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Abstract: This paper develops an exact solution of burst pressure for defect-free, thick-walled
pipes using the flow theory of plasticity in terms of the average shear stress yield criterion (or
Zhu-Leis yield criterion). The pipe steel is assumed to obey the power-law strain hardening rule,
and large plastic deformation is described by the finite strain theory. On this basis, internal
pressure is obtained as a power series function of the effective strains on the inside and outside
surfaces of the thick-walled pipe with use of the second Bernoulli numbers. At burst failure, the
Zhu-Leis flow solution of burst pressure is determined as a power series solution, and the burst
effective strains, the burst effective stresses, and the burst pressure are functions of the diameter
ratio (Do / Ds), strain hardening exponent (n), and ultimate tensile strength (UTS). Similarly, the
Tresca and von Mises flow solutions of burst pressure are also determined as a power series
solution in terms of the Tresca and von Mises yield criteria. A general closed-from exact solution
of burst pressure is then proposed for the three yield criteria, and the results showed that the
proposed exact solution matches well with the power series solution for each yield criterion.
Moreover, the von Mises flow solution is an upper bound prediction, the Tresca flow solution is
a lower bound prediction, and the Zhu-Leis flow solution is an intermediate prediction that
agrees well with the finite element analysis results of burst pressure for thick-walled pipes. Two
datasets of full-scale burst tests are then utilized to evaluate and validate the proposed flow
solutions of burst pressure for both thin and thick-walled pipes.

Keywords: burst pressure, thick-walled pipe, power-law strain hardening, flow theory of
plasticity, von Mises yield criterion, Tresca yield criterion, Zhu-Leis yield criterion

1. Introduction

Transmission pipelines are the critical infrastructure of a nation and used as an efficient and
safe vehicle to transport large volumes of crude oil, natural gas, refined petroleum products, or
hazardous liquids over long distances. In general, transmission pipelines are constructed from
carbon steel pipes and can range in size from several inches to several feet in diameter [1]. Most
transmission pipelines are large diameter, thin-walled pipes with a diameter to wall thickness
ratio D/t > 20 [2, 3], although there are many applications where pipes or tubes have small
diameters and thick walls with a ratio of D/t < 20 [3-5]. Because of high internal pressure, these
pipelines are potentially dangerous to human life and the environment. Accordingly, pipeline
structural integrity becomes extremely important for pipeline systems and has attracted broad
attentions [2-10]. To ensure the safe operation of pipelines, a pipeline design and integrity
management plan requires the accurate yield and burst strengths of the pipes to be available so
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that the maximum operating pressure will be less than the maximum load-bearing capacity or
burst pressure of the pipes. Therefore, an accurate burst pressure prediction model is essentially
needed for the pipeline design and management.

Extensive theoretical, numerical and experimental investigations have been performed over
the past century in order to accurately estimate burst pressure of cylindrical pressure vessels or
pipes, and many analytical and empirical prediction models were developed for predicting burst
pressure of defect-free pipes with internal pressure. For thick-walled pressure vessels, Hamada et
al. [4] and Christopher et al. [11, 12] presented a good technical review of burst pressure models,
while for thin-walled line pipes, Zhu and Leis [13] and Law and Bowie [14] evaluated available
burst pressure models. Recently, Zhu [8, 15] performed a comparative study on the traditional
strength criteria versus the modern plastic flow criteria used in the pressure vessel design and
analysis, Wang et al. [7] evaluated a set of burst prediction models using their burst test data for
structural steels exhibiting a yield plateau, Sun et al. [9] reevaluated existing burst pressure
models for large diameter, thin-walled pipelines in various grades, and Oh et al. [16] proposed a
new numerical model for thin-walled pipes from the finite element analysis (FEA).

The above-noted literature reviews [4-15] determined that most of available burst prediction
models were developed from either a simple analysis using a strength theory in terms of ultimate
tensile stress (UTS) and/or yield strength (YS), or using an empirical curve fit of experimental
data for one or more specific steels. It was concluded that no single model can provide an
accurate prediction of burst pressure for all ductile steels, or has been broadly accepted by the
industry. As a result, the simple Barlow strength formula [17] remains the basic design model for
developing regulation rules in both the American Society of Mechanical Engineers (ASME)
Boiler and Pressure Vessel Codes (BPVC) [18] and ASME B31.3 Codes [19], where ASME
BPVC is typically used in the pressure vessel industry, and ASME B31.3 is commonly used in
the pipeline industry. However, these code models did not consider the effect of plastic flow
response or strain hardening rate on burst strength of end-capped pressure vessels or pipes.

