industry. As a result, the simple Barlow strength formula [17] remains the basic design model for 

developing regulation rules in both the American Society of Mechanical Engineers (ASME) 

Boiler and Pressure Vessel Codes (BPVC) [18] and ASME B31.3 Codes [19], where ASME 

BPVC is typically used in the pressure vessel industry, and ASME B31.3 is commonly used in 

the pipeline industry. However, these code models did not consider the effect of plastic flow 

response or strain hardening rate on burst strength of end-capped pressure vessels or pipes. 

In order to consider the plastic flow effect on burst pressure, Cooper [20] and Svensson [21] 

adopted the flow theory of plasticity and obtained the von Mises flow solution of burst pressure 

for thin-walled pressure vessels in the end-capped conditions. Similarly, Weil [22] and Hillier 

[23] performed a tensile plastic instability analysis of thin-walled tubes and obtained the same 

result. Using experimental data, Kiefner et al. [24] and Stewart and Klever [25] demonstrated 

that the von Mises flow solution obtained by Cooper [20] and Svensson [21] can describe the 

effect of strain hardening rate on burst pressure, but significantly overestimated the burst test 

data for thin-walled line pipes in various steels. Due to this reason, Stewart and Klever [25] 

adopted the Tresca flow theory of plasticity and obtained the Tresca flow solution of burst 

pressure for thin-walled pipes. These authors found that the von Mises flow solution provided an 

upper bound of burst pressure data, while the Tresca flow solution provided a lower bound of 

burst pressure data. The averaged result of these two bound solutions provides a good fit to the 

burst test data, where both von Mises and Tresca solutions obtained from the flow theory of 

plasticity are functions of the UTS, n and D/t ratio. So motivated, Zhu and Leis [26, 27] 

developed a new multi-axial plastic yield theory that was referred to as the average shear stress 

yield criterion, or simply the Zhu-Leis criterion. Then, an intermediate flow solution of burst 

pressure was developed for thin-walled pipes, and various experiments showed that the Zhu-Leis 

flow solution agrees with well full-scale burst test data on average for a wide range of pipeline 

steels from Grade A to X120. Many other researchers [28-31] also validated the Zhu-Leis flow 

solution using different full-scale burst test datasets for various pipeline steels. All validations 
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demonstrated that the Zhu-Leis flow solution provides a reliable, accurate prediction of burst 

pressure for defect-free, thin-walled line pipes. Recently, the average shear stress yield theory 

has been extended to determine burst pressure for thin-walled pipe elbows [32], cylindrical shells 

in dynamic conditions [33], ductile PVC pipes [34], and offshore tubular casings [35, 36]. 

However, the above-noted Zhu-Leis flow solution was developed for thin-walled pipes, but 

not applicable for thick-walled pipes because the wall thickness effect on burst pressure was not 

considered. The literature review determined that an exact theoretical solution of burst pressure 

does not exist for thick-walled pipes due to the complexity of mathematical calculations. In the 

1950s, Faupel [37, 38] conducted a large set of burst pressure tests using small diameter, thick-

walled tubes in the capped end conditions, and proposed an empirical burst model based on their 

burst test data to predict burst strength of thick-walled tubes. Svensson [21] performed a 

theoretical study on burst pressure of thick-walled cylinders based on the von Mises flow theory. 

However, this author failed to develop an exact theoretical solution because of a complicated 

integration in the mathematical derivation, and thus obtained an approximate closed-form 

solution of burst pressure for thick-walled pressure vessels. Nevertheless, up to date, the 

approximate Svensson solution has obtained extensive applications [39-42] in structural design 

and strength analysis of intermediate thick-walled pressure vessels because of its fair agreement 

with full-scale test data for an intermediate D/t ratio in the range of 10 < D/t < 20.  However, for 

small diameter, thick-walled tubes or pipes with a small D/t ratio in the range of 2 < D/t < 5, the 

difference between the Svensson solution and full-scale burst test data can be significantly large, 

up to 15%, see Section 4.1 or Reference [51] for detailed comparisons. As a result, a more 

accurate exact solution of burst pressure for thick-walled pipes is still needed in the pressure 

vessel and pipeline industry. 

This paper aims to develop an exact solution of burst pressure for defect-free, thick-walled 

pipes with capped ends using the flow theory of plasticity in terms of the average shear stress 

yield criterion (or Zhu-Leis yield criteria). It is assumed that the pipe material obeys the power-

law strain hardening rule, and the finite strain theory is adopted to describe large plastic 

deformation. On this basis, internal pressure is obtained as a power series function of the 

effective strains on the inside and outside surfaces of the thick-walled pipe with use of the 

second Bernoulli numbers. At burst failure, the Zhu-Leis flow solution of burst pressure is 

determined as a power series solution, and the burst effective strains, the burst effective stresses, 

and the burst pressure are a function of the diameter ratio (Do / Di), strain hardening exponent 

(n), and ultimate tensile strength (UTS). In the similar manner, the Tresca and von Mises flow 

solutions of burst pressure are also determined as a power series solution in terms of the Tresca 

and von Mises yield criteria, respectively. A general closed-from exact solution of burst pressure 

is then proposed for the three yield criteria, and the results showed that the proposed exact 

solution matches well with the power series solution for each yield criterion. Moreover, the von 

Mises flow solution is an upper bound prediction, the Tresca solution is a lower bound 

prediction, and the Zhu-Leis flow solution is an intermediate prediction that agrees well with the 

FEA results of burst pressure for thick-walled pipes. Finally, two datasets of full-scale burst tests 

are employed to evaluate and validate the proposed flow solutions of burst pressure for both thin 

and thick-walled pipes. 