In order to consider the plastic flow effect on burst pressure, Cooper [20] and Svensson [21]
adopted the flow theory of plasticity and obtained the von Mises flow solution of burst pressure
for thin-walled pressure vessels in the end-capped conditions. Similarly, Weil [22] and Hillier
[23] performed a tensile plastic instability analysis of thin-walled tubes and obtained the same
result. Using experimental data, Kiefner et al. [24] and Stewart and Klever [25] demonstrated
that the von Mises flow solution obtained by Cooper [20] and Svensson [21] can describe the
effect of strain hardening rate on burst pressure, but significantly overestimated the burst test
data for thin-walled line pipes in various steels. Due to this reason, Stewart and Klever [25]
adopted the Tresca flow theory of plasticity and obtained the Tresca flow solution of burst
pressure for thin-walled pipes. These authors found that the von Mises flow solution provided an
upper bound of burst pressure data, while the Tresca flow solution provided a lower bound of
burst pressure data. The averaged result of these two bound solutions provides a good fit to the
burst test data, where both von Mises and Tresca solutions obtained from the flow theory of
plasticity are functions of the UTS, n and D/t ratio. So motivated, Zhu and Leis [26, 27]
developed a new multi-axial plastic yield theory that was referred to as the average shear stress
yield criterion, or simply the Zhu-Leis criterion. Then, an intermediate flow solution of burst
pressure was developed for thin-walled pipes, and various experiments showed that the Zhu-Leis
flow solution agrees with well full-scale burst test data on average for a wide range of pipeline
steels from Grade A to X120. Many other researchers [28-31] also validated the Zhu-Leis flow
solution using different full-scale burst test datasets for various pipeline steels. All validations
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demonstrated that the Zhu-Leis flow solution provides a reliable, accurate prediction of burst
pressure for defect-free, thin-walled line pipes. Recently, the average shear stress yield theory
has been extended to determine burst pressure for thin-walled pipe elbows [32], cylindrical shells
in dynamic conditions [33], ductile PVC pipes [34], and offshore tubular casings [35, 36].

However, the above-noted Zhu-Leis flow solution was developed for thin-walled pipes, but
not applicable for thick-walled pipes because the wall thickness effect on burst pressure was not
considered. The literature review determined that an exact theoretical solution of burst pressure
does not exist for thick-walled pipes due to the complexity of mathematical calculations. In the
1950s, Faupel [37, 38] conducted a large set of burst pressure tests using small diameter, thick-
walled tubes in the capped end conditions, and proposed an empirical burst model based on their
burst test data to predict burst strength of thick-walled tubes. Svensson [21] performed a
theoretical study on burst pressure of thick-walled cylinders based on the von Mises flow theory.
However, this author failed to develop an exact theoretical solution because of a complicated
integration in the mathematical derivation, and thus obtained an approximate closed-form
solution of burst pressure for thick-walled pressure vessels. Nevertheless, up to date, the
approximate Svensson solution has obtained extensive applications [39-42] in structural design
and strength analysis of intermediate thick-walled pressure vessels because of its fair agreement
with full-scale test data for an intermediate D/t ratio in the range of 10 < D/t < 20. However, for
small diameter, thick-walled tubes or pipes with a small D/t ratio in the range of 2 < D/t < 5, the
difference between the Svensson solution and full-scale burst test data can be significantly large,
up to 15%, see Section 4.1 or Reference [51] for detailed comparisons. As a result, a more
accurate exact solution of burst pressure for thick-walled pipes is still needed in the pressure
vessel and pipeline industry.

This paper aims to develop an exact solution of burst pressure for defect-free, thick-walled
pipes with capped ends using the flow theory of plasticity in terms of the average shear stress
yield criterion (or Zhu-Leis yield criteria). It is assumed that the pipe material obeys the power-
law strain hardening rule, and the finite strain theory is adopted to describe large plastic
deformation. On this basis, internal pressure is obtained as a power series function of the
effective strains on the inside and outside surfaces of the thick-walled pipe with use of the
second Bernoulli numbers. At burst failure, the Zhu-Leis flow solution of burst pressure is
determined as a power series solution, and the burst effective strains, the burst effective stresses,
and the burst pressure are a function of the diameter ratio (Do / Di), strain hardening exponent
(n), and ultimate tensile strength (UTS). In the similar manner, the Tresca and von Mises flow
solutions of burst pressure are also determined as a power series solution in terms of the Tresca
and von Mises yield criteria, respectively. A general closed-from exact solution of burst pressure
is then proposed for the three yield criteria, and the results showed that the proposed exact
solution matches well with the power series solution for each yield criterion. Moreover, the von
Mises flow solution is an upper bound prediction, the Tresca solution is a lower bound
prediction, and the Zhu-Leis flow solution is an intermediate prediction that agrees well with the
FEA results of burst pressure for thick-walled pipes. Finally, two datasets of full-scale burst tests
are employed to evaluate and validate the proposed flow solutions of burst pressure for both thin
and thick-walled pipes.

2. Existing burst prediction models for thick-walled pipes
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In the 1950s and 1960s, there were many valuable burst pressure tests conducted for small
diameter, thick-walled tubes (i.e., D/t < 20) in various structural steels by different investigators
[37-38, 43-44]. Many empirical burst pressure models were then developed for thick-wall tubes
in the capped-end conditions, as reviewed by Hamada et al. [4] and Christopher et al. [11]. Four
of these burst pressure models are often used in the pressure vessel industry.

2.1. Turner burst pressure model
Do
Pb = Suts ln (D_l)

where Py, is burst pressure, Sy is the engineering value of UTS of the pipe steel, D, is the outside
diameter (OD), and D; is the inside diameter (ID) of the pipe. This burst pressure solution in Eq.
(1) was obtained by Turner [45] in 1910 using the Tresca strength theory in terms of the UTS for
thick-walled pressure cylinders.

2.2. Nadai burst pressure model

Py = %Suts In (Z_i)

This burst pressure solution in Eq. (2) was obtained by Nadai [46] in 1931 using the von Mises
strength theory [35] in terms of the UTS for thick-walled tubes.

2.3. Faupel burst pressure model

o= (2-22)m(2)

where Sys is the yield stress (YS) of the pipe. This burst prediction formula in Eq. (3) is an
empirical model that was proposed by Faupel [37] in 1956 based on his burst test data, the von
Mises yield strength and the von Mises ultimate tensile strength of failure pressure for thick-
walled tubes.

2.4. Svensson burst pressure model

Py = (nf62.2527) (%)n Suts In (L;_(:)

where e = 2.71828 is the Euler’s number and » is the strain hardening exponent of ductile steels.
This burst pressure model in Eq. (4) is an approximate solution for thick-walled pressure vessels
that was obtained by Svensson [21] in 1958 using the von Mises flow theory of plasticity that
considered the plastic flow response of steel pipes.
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2.5. Three flow solutions of burst pressure for thin-walled pipes

In order to consider the plastic flow effect as did by Svensson [21], Zhu and Leis [26, 27]
investigated burst pressure of large diameter, thin-walled pipes with a ratio of D/t > 20 using the
flow theory of plasticity within the large deformation framework. For a power-law hardening
steel, these authors developed the following flow solutions of burst pressure for thin-walled pipes
with regard to the Tresca, von Mises and Zhu-Leis criteria as:

1\ 4 ) .

P, = (E) 0 Sutss for Tresca yield criterion
1\ 4t . . .

P, = (ﬁ) ESMS, for von Mises yield criterion
240v3\ "L a4t .. .

P, = (4—\5) ESutS, for Zhu-Leis yield criterion

where D-t is the mean diameter (MD) of the pipe, D is the OD of the pipe, and strain hardening
exponent n is measured from a simple tensile test or estimated from the YS and UTS. Zhu and
Leis [47] provided two simple equations to estimate n from the YS defined at the 0.2% offset
strain or the 0.5% total strain.

For an elastic-perfectly plastic material or n = 0, Equations (5) — (7) reduces to the strength
solution of burst pressure in terms of the Tresca, von Mises and Zhu-Leis yield criteria [15]. In
particular, using the OD, the Tresca strength solution of burst pressure is often referred to as the
Barlow strength in the pipeline industry:

Py = %Suts

Comparison of Eq. (8) with Eq. (1) shows that the Tresca strength solution has a different
geometrical term, but the same material term for a thick-walled pipe compared to a thin-walled
pipe. The same observation is made for the von Mises Strength solution for a thick-walled pipe
compared to a thin-walled pipe. If this observation holds truly for a power-law hardening
material, the Svensson burst solution in Eq. (4) for a thick-walled pipe and the von Mise flow
solution in Eq. (6) for a thin-walled pipe should have the same material term. However, the
material terms in these two equations are considerably different. The root cause is that the
Svensson model Eq. (4) is an approximate result, but not an exact solution for thick-walled pipes.
This motivates the present work to adopt the flow theory of plasticity to strictly develop a more
accurate, exact theoretical solution of burst pressure for thick-walled pipes.