 

 

2. Existing burst prediction models for thick-walled pipes 
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In the 1950s and 1960s, there were many valuable burst pressure tests conducted for small 

diameter, thick-walled tubes (i.e., D/t < 20) in various structural steels by different investigators 

[37-38, 43-44]. Many empirical burst pressure models were then developed for thick-wall tubes 

in the capped-end conditions, as reviewed by Hamada et al. [4] and Christopher et al. [11]. Four 

of these burst pressure models are often used in the pressure vessel industry. 

2.1. Turner burst pressure model 

 �� = ���� ln 
���
� (1) 

 

where Pb is burst pressure, Suts is the engineering value of UTS of the pipe steel, Do is the outside 

diameter (OD), and Di is the inside diameter (ID) of the pipe. This burst pressure solution in Eq. 

(1) was obtained by Turner [45] in 1910 using the Tresca strength theory in terms of the UTS for 

thick-walled pressure cylinders. 

2.2. Nadai burst pressure model 

 �� = �√� ���� ln 
���
 � (2) 

 

This burst pressure solution in Eq. (2) was obtained by Nadai [46] in 1931 using the von Mises 

strength theory [35] in terms of the UTS for thick-walled tubes. 

 

2.3. Faupel burst pressure model 

 �� = �√� ��� 
2 − �������� ln 
���
 � (3) 

 

where Sys is the yield stress (YS) of the pipe. This burst prediction formula in Eq. (3) is an 

empirical model that was proposed by Faupel [37] in 1956 based on his burst test data, the von 

Mises yield strength and the von Mises ultimate tensile strength of failure pressure for thick-

walled tubes. 

 

2.4. Svensson burst pressure model 

 

�� = 
 �.�����.���� 
 ��� ���� ln 
���
 � (4) 

where e = 2.71828 is the Euler’s number and n is the strain hardening exponent of ductile steels. 

This burst pressure model in Eq. (4) is an approximate solution for thick-walled pressure vessels 

that was obtained by Svensson [21] in 1958 using the von Mises flow theory of plasticity that 

considered the plastic flow response of steel pipes. 
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2.5. Three flow solutions of burst pressure for thin-walled pipes 

In order to consider the plastic flow effect as did by Svensson [21], Zhu and Leis [26, 27] 

investigated burst pressure of large diameter, thin-walled pipes with a ratio of D/t ≥ 20 using the 

flow theory of plasticity within the large deformation framework.  For a power-law hardening 

steel, these authors developed the following flow solutions of burst pressure for thin-walled pipes 

with regard to the Tresca, von Mises and Zhu-Leis criteria as: 

 

�� = 
!����! "��#� ����,              for Tresca yield criterion (5) 

�� = 
 !√����! "��#� ����,             for von Mises yield criterion (6) 

�� = 
��√�"√� ���! "��#� ����,          for Zhu-Leis yield criterion (7) 

 

where D-t is the mean diameter (MD) of the pipe, D is the OD of the pipe, and strain hardening 

exponent n is measured from a simple tensile test or estimated from the YS and UTS. Zhu and 

Leis [47] provided two simple equations to estimate n from the YS defined at the 0.2% offset 

strain or the 0.5% total strain.  

For an elastic-perfectly plastic material or n ≈ 0, Equations (5) – (7) reduces to the strength 

solution of burst pressure in terms of the Tresca, von Mises and Zhu-Leis yield criteria [15]. In 

particular, using the OD, the Tresca strength solution of burst pressure is often referred to as the 

Barlow strength in the pipeline industry: 

 �� =  ��� ���� (8) 

 

Comparison of Eq. (8) with Eq. (1) shows that the Tresca strength solution has a different 

geometrical term, but the same material term for a thick-walled pipe compared to a thin-walled 

pipe. The same observation is made for the von Mises Strength solution for a thick-walled pipe 

compared to a thin-walled pipe. If this observation holds truly for a power-law hardening 

material, the Svensson burst solution in Eq. (4) for a thick-walled pipe and the von Mise flow 

solution in Eq. (6) for a thin-walled pipe should have the same material term. However, the 

material terms in these two equations are considerably different. The root cause is that the 

Svensson model Eq. (4) is an approximate result, but not an exact solution for thick-walled pipes. 

This motivates the present work to adopt the flow theory of plasticity to strictly develop a more 

accurate, exact theoretical solution of burst pressure for thick-walled pipes. 

 

 

3. Exact solutions of burst pressure for thick-walled pipes 

 

3.1. Stress-strain law 

For a power-law strain hardening material, the true stress, σ, and the logarithmic strain, ε, in 

the uniaxial tensile test obeys the following power-law stress-strain relationship [27]: 
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% = &'�     or      
((��� = 
)���

 (9) 

& = ���� 
 ���
 (10) 

where K is a strength coefficient of the material, and σuts is the true UTS that is related to the 

engineering UTS as %��� = *�����. At the UTS, the true strain '��� = +. 

In general, a simple relationship does not exist between internal pressure, stress, and strain 

for a thick-walled pipe in an elastic-plastic deformation due to plastic flow response and large 

strain effects [48].  This work adopts the power-law strain hardening rule in Eq. (9), the flow 

theory of plasticity, and the finite strain theory to characterize stresses and strains in a thick-

walled pipe for  pipeline carbon steels that obey the power-law strain hardening rule.  