3. Exact solutions of burst pressure for thick-walled pipes

3.1. Stress-strain law

For a power-law strain hardening material, the true stress, o, and the logarithmic strain, €, in
the uniaxial tensile test obeys the following power-law stress-strain relationship [27]:

5
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o=kem o -==(2) ©)

X Outs
K = Sus () (10)

where K is a strength coefficient of the material, and ous is the true UTS that is related to the
engineering UTS as ;s = e"Sys. At the UTS, the true strain g, = n.

In general, a simple relationship does not exist between internal pressure, stress, and strain
for a thick-walled pipe in an elastic-plastic deformation due to plastic flow response and large
strain effects [48]. This work adopts the power-law strain hardening rule in Eq. (9), the flow
theory of plasticity, and the finite strain theory to characterize stresses and strains in a thick-
walled pipe for pipeline carbon steels that obey the power-law strain hardening rule.

3.2. Effective stress and effective strain for the average shear stress yield criterion

For a long thick-walled pipe with capped ends, experiments [37] showed that the axial strain
is very small and can be neglected (i.e., €,, = 0). The three principal stresses in a thick-walled
pipe are radial stress o, hoop stress cee, and axial stress o,,, while the three principal strains are
radial strain &.. # 0, hoop strain &g9 # 0 , and axial strain &, = 0. In the large plastic
deformation near plastic collapse, the material becomes incompressible (i.e., the Poisson’s ratio
vV = 0.5). In these conditions, the following relations [11, 21] were obtained:

Er = —Epp (11)
1
Ozz = 3 (arr + 090) (12)

For an elastic-plastic deformation, the plastic flow theory in terms of the average shear stress
(i.e., Zhu-Leis) yield criterion [27] determines the effective stress, ca, and effective strain, €a:

1 2v3
04 = 57 =(V307 + 204) = = (099 — 071) (13a)
V3
ea =3 (er +em) = 5= £gg (13b)

where ot and et are the effective stress and effective strain for the Tresca yield condition:
Or = 0gg — Orr (14a)
Er = Egog (14b)

and om and eum are the effective stress and effective strain for the von Mises yield condition:

"
on = (099 — 07y) (15a)
er = = ¢go (15b)

3.3. Governing equation
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Consider an infinitesimal, differential element in a thick-walled pipe subjected to internal
pressure, as shown in Fig. 1, where (X, Y) is the Cartesian rectangular coordinate system, (r, 8)
is the polar coordinate system, and z denotes the axial direction for both coordinate systems.

For a thick-walled pipe, D/t < 20, or the diameter ratio k = D, / D; > 1.1. Initially before
loading, the differential element in the undeformed configuration lies at a point (r, 8) with a
radial increment, dr, and an angular increment, d®. Because of axial symmetry, the pipe has no
hoop displacement but only radial displacement that is denoted as u. During loading, the pipe
expands,

Current state

Y Initial state

— =

Figure 1. Illustration of a differential element in a thick-walled pipe.

and so the differential element moves outward to a new point (r + u, 8), and the radial increment
becomes d(r + u). The equation of stress equilibrium in the radial direction is expressed as:

dorr
(r +u) 32 = 00— Orr (16)

where the instantaneous radial stress o and the instantaneous hoop stress oo of the differential
element in the pipe are the Cauchy stresses defined in the deformed configuration.

Since large plastic deformation is involved, the finite strain theory determines the radial and
hoop logarithmic strains, respectively as:

& = In(1+5) (17a)
goo=In(1+2) (17b)

By eliminating the radial displacement u from Egs. (17a) and (17b), the following strain
compatibility equation is obtained in reference to the instantaneous radius, r+u:
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ﬂ— — pf006~&rr
(r+u) ek 1 — efo0 (18)

Using Egs. (13a) and (9), the equation of stress equilibrium in Eq. (16) becomes:

(w2 = (285, (9) e (19)

d(r+u) - n

From Egs. (13b), the strain compatibility equation (18) becomes:

deg _ 2+\/§ ﬂEA
(7‘ + u) d(r+u) - ( 23 ) <1 — e’ (20)

Dividing Eq. (20) by Eq. (19) obtains the following governing equation:

n

doyr _ SutS(s) 82 21

des i, (21)
1-e2+V3 4

The thick-walled pipe subjected to internal pressure has the following stress and strain
boundary conditions:

*  On the ID surface atr=R;, o,, = —P (22a)
*  On the OD surface atr =Ry, g, = 0 (22b)

where R; = D;/2 is the inside radius, and R, = D,/2 is the outside radius of the pipe. For
convenience of analysis, denote &4, = & on the ID surface, and ¢4 = &, on the OD surface.
With the boundary conditions in Eq. (22), integration of Eq. (21) determines the pressure as:

n n
P () 15— @

1—e2+V3 A

The above integral can determine the burst pressure of thick-walled pipes if €1 and &> are
known at burst failure, but this integration is difficult to explicitly calculate because of its
complexity. In order to calculate the integral in Eq. (23), the exponential generating function in
the integrand can be expressed using the second (or even-index) Bernoulli numbers [49, 50], as
shown in the following equation:

4\/§ £ k
SRy, o
w3 T “k=0 4 \24y34
e2+3 4_q
where Br (k = 0, 1, 2, ..., o) are the second Bernoulli numbers. The first ten nonzero second
. 1 1 1 1 1
Bernoulli numbers have values: By =1, B; = —=, B, =-, B, = ——, B = —, and Bg = ——,
2 6 30 42 30

8
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and By = % . The odd second Bernoulli numbers are zeros: B3 = B; = B; = Bg = 0. Using Eq.

(24), calculation of the integral in Eq. (23) becomes an integration of a complex polynomial
function that determines the following power series solution of the general applied pressure as:

+1 43 k+n_ 43 k+n
p= (0)" (2) sz i) 2

Since €2 can be expressed as a function of €1, as evident from Eq. (A.8) in Appendix A, Equation
(25) shows that the applied pressure P is a function of € only. From the P-g; relation, the peak
pressure can be determined. Alternatively, for a given value of n and «, the burst strain €y is
solved from Eq. (A.10), and the burst strain & is calculated from Eq. (A.8). With the values of
€1p and &, the exact solution of burst pressure can be determined from Eq. (23) by integration or
directly calculated from the series solution in Eq. (25), but both exact solutions are not a closed-
form.

3.4. Exact solution of burst pressure in a closed-form

This section investigates an exact solution of burst pressure in a closed-form that is fit well
with the power series solution from Eq. (25) or the numerical integration result from Eq. (23).

For a strain non-hardening material (i.e., n = 0, or ideally plastic material), K = Sy, and for a
thick-walled pipe, integration of stress equilibrium Eq. (19) obtains the following closed-form
exact solution of burst pressure in the closed-from for the Zhu-Leis yield criterion:

2+3 Do

Py =7 SutsIn (D—i) (26)
For a thin-walled pipe with D/t > 20, Zhu et al. [51] showed that In(Do/Dj) = 2t/(D-t). In this
case, Equation (26) reduces to the Zhu-Leis strength solution (i.e., Eq. (7) with n = 0) for the
ideally plastic material.

For a power-law strain hardening material, Equation (26) suggests that the burst pressure
solution of Eq. (23) or (25) for a thick-walled pipe may have the logarithmic function of In(D,
/Dy) as its geometrical term and the same material parameter term of Eq. (7) as for a thin-walled
pipe. Thus, the closed-form exact solution of burst pressure for a thick-walled pipe in the power-
law strain hardening material is proposed to be expressed in the following closed-form for the
Zhu-Leis yield criterion as:

n+1
P=2(55) Suwsin(3)

Note that Zhu et al. [51] recently developed an modified strength theory and obtained a more
accurate burst pressure solution as the same as Eq. (27) for a thick-walled pipe in a power-law
strain hardening material. Johnson et al. [52] have validated the thick-wall burst pressure
solution in Eq. (27) with FEA results for a wide range of pipeline sizes and grades.

3.5. General exact solutions of burst pressure for three yield criteria

9

(27)
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Following the mathematical derivation of the Zhu-Leis flow solution in Eq. (25) or (27) for
thick-walled pipes, the flow solutions of burst pressure are also obtained for the Tresca and von
Mises yield criteria, respectively, where the Tresca effective stress in Eq. (14a) and Tresca
effective strain in Eq. (14b) as well as the von Mises effective stress in Eq. (15a) and von Mises
effective strain in Eq. (15b) are used. As a result, using the second Bernoulli numbers, a general
power series solution of burst pressure for thick-walled pipes is obtained in terms of the Tresca,
von Mises and Zhu-Leis yield criteria as follows:

_ ()" (e\" o B Gew) =)
Py = (5) (Z) Suts Zk=0§ (k+n) (28)

where C is a constant that is related to the yield criterion and defined as:

1, for Tresca yield criterion
2 . . L
C = N for von Mises yield criterion
1.1 .. L
> + N for Zhu-Leis yield criterion

At the burst failure of the thick-walled pipe, the burst strains €ip and e» in Eq. (28) are
determined from Egs. (A.8) and (A.10) that are given in Appendix A.