 

3.2. Effective stress and effective strain for the average shear stress yield criterion 

For a long thick-walled pipe with capped ends, experiments [37] showed that the axial strain 

is very small and can be neglected (i.e., ',, = 0). The three principal stresses in a thick-walled 

pipe are radial stress σrr, hoop stress σθθ, and axial stress σzz, while the three principal strains are 

radial strain '.. ≠ 0, hoop strain '00 ≠ 0 , and axial strain εzz = 0.  In the large plastic 

deformation near plastic collapse, the material becomes incompressible (i.e., the Poisson’s ratio 

ν = 0.5). In these conditions, the following relations [11, 21] were obtained: 

'.. = −'θ0  (11) 

%,, = !� 1%.. + %0θ3 (12) 

For an elastic-plastic deformation, the plastic flow theory in terms of the average shear stress 

(i.e., Zhu-Leis) yield criterion [27] determines the effective stress, σA, and effective strain, εA: 

%4 = !��√� 5√3%7 + 2%89 = �√���√� 1%0θ − %..3  (13a) 

'4 = !� 1'7 + '83 = ��√��√� '00  (13b) 

where σT and εT are the effective stress and effective strain for the Tresca yield condition: 

%7 = %00 − %.. (14a) 

'7 = '00 (14b) 

and σM and εM are the effective stress and effective strain for the von Mises yield condition: 

%8 = √�� 1%00 − %..3 (15a) 

'7 = �√� '00 (15b) 

 

3.3. Governing equation 
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Consider an infinitesimal, differential element in a thick-walled pipe subjected to internal 

pressure, as shown in Fig. 1, where (X, Y) is the Cartesian rectangular coordinate system, (r, θ) 

is the polar coordinate system, and z denotes the axial direction for both coordinate systems.  

For a thick-walled pipe, D/t < 20, or the diameter ratio κ = Do / Di > 1.1.  Initially before 

loading, the differential element in the undeformed configuration lies at a point (r, θ) with a 

radial increment, dr, and an angular increment, dθ. Because of axial symmetry, the pipe has no 

hoop displacement but only radial displacement that is denoted as u. During loading, the pipe 

expands, 
 

 
Figure 1. Illustration of a differential element in a thick-walled pipe. 

 

and so the differential element moves outward to a new point 1r + u, θ3, and the radial increment 

becomes d1r + u3. The equation of stress equilibrium in the radial direction is expressed as: 
 1? + @3 A(BBA1.��3 =  %0θ − %.. (16) 

 

where the instantaneous radial stress σrr and the instantaneous hoop stress σθθ of the differential 

element in the pipe are the Cauchy stresses defined in the deformed configuration. 

Since large plastic deformation is involved, the finite strain theory determines the radial and 

hoop logarithmic strains, respectively as: 

'.. = C+ 
1 + A�A.� (17a) 

'0θ = C+ 
1 + �.� (17b) 

By eliminating the radial displacement u from Eqs. (17a) and (17b), the following strain 

compatibility equation is obtained in reference to the instantaneous radius, r+u: 
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1? + @3 A)EθA1.��3 = 1 − *)Eθ#)BB (18)  
 

Using Eqs. (13a) and (9), the equation of stress equilibrium in Eq. (16) becomes: 

 

1? + @3 A(BBA1.��3 = 
��√��√� � ���� 
 ��� '4� (19) 

 

From Eqs. (13b), the strain compatibility equation (18) becomes: 

 

1? + @3 A)FA1.��3 = 
��√��√� � G1 − * H√IJK√I )FL (20) 

 

Dividing Eq. (20) by Eq. (19) obtains the following governing equation: 

 

A(BBA)F = ����
MN�N)FN
!# H√IJK√I OF (21) 

 

The thick-walled pipe subjected to internal pressure has the following stress and strain 

boundary conditions: 

• On the ID surface at r = Ri,   %.. = − � (22a) 

• On the OD surface at r = Ro, %.. = 0 (22b) 

 

where RQ = DQ/2 is the inside radius, and RT = DT/2 is the outside radius of the pipe. For 

convenience of analysis, denote '4 = '! on the ID surface, and '4 = '� on the OD surface. 

With the boundary conditions in Eq. (22), integration of Eq. (21) determines the pressure as: 

 

� = ���� 
 ��� U )FN
!# H√IJK√I OF

)J)V W'4 (23) 

 

The above integral can determine the burst pressure of thick-walled pipes if ε1 and ε2 are 

known at burst failure, but this integration is difficult to explicitly calculate because of its 

complexity. In order to calculate the integral in Eq. (23), the exponential generating function in 

the integrand can be expressed using the second (or even-index) Bernoulli numbers [49, 50], as 

shown in the following equation: 

 
H√IJK√I )F

 H√IJK√I OF#!
= ∑ YZ[! 
 "√���√� '4�[][^�  (24) 

 

where Bk (k = 0, 1, 2, …, ∞) are the second Bernoulli numbers. The first ten nonzero second 

Bernoulli numbers have values: _� = 1, _! = − !�, _� = !̀
, _" = − !��, _` = !"�, and _a = − !��, 
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and _!� = �̀̀
 . The odd second Bernoulli numbers are zeros: _� = _� = _� = _b = 0. Using Eq. 

(24), calculation of the integral in Eq. (23) becomes an integration of a complex polynomial 

function that determines the following power series solution of the general applied pressure as: 

 

� = 
��√�"√� ���! 
 ��� ���� ∑ YZ[!
c H√IJK√I )VdZKN# c H√IJK√I )JdZKN

1[��3][^�   (25) 

 

Since ε2 can be expressed as a function of ε1, as evident from Eq. (A.8) in Appendix A,  Equation 

(25) shows that the applied pressure P is a function of ε1 only. From the P-ε1 relation, the peak 

pressure can be determined. Alternatively, for a given value of n and κ, the burst strain ε1b is 

solved from Eq. (A.10), and the burst strain ε2b is calculated from Eq. (A.8). With the values of 

ε1b and ε2b, the exact solution of burst pressure can be determined from Eq. (23) by integration or 

directly calculated from the series solution in Eq. (25), but both exact solutions are not a closed-

form. 

3.4. Exact solution of burst pressure in a closed-form 

This section investigates an exact solution of burst pressure in a closed-form that is fit well 

with the power series solution from Eq. (25) or the numerical integration result from Eq. (23). 