Alternatively, as similar to Eq. (27), the general exact solution of burst pressure for thick-
walled pipes can be expressed in the following closed-form function for the Tresca, von Mises,
or Zhu-Leis yield criterion:

=2 ()" s (2)

The closed-form exact solution of burst pressure in Eq. (30) for thick-walled pipes is the same as
that given by Zhu et al. [51] from a new modified strength theory. The next section will verify
that the closed-form exact solution in Eq. (30) is equivalent to the power series solution in Eq.
(28) for each yield criterion for a wide range of n and k values.

3.6. Analyses and results of burst strain, burst stress and burst pressure

This section presents the analyses and results of the Zhu-Leis exact solutions of the burst
strains, burst stresses and burst pressure for thick-walled pipes, where the burst effective strains
are obtained from Eqgs. (A.8) and (A.10), the burst effective stresses are obtained from Eq. (9),
and the burst pressure is obtained by integrating Eq. (23) or directly calculated from the power
series solution in Eq. (25) (using the first ten terms) for different values of k = D, / D; and n in
terms of the Zhu-Leis criterion. The power series solution of burst pressure is then compared
with the closed-from exact solution in Eq. (27) for the Zhu-Leis criterion to verify the validity of
this closed-form exact solution.

10
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Figures 2 and 3 show the variations of Zhu-Leis burst strains €1p and &2, and Zhu-Leis burst
stresses o1, and o2, with the diameter ratio of D, / Dj , respectively, for five given strain
hardening exponent values of n = 0.05, 0.10, 0.15, 0.20, and 0.25. Figure 2 shows that 1) the two
Zhu-Leis burst strains are nonlinearly related to Do / Dy, 2) all €1p values are larger than the
corresponding &2, values for a given n, and 3) all &1, values increase, but the €, values decrease
as Do / Dj increases for a given n. Figure 3 shows that 1) the two Zhu-Leis burst stresses are also
nonlinearly related to D, / Dj, 2) the Zhu-Leis burst stress o1, normalized by the true UTS
increases with D, / Dj for a given n, and 3) the normalized Zhu-Leis burst stress 62, decreases as
both D, / Dj and n increase.

0.4
—a—Strain1,n=0.05 -& -Strain 2, n=0.05
——Strain1,n=0.10 -4 -Strain2,n=0.10
—#—Strain1,n=0.15 -+ -Strain2,n=0.15
——Strain1,n=0.20 -¢-Strain2,n=0.20
03 | —e—strain1,n=0.25 -Strain 2, n = 0.25
c
©
b
j
302
(7]
E
>
-
N
0.1
0
1 1.5 2 2.5 3 3.5
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Figure 2. Variation of Zhu-Leis strain at burst failure with D, / D; for five given n values.
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Figure 3. Variation of Zhu-Leis stress at burst failure with D, / D; for five n values.

Using the above determined values for Zhu-Leis burst strains €1p and €2v, the Zhu-Leis burst
pressure is calculated directly from the power series solution in Eq. (25) with the first ten terms
(or by integrating Eq. (23) with the trapezoidal rule and 50 equal incremental steps of

. . . . L . . P .
integration). Figure 4 depicts variations of the Zhu-Leis burst pressure ratio, S—b, with the
uts

geometrical term In (%) calculated from Eq. (25) for five given values of n = 0.05, 0.10, 0.15,
0.20, and 0.25. Also included in Fig. 4 for comparison is the closed-form exact Zhu-Leis flow
solution of burst pressure in Eq. (27). The comparison shows that the proposed Zhu-Leis flow
solution in Eq. (27) agrees well with the calculated data for all n values (note that the power
series solution is slightly lower than the closed-form exact solution for larger values of D, / Di
and n. This is likely caused by the ten-term selection in Eq. (28)). From this observation, it can
be concluded that the proposed Zhu-Leis flow solution in Eq. (27) is a closed-form exact solution
of burst pressure for thick-walled pipes when the Zhu-Leis yield criterion is adopted.