For a strain non-hardening material (i.e., n = 0, or ideally plastic material), K = Suts, and for a 

thick-walled pipe, integration of stress equilibrium Eq. (19) obtains the following closed-form 

exact solution of burst pressure in the closed-from for the Zhu-Leis yield criterion: 

�� = ��√��√�  ���� ln 
���
 � (26) 

For a thin-walled pipe with D/t ≥ 20, Zhu et al. [51] showed that ln(Do/Di) ≈ 2t/(D-t). In this 

case, Equation (26) reduces to the Zhu-Leis strength solution (i.e., Eq. (7) with n = 0) for the 

ideally plastic material. 

For a power-law strain hardening material, Equation (26) suggests that the burst pressure 

solution of Eq. (23) or (25) for a thick-walled pipe may have the logarithmic function of ln(Do 

/Di) as its geometrical term and the same material parameter term of Eq. (7) as for a thin-walled 

pipe. Thus, the closed-form exact solution of burst pressure for a thick-walled pipe in the power-

law strain hardening material is proposed to be expressed in the following closed-form for the 

Zhu-Leis yield criterion as: 

�� = 2 
��√�"√� ���! ���� C+ 
���
 � (27) 

Note that Zhu et al. [51] recently developed an modified strength theory and obtained a more 

accurate burst pressure solution as the same as Eq. (27) for a thick-walled pipe in a power-law 

strain hardening material.  Johnson et al. [52] have validated the thick-wall burst pressure 

solution in Eq. (27) with FEA results for a wide range of pipeline sizes and grades. 

3.5. General exact solutions of burst pressure for three yield criteria 
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Following the mathematical derivation of the Zhu-Leis flow solution in Eq. (25) or (27) for 

thick-walled pipes, the flow solutions of burst pressure are also obtained for the Tresca and von 

Mises yield criteria, respectively, where the Tresca effective stress in Eq. (14a) and Tresca 

effective strain in Eq. (14b) as well as the von Mises effective stress in Eq. (15a) and von Mises 

effective strain in Eq. (15b) are used. As a result, using the second Bernoulli numbers, a general 

power series solution of burst pressure for thick-walled pipes is obtained in terms of the Tresca, 

von Mises and Zhu-Leis yield criteria as follows: 

 

�� = 
e����! 
 ��� ���� ∑ YZ[!

Jf )Vg�ZKN# 
Jf )Jg�ZKN

1[��3][^�   (28) 

 

where C is a constant that is related to the yield criterion and defined as: 

 

h =
ij
k 

  1,         for Tresca yield criterion     �√� ,         for von Mises yield criterion 
!� + !√� ,     for Zhu-Leis yield criterion   (29) 

 

At the burst failure of the thick-walled pipe, the burst strains ε1b and ε2b in Eq. (28) are 

determined from Eqs. (A.8) and (A.10) that are given in Appendix A. 

Alternatively, as similar to Eq. (27), the general exact solution of burst pressure for thick-

walled pipes can be expressed in the following closed-form function for the Tresca, von Mises, 

or Zhu-Leis yield criterion: 

�� = 2 
e����! ���� C+ 
���
 � (30) 

The closed-form exact solution of burst pressure in Eq. (30) for thick-walled pipes is the same as 

that given by Zhu et al. [51] from a new modified strength theory. The next section will verify 

that the closed-form exact solution in Eq. (30) is equivalent to the power series solution in Eq. 

(28) for each yield criterion for a wide range of n and κ values. 

 

3.6. Analyses and results of burst strain, burst stress and burst pressure 

This section presents the analyses and results of the Zhu-Leis exact solutions of the burst 

strains, burst stresses and burst pressure for thick-walled pipes, where the burst effective strains 

are obtained from Eqs. (A.8) and (A.10), the burst effective stresses are obtained from Eq. (9), 

and the burst pressure is obtained by integrating Eq. (23) or directly calculated from the power 

series solution in Eq. (25) (using the first ten terms) for different values of κ = Do / Di and n in 

terms of the Zhu-Leis criterion. The power series solution of burst pressure is then compared 

with the closed-from exact solution in Eq. (27) for the Zhu-Leis criterion to verify the validity of 

this closed-form exact solution. 
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Figures 2 and 3 show the variations of Zhu-Leis burst strains ε1b and ε2b and Zhu-Leis burst 

stresses σ1b and σ2b with the diameter ratio of Do / Di , respectively, for five given strain 

hardening exponent values of n = 0.05, 0.10, 0.15, 0.20, and 0.25.  Figure 2 shows that 1) the two 

Zhu-Leis burst strains are nonlinearly related to Do / Di, 2) all ε1b values are larger than the 

corresponding ε2b values for a given n, and 3) all ε1b values increase, but the ε2b values decrease 

as Do / Di increases for a given n.  Figure 3 shows that 1) the two Zhu-Leis burst stresses are also 

nonlinearly related to Do / Di, 2) the Zhu-Leis burst stress σ1b normalized by the true UTS 

increases with Do / Di for a given n, and 3) the normalized Zhu-Leis burst stress σ2b decreases as 

both Do / Di and n increase. 

 

 

Figure 2. Variation of Zhu-Leis strain at burst failure with Do / Di for five given n values. 
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Figure 3. Variation of Zhu-Leis stress at burst failure with Do / Di for five n values. 
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solution of burst pressure in Eq. (27). The comparison shows that the proposed Zhu-Leis flow 
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series solution is slightly lower than the closed-form exact solution for larger values of Do / Di 

and n. This is likely caused by the ten-term selection in Eq. (28)). From this observation, it can 

be concluded that the proposed Zhu-Leis flow solution in Eq. (27) is a closed-form exact solution 

of burst pressure for thick-walled pipes when the Zhu-Leis yield criterion is adopted. 
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Figure 4. Zhu-Leis burst pressure ratio 
uvw��� against ln 
���
 � for five given n values. 