12



Revised Paper to International Journal of Mechanical Sciences (IJMS-D-23-02063)

1.4

1.2 —Zhu-Leis burst solution

(9]

O Calculated data

33333535

TR

o000

NN RRO
(92}

wv

0.8

Pb / Suts

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1 1.2
In(D, /D))

Pp

. . . D
Figure 4. Zhu-Leis burst pressure ratio S =

against In ( ) for five given n values.
uts D;

In the similar manner, the von Mises exact solutions of burst strains, burst stresses and burst
pressure for thick-walled pipes are obtained and given in Appendix B, and the Tresca exact
solutions of burst strains, burst stresses and burst pressure for thick-walled pipes are obtained
and given in Appendix C.

Figure 5 compares three burst pressure predictions by the von Mises, Zhu-Leis and Tresca
yield criteria with the strain hardening exponent, n, for thick-walled pipes, where the predicted
pressures are normalized by the Tresca strength solution, Py = Sy In(Do/D;j). Also included in
this figure are three power series solutions from Eq. (28) with use of the first ten terms and the
numerical results from a new FEA burst model that was recently obtained by Johnson et al. [52].
From Fig. 5, the following observations are made:

1) The von Mises exact solution agrees well with the von Mises power series solution, and
both provides an upper bound prediction of burst pressure for thick-walled pipes,

2) The Tresca exact solution agrees well with the Tresca power series solution, and both
provides a lower bound prediction of burst pressure for thick-walled pipes,

3) The Zhu-Leis exact solution agrees well with the Zhu-Leis power series solution, and
both provides an intermediate prediction of burst pressure for thick-walled pipes, and

4) The Zhu-Leis exact solution matches well with the FEA results, which confirms that the
Zhu-Leis exact solution is an accurate prediction of burst pressure for thick-walled pipes.
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Figure 5. Comparison of normalized burst pressures varied with n for three yield criteria

4. Experimental validation

This section assesses the four existing burst pressure models in Egs. (1) to (4) and the
proposed exact solutions of burst pressure in Eq. (30) from the flow theory of plasticity in terms
of the von Mises, Tresca and Zhu-Leis criteria for thick-walled pipes. Two datasets of burst
pressure tests are utilized here to evaluate these burst prediction models for thick-walled pipes
with capped ends. One dataset contains burst test data for small diameter, thick-walled tubes, and
the other dataset contains burst test data for large diameter, thin and thick-walled pipes.

4.1 Validation with burst test data for thick-walled tubes

In the early 1950s, Faupel [37-38] conducted about one hundred burst pressure tests over a
period of seven years and obtained the burst test data for small diameter, thick-walled pressure
tubes in various metals, including plain carbon steels, stainless steels, gun steels, low alloy steels,
weld steels, aluminum, and bronze. The test tubes were very thick, leading to a small D/t ratio in
the range of 2.4 < D/t < 4.7. From these burst tests, thirty burst test data for plain carbon steels
designated as AISI 1025, AISI 1030, AISI 3130, AISI 3320, AISI 4130, AISI 4140, and AISI
4340 are selected and used in this work for evaluating the burst prediction models for thick-
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walled tubes. The materials for these burst tests were low, medium, or high carbon steels with
the yield strength in the range of 244 to 1076 MPa and the tensile strength in the range of 459 to
1119 MPa. The strain hardening exponent n of these tube steels is less than 0.25. Note that the
burst test data obtained by Faupel [37] were also reported by Christopher et al. [11] in their Table
5.

Figure 6 compares the burst pressure predictions with measured burst pressure data that were

obtained by Faupel [37] for small diameter, thick-walled pressure tubes, where the y-axis
represents the burst pressure normalized by the Tresca strength solution, P, = S5 In (%), for
thick-walled pipes, and the x-axis denotes the material strain hardening exponent n. The burst
pressure predictions were determined from the four representative models for thick-walled pipes:
the Turner model (i.e., Tresca strength solution) in Eq. (1), the Nadai model (i.e., von Mises
strength solution) in Eq. (2), the Faupel empirical model in Eq. (3), the Svensson approximate
model in Eq. (4), and the three proposed exact flow solutions in Eq. (30), including the von

Mises flow solution, Tresca flow solution and Zhu-Leis flow solution.
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Figure 6. Comparison of exact burst pressure predictions with burst test data for thick-walled
tubes as a function of n.

From Fig. 6, the following observations are determined:

1) The von Mises strength solution is independent of n, and provides an absolute upper
bound prediction of the burst data.

2) The Tresca strength solution is independent of n, but provides an adequate burst pressure
prediction, particularly for n < 0.1.
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3) The von Mises flow solution is an upper bound prediction of the burst data for all n
values.