 

In the similar manner, the von Mises exact solutions of burst strains, burst stresses and burst 

pressure for thick-walled pipes are obtained and given in Appendix B, and the Tresca exact 

solutions of burst strains, burst stresses and burst pressure for thick-walled pipes are obtained 

and given in Appendix C.   

Figure 5 compares three burst pressure predictions by the von Mises, Zhu-Leis and Tresca 

yield criteria with the strain hardening exponent, n, for thick-walled pipes, where the predicted 

pressures are normalized by the Tresca strength solution, Pb = Suts ln(Do/Di). Also included in 

this figure are three power series solutions from Eq. (28) with use of the first ten terms and the 

numerical results from a new FEA burst model that was recently obtained by Johnson et al. [52]. 

From Fig. 5, the following observations are made: 

1) The von Mises exact solution agrees well with the von Mises power series solution, and 

both provides an upper bound prediction of burst pressure for thick-walled pipes, 

2) The Tresca exact solution agrees well with the Tresca power series solution, and both 

provides a lower bound prediction of burst pressure for thick-walled pipes, 

3) The Zhu-Leis exact solution agrees well with the Zhu-Leis power series solution, and 

both provides an intermediate prediction of burst pressure for thick-walled pipes, and 

4) The Zhu-Leis exact solution matches well with the FEA results, which confirms that the 

Zhu-Leis exact solution is an accurate prediction of burst pressure for thick-walled pipes. 
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Figure 5. Comparison of normalized burst pressures varied with n for three yield criteria  

 

4. Experimental validation 

 

This section assesses the four existing burst pressure models in Eqs. (1) to (4) and the 

proposed exact solutions of burst pressure in Eq. (30) from the flow theory of plasticity in terms 

of the von Mises, Tresca and Zhu-Leis criteria for thick-walled pipes. Two datasets of burst 

pressure tests are utilized here to evaluate these burst prediction models for thick-walled pipes 

with capped ends. One dataset contains burst test data for small diameter, thick-walled tubes, and 

the other dataset contains burst test data for large diameter, thin and thick-walled pipes. 
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walled tubes. The materials for these burst tests were low, medium, or high carbon steels with 

the yield strength in the range of 244 to 1076 MPa and the tensile strength in the range of 459 to 

1119 MPa. The strain hardening exponent n of these tube steels is less than 0.25. Note that the 

burst test data obtained by Faupel [37] were also reported by Christopher et al. [11] in their Table 

5. 

Figure 6 compares the burst pressure predictions with measured burst pressure data that were 

obtained by Faupel [37] for small diameter, thick-walled pressure tubes, where the y-axis 

represents the burst pressure normalized by the Tresca strength solution, P| = S~�� ln 
xyxz �, for 

thick-walled pipes, and the x-axis denotes the material strain hardening exponent n. The burst 

pressure predictions were determined from the four representative models for thick-walled pipes: 

the Turner model (i.e., Tresca strength solution) in Eq. (1), the Nadai model (i.e., von Mises 

strength solution) in Eq. (2), the Faupel empirical model in Eq. (3), the Svensson approximate 

model in Eq. (4), and the three proposed exact flow solutions in Eq. (30), including the von 

Mises flow solution, Tresca flow solution and Zhu-Leis flow solution. 

 

 

 
Figure 6. Comparison of exact burst pressure predictions with burst test data for thick-walled 

tubes as a function of n. 

 

From Fig. 6, the following observations are determined: 

 

1) The von Mises strength solution is independent of n, and provides an absolute upper 
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3) The von Mises flow solution is an upper bound prediction of the burst data for all n 

values. 

4) The Tresca flow solution is a lower bound prediction of the burst data for all n values. 

5) The Faupel empirical model provides comparable results to the Mises strength solution 

for low hardening strain materials with n < 0.06, and then its prediction decreases with n 

in a nearly linear trend. For most ductile steels with n < 0.15, the Faupel solution varies 

around the von Mises flow solution, and thus it overestimates the burst data. For high 

strain hardening steels with 0.15 < n < 0.22, the Faupel solution seems to give an 

acceptable prediction of the burst data. 

6) The approximate Svensson model predicts outcomes that are smaller than and nearly 

parallel to the Mises flow solutions for all n values. However, this Svensson model 

overestimates most of the burst data. 

7) The Zhu-Leis flow solution is an intermediate prediction and agrees well with the burst 

data for all n values on average. Thus, this solution is the best prediction model. 

 

Figure 7 illustrates the statistical analysis results of the burst pressure prediction to test data 

ratios (i.e., the burst pressure predictions normalized by the burst test data shown in Fig. 6) for 

the small diameter, thick-walled tubes, where the burst pressure is predicted by the von Mises 

strength model (or Nadai model), Tresca strength model (or Turner model), von Mises flow 

solution, Tresca flow solution, Zhu-Leis flow solution, Svensson model, and Faupel model. In 

particular, Fig. 7(a) shows the mean errors of these prediction models, and Fig. 7(b) shows the 

standard errors of these prediction models. Note that the standard error of the mean is a measure 

of how far each observed value from the mean of a dataset, and the mean error is an averaged 

measure of the relative errors between a model prediction and the corresponding test data for all 

data points in a dataset. A positive mean error denotes that a model overestimates test data, and a 

negative mean error denotes that a model underestimates test data. Accordingly, it follows from 

this figure that: 

1) The von Mises strength solution has the largest mean error and the largest standard error, 

2) The Tresca strength solution has the smallest mean error but a second large standard 

error, 

3) The von Mises flow solution has a second large mean error and a third large standard 

error, 

4) The Tresca flow solution has a large negative mean error and a small standard error, 

5) The Zhu-Leis flow solution has a small mean error and a small standard error, and 

6) The Svensson and Faupel models have a similar large mean error and a similar small 

standard error. 

The statistical theory determines that the smaller the mean error and the standard error are, 

the more accurate a prediction model will be for the same set of experimental data. Thus, the 

results of statistical error analysis in Fig. 7 confirm the observations made in Fig. 6, that is, the 
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Zhu-Leis flow solution is the best prediction model of burst pressure, while the Svensson and 

Faupel models significantly overestimate the burst pressure for thick-walled pipes. 
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Figure 7. Statistical analysis results of the burst pressure prediction to test data ratio: (a) mean 

error, and (b) standard error. 

 

From the above model evaluations, it is concluded that for thick-walled pipes that 1) the 

Nadai (i.e., von Mises strength solution), Faupel, and Svensson models all overpredict the burst 

data, 2) the Turner model (i.e., Tresca strength solution) overall determines adequate predictions 

of all burst data, 3) the Mises flow solution is an upper bound prediction, 4) the Tresca flow 

solution is a lower bound solution, and 5) the Zhu-Leis flow solution is an intermediate solution 

that predicts the best results compared to the burst data on average. 

 

4.2 Validation with burst test data for thin and thick-walled pipes 
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strengths in the range of 392 to 869 MPa. The strain hardening exponents n of the pipe steels are 

all less than 0.20.  

Figure 8 compares the burst pressure predictions with measured burst data that were given by 

Zimmermann et al. [17] for large diameter, thin and thick-walled pipes, where the y-axis 

represents the burst pressure normalized by the Tresca strength solution, P| = S~�� ln 
xyxz �, for 

thick-walled pipes, and the x-axis denotes the strain hardening exponent n. The burst pressure 

predictions were obtained from the four representative models for thick-walled pipes: the Turner 

model (i.e., Tresca strength solution) in Eq. (1), the Nadai model (i.e., von Mises strength 

solution) in Eq. (2), the Faupel empirical solution in Eq. (3), the Svensson approximate solution 
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in Eq. (4), and the three proposed flow solutions including the von Mises flow solution, Tresca 

flow solution and Zhu-Leis flow solution in Eq. (30).   

 

 
Figure 8. Comparison of burst pressure predictions with burst test data for thin and thick-walled 

pipes as a function of n. 

 

 

Comparison of Fig. 8 with Fig. 6 shows all prediction results in these two figures are similar, and 

thus all observations obtained in Fig. 6 are also applicable to Fig. 8 for the EPRG burst data.  

 

Figure 9 plots the statistical analysis results of the burst pressure prediction to test data ratios 

(i.e., the burst pressure predictions normalized by the burst test data shown in Fig. 8) for the 

large diameter, thin and thick-walled pipes, where the burst pressure is predicted by the von 

Mises strength model (or Nadai model), Tresca model (or Turner model), von Mises flow 

solution, Tresca flow solution, Zhu-Leis flow solution, Svensson model, and Faupel model. In 

particular, Fig. 9(a) shows the mean errors of these prediction models, and Fig. 9(b) shows the 

standard errors of these prediction models. Comparison of Fig. 9 with Fig. 7 shows that all 

statistical errors are similar for each prediction model, and thus all observations made in Fig. 7 

are applicable to Fig. 9 for the EPRG burst data. As a result, it is again concluded that the Zhu-

Leis flow solution is the best prediction model of burst pressure, while the Svensson and Faupel 

models significantly overestimate burst pressure for thick-walled pipes. 

 

 

 

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0.00 0.05 0.10 0.15 0.20

P
b

/ 
(σ

u
ts

ln
(D

o
/D

i))

n

Mises flow solution Zhu-Leis flow solution

Tresca  flow solution Svensson model

Faupel model EPRG burst data

Mises Strength

Tresca

Strength



Revised Paper to International Journal of Mechanical Sciences (IJMS-D-23-02063) 

 

20 

 

(a) 

 
 

 

 

(b) 

 

 

-10%

-5%

0%

5%

10%

15%

20%

von Mises

strength

Tresca

strength

von Mises

flow

Tresca

flow

Zhu-Leis

flow

Svensson

model

Faupel

model

M
e

a
n

 e
rr

o
r

-0.4%

0.0%

0.4%

0.8%

1.2%

1.6%

2.0%

von Mises

strength

Tresca

strength

von Mises

flow

Tresca

flow

Zhu-Leis

flow

Svensson

model

Faupel

model

S
ta

n
d

a
rd

 e
rr

o
r



Revised Paper to International Journal of Mechanical Sciences (IJMS-D-23-02063) 

 

21 

 

Figure 9. Statistical analysis results of the burst prediction to test data ratio: (a) mean error, and 

(b) standard error. 

 

In summary, the experimental evaluations performed above validate that the Zhu-Leis flow 

solution for thick-wall pipes can accurately predict burst pressure for both thin and thick-walled 

pipes with small to large D/t ratios. In contrast, the Mises and Tresca flow solutions can serve as 

the upper and lower bound predictions of burst pressure for the thick-walled pipes. 

 

 

5. Conclusions 

 

This paper developed three exact solutions of burst pressure for defect-free, thick-walled 

pipes with capped ends using the flow theory of plasticity in terms of the Tresca, von Mises, and 

Zhu-Leis yield criteria, respectively. It was assumed that the pipe steel obeys the power-law 

strain hardening rule, and the large plastic deformation was described by the finite strain theory. 

On this basis, internal pressure was determined as a power series function of the effective strains 

on the inside and outside surfaces of the thick-walled pipe with use of the second Bernoulli 

numbers. At burst failure, these effective strains and stresses were obtained, and then three flow 

solutions of burst pressure were determined as a power series solution in a function of the DT/DQ 
ratio, n, and UTS. In order to determine a closed-form exact solution, a general flow solution of 

burst pressure was then proposed for the three yield criteria, and the results showed that the 

proposed exact solution matches well with the power series solution for each yield criterion. Two 

datasets of full-scale burst tests were then utilized to evaluate the four existing burst prediction 

models and the three proposed flow solutions of burst pressure for thick-walled pipes. The final 

results are concluded as follows: 
 

1) The Nadai model (i.e., von Mises strength solution), the empirical Faupel model, and the 

approximate Svensson model all significantly overpredict the burst pressure, and thus 

their burst pressure predictions are nonconservative. 

2) The Turner model (i.e., Tresca strength solution) overall determines an adequate 

prediction of the burst pressure data, particularly for n < 0.1, and thus its predictions may 

be acceptable for engineering applications. 

3) The von Mises power series solution is equivalent to the von Mises flow solution, and 

serves as an upper bound prediction of burst pressure for both thin and thick-walled 

pipes. 

4) The Tresca power series solutions is equivalent to the Tresca flow solution, and serves as 

a lower bound solution of burst pressure for both thin and thick-walled pipes. 

5) The Zhu-Leis power series solution is equivalent to the Zhu-Leis flow solution, and 

serves as an intermediate prediction that correlates best with burst pressure data on 

average.  

6) The Zhu-Leis flow solution agrees well with the FEA burst model results obtained 

recently by Johnson et a. [52] for thick-walled pipes. 
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In summary, the Zhu-Leis flow solution is an accurate closed-form exact solution of burst 

pressure for thin and thick-walled pipes. This exact solution of burst pressure is limited to 

applications for power-law strain hardening materials, including ductile steels and ductile 

polymers, but may be not applicable to brittle metals or other non-power-law strain hardening 

materials. In practical applications, the thin-wall based Zhu-Leis flow solution in Eq. (7) is 

recommended predict burst pressure for thin-walled pipes or cylinders with a large D/t ratio of 

D/t > 20, whereas the thick-wall based Zhu-Leis flow solution in Eq. (27) is recommended 

predict burst pressure for thick-walled pipes or tubes with a small D/t ratio of D/t ≤ 10. See 

Reference [51] for more discussions on when to use an appropriate flow solution to predict burst 

pressure for pressure pipes with a different D/t ratio. In addition, Further experimental 

validations are recommended for ensuring the general validity of the proposed exact solutions of 

burst pressure for various thick-walled pipes with different geometries or different materials. 
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Appendix A. Burst Strains for Thick-Walled Pipes 

 

A.1 Burst failure conditions 

Equation (23) shows that the applied pressure P can be a function of the effective strains ε1 in 

the case where ε2 is a function of ε1. The burst pressure Pb is then determined at the plastic 

instability condition, that is, the differential of P with regard to ε1 is equal to zero: 

���)V =  )JN
!# JfOJ

�)J�)V − )VN
!# JfOV = 0 (A.1) 

where h = ��√��√�  for the Zhu-Leis yield criterion or see Eq. (29) for other yield criteria. The 

above equation leads to a relationship between the two burst strains ε1b and ε2b at the plastic 

instability of the thick-walled pipe: 


)Vg)Jg�� = !# JfOVg
!# JfOJg  �)J�)V�� (A.2) 

where all variables with the subscription b denotes the variables at the pipe burst condition. 

 

A.2 Relation between ε1 and ε2 

From Eq. (20), the strain compatibility equation for the Zhu-Leis yield criterion is rewritten 

as: 

A)F
!# JfOF = e� W� (A.3) 

where � = 1.��3�
  is a normalized current radius of the point in consideration. On the ID surface, 

the hoop strain '00 = C+1�!3, and thus the effective stress ε1 is given by: 

'! = e� ln1�!�3 (A.4) 

With the strain boundary condition in Eq. (A.4), integrating Eq. (A.3) obtains: 

'4 = e� ln 
 �J
!#�VJ��J� (A.5) 

Because plastic deformation is incompressible, the volume of the pipe remains unchanged 

during the plastic deformation, and thus the following geometrical relationship is obtained: 

��� − �!� + 1 = �� (A.6) 



Revised Paper to International Journal of Mechanical Sciences (IJMS-D-23-02063) 

 

27 

 

where � = ��/�� is the diameter ratio of the pipe. From Eqs. (A.5) and (A.6), the effective strain 

ε2 on the OD surface is obtained: 

'� = e� ln 
�J#!��VJ�J � (A.7) 

From Eqs. (A.4) and (A.7), after eliminating �!, the effective strain ε2 is related to ε1 in the form: 

'� = e� ln G1 − ! #  JfOV
�J L (A.8) 

From this equation, the differential of ε2 with regard to ε1 is obtained as: 

�)J�)V =  JfOV
�J#!� JfOV (A.9) 

Substituting Eqs. (A.8) and (A.9) into Eq. (A.2), the burst failure condition becomes: 


)Vg)Jg�� =  �J JfOVg
�J#!� JfOVg (A.10) 

where ε2b is related to ε1b in Eq. (A.8). Thus, for a given value of n and κ, ε1b can be solved from 

Eq. (A.10), and ε2b is calculated from Eq. (A.8) with ε1b. With the values of ε1b and ε2b, the exact 

solution of burst pressure can be determined from Eq. (23) or (25). 
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Appendix B. von Mises Flow Solution of Burst Pressure 

 

This section analyzes the exact solutions of burst strains, burst stresses and burst pressure 

solution for the von Mises yield criterion (i.e., C = 2/√3), where  the burst effective strains are 

obtained from Eqs. (A.8) and (A.10), the burst effective stresses are obtained from Eq. (9), and 

the burst pressure is obtained by integrating Eq. (23) or directly calculated from the power series 

solution in Eq. (28) (using the first ten terms) for different values of κ and n in terms of the von 

Mises criterion.  The power series solution of burst pressure is then compared with the closed-

from exact solution in Eq. (30) for the von Mises criterion to confirm the validity of this closed-

form exact solution. 

Figures B.1 and B.2 show the variations of von Mises burst strains ε1b and ε2b and von Mises 

burst stresses σ1b and σ2b with the diameter ratio of Do / Di, respectively, for five given strain 

hardening exponent values of n = 0.05, 0.10, 0.15, 0.20, and 0.25.  Figure B.1 shows that 1) the 

two von Mises burst strains are nonlinearly related to  Do / Di, 2) all ε1b values are larger than the 

corresponding ε2b values for a given n, and 3) all ε1b values increase, but the corresponding ε2b 

values decrease as Do / Di increases for a given n.  Figure B.2 shows that 1) the two von Mises 

burst stresses are also nonlinearly related to Do / Di, 2) the von Mises burst stress σ1b normalized 

by the true UTS increases with Do / Di for a given n, and 3) the normalized von Mises burst 

stress σ2b decreases as both Do / Di and n increase. Note that any of those von Mises burst strains 

or stresses can be used as a critical value in the strain or stress-based von Mises failure 

criterion to determine the burst pressure of a thick-walled pipe in an elastic-plastic FEA 

simulation. 
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Figure B.1. Variation of von Mises strain at burst failure with Do / Di for five given n values. 

 

 

Figure B.2. Variation of von Mises stress at burst failure with Do / Di for five given n values.  

 

Using the above determined values of von Mises burst strains ε1b and ε2b, the von Mises burst 

pressure is calculated directly from the power series solution in Eq. (28) with the first ten terms 

(or by integrating Eq. (23) with the trapezoidal rule and 50 equal incremental steps of 

integration). Figure B.3 depicts variations of the von Mises burst pressure ratio, 
uvw���, with the 

geometrical term ln 
xyxz � calculated from Eq. (28) for five given values of n = 0.05, 0.10, 0.15, 

0.20, and 0.25.  Also included in Fig. B.3 for comparison is the closed-form exact von Mises 

flow solution of burst pressure in Eq. (30), the Svensson approximate solution of burst pressure 

in Eq. (4), and the Svensson table data in Table 2 of Reference [21]. The comparison shows that 

1) the present calculated burst pressure values are nearly identical to the Svensson table data for 

all n values, 2) the proposed von Mises flow solution in Eq. (30) agrees well with the calculated 

data, and 3) the approximate Svensson solution is always less than the calculated data or the 

proposed Mises flow solution for all n and all Do / Di ratios. From these observations, it can be 

concluded that 1) the proposed von Mises flow solution in Eq. (30) is a closed-form exact 

solution of burst pressure for thick-walled pipes,  2) the approximate Svensson model predicts a 

less non-conservative burst pressure in comparison with the exact Mises burst solution for a 

thick-walled pipe, and 3) the proposed integral equation (23) and the power series solution in Eq. 
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(30) using the second Bernoulli numbers both are validated by Svensson [21] when the von 

Mises yield criterion is adopted. 

 

Figure B.3. Mises burst pressure ratio 
uvw��� against ln(Do / Di) for five given n values. 

 

Appendix C. Tresca Flow Solution of Burst Pressure 

 

This section analyzes the exact solutions of burst strains, burst stresses and burst pressure 

solution for the Tresca yield criterion (i.e., C = 1), where the burst effective strains are obtained 

from Eqs. (A.8) and (A.10), the burst effective stresses are obtained from Eq. (9), and the burst 

pressure is obtained by integrating Eq. (23) or directly calculated from the power series solution 

in Eq. (28) (using the first ten terms) for different values of κ and n in terms of the Tresca 

criterion. The power series solution of burst pressure is then compared with the closed-from 

exact solution in Eq. (30) for the Tresca criterion to confirm the validity of this closed-form 

exact solution. 

Figures C.1 and C.2 show the variations of Tresca burst strains ε1b and ε2b and Tresca burst 

stresses σ1b and σ2b with the diameter ratio of Do / Di, respectively, for five given strain 

hardening exponent values of n = 0.05, 0.10, 0.15, 0.20, and 0.25.  Figure C.1 shows that 1) the 

two Tresca burst strains are nonlinearly related to  Do / Di, 2) all ε1b values are larger than the 
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stresses are also nonlinearly related to Do / Di, 2) the Tresca burst stress σ1b normalized by the 

true UTS increases with Do / Di for a given n, and 3) the normalized Tresca burst stress σ2b 

decreases as both Do / Di and n increase. 

 

 

Figure C.1. Variation of Tresca strain at burst failure with Do / Di for five given n values. 
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Figure C.2. Variation of Tresca stress at burst failure with Do / Di for five given n values. 

 

Using the above determined values of Tresca burst strains ε1b and ε2b, the Tresca burst 

pressure is calculated directly from the power series solution in Eq. (28) with the first ten terms 

(or by integrating Eq. (23) with the trapezoidal rule and 50 equal incremental steps of 

integration). Figure C.3 depicts variations of the Tresca burst pressure ratio, 
uvw���, with the 

geometrical term ln 
xyxz � calculated from Eq. (28) for five given values of n = 0.05, 0.10, 0.15, 

0.20, and 0.25.  Also included in Fig. C.3 is the closed-form exact Tresca flow solution of burst 

pressure in Eq. (30) for comparison. The comparison shows that the proposed Tresca flow 

solution in Eq. (30) agrees well with the calculated data for all n values. From this observation, it 

can be concluded that the proposed Tresca flow solution in Eq. (30) is also a closed-form exact 

solution of burst pressure for thick-walled pipes when the Tresca yield criterion is adopted. 
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Figure C.3. Tresca burst pressure ratio 
uvw���  against ln 
xyxz �for five given n values. 
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