4) The Tresca flow solution is a lower bound prediction of the burst data for all n values.

5) The Faupel empirical model provides comparable results to the Mises strength solution
for low hardening strain materials with n < 0.06, and then its prediction decreases with n
in a nearly linear trend. For most ductile steels with n < 0.15, the Faupel solution varies
around the von Mises flow solution, and thus it overestimates the burst data. For high
strain hardening steels with 0.15 < n < 0.22, the Faupel solution seems to give an
acceptable prediction of the burst data.

6) The approximate Svensson model predicts outcomes that are smaller than and nearly
parallel to the Mises flow solutions for all n values. However, this Svensson model
overestimates most of the burst data.

7) The Zhu-Leis flow solution is an intermediate prediction and agrees well with the burst
data for all n values on average. Thus, this solution is the best prediction model.

Figure 7 illustrates the statistical analysis results of the burst pressure prediction to test data
ratios (i.e., the burst pressure predictions normalized by the burst test data shown in Fig. 6) for
the small diameter, thick-walled tubes, where the burst pressure is predicted by the von Mises
strength model (or Nadai model), Tresca strength model (or Turner model), von Mises flow
solution, Tresca flow solution, Zhu-Leis flow solution, Svensson model, and Faupel model. In
particular, Fig. 7(a) shows the mean errors of these prediction models, and Fig. 7(b) shows the
standard errors of these prediction models. Note that the standard error of the mean is a measure
of how far each observed value from the mean of a dataset, and the mean error is an averaged
measure of the relative errors between a model prediction and the corresponding test data for all
data points in a dataset. A positive mean error denotes that a model overestimates test data, and a
negative mean error denotes that a model underestimates test data. Accordingly, it follows from
this figure that:

1) The von Mises strength solution has the largest mean error and the largest standard error,

2) The Tresca strength solution has the smallest mean error but a second large standard
error,

3) The von Mises flow solution has a second large mean error and a third large standard
error,

4) The Tresca flow solution has a large negative mean error and a small standard error,

5) The Zhu-Leis flow solution has a small mean error and a small standard error, and

6) The Svensson and Faupel models have a similar large mean error and a similar small
standard error.

The statistical theory determines that the smaller the mean error and the standard error are,
the more accurate a prediction model will be for the same set of experimental data. Thus, the
results of statistical error analysis in Fig. 7 confirm the observations made in Fig. 6, that is, the
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Zhu-Leis flow solution is the best prediction model of burst pressure, while the Svensson and
Faupel models significantly overestimate the burst pressure for thick-walled pipes.
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Figure 7. Statistical analysis results of the burst pressure prediction to test data ratio: (a) mean
error, and (b) standard error.

From the above model evaluations, it is concluded that for thick-walled pipes that 1) the
Nadai (i.e., von Mises strength solution), Faupel, and Svensson models all overpredict the burst
data, 2) the Turner model (i.e., Tresca strength solution) overall determines adequate predictions
of all burst data, 3) the Mises flow solution is an upper bound prediction, 4) the Tresca flow
solution is a lower bound solution, and 5) the Zhu-Leis flow solution is an intermediate solution
that predicts the best results compared to the burst data on average.

4.2 Validation with burst test data for thin and thick-walled pipes

In 2007, Zimmermann et al. [28] collected 37 burst test data for large diameter, thin and
thick-walled pipes that were obtained by the European Pipeline Research Group (EPRG) for
evaluating a set of burst prediction models. The pipe materials are either pipeline steels or
structural carbon steels, and the diameter to thickness ratio varies in the range of 10 < D/t <
80. The pipe steels have the yield strengths in the range of 264 to 807 MPa and the tensile
strengths in the range of 392 to 869 MPa. The strain hardening exponents n of the pipe steels are
all less than 0.20.

Figure 8 compares the burst pressure predictions with measured burst data that were given by
Zimmermann et al. [17] for large diameter, thin and thick-walled pipes, where the y-axis

. . D
represents the burst pressure normalized by the Tresca strength solution, P, = S5 In (D—"), for

1

thick-walled pipes, and the x-axis denotes the strain hardening exponent n. The burst pressure
predictions were obtained from the four representative models for thick-walled pipes: the Turner
model (i.e., Tresca strength solution) in Eq. (1), the Nadai model (i.e., von Mises strength
solution) in Eq. (2), the Faupel empirical solution in Eq. (3), the Svensson approximate solution
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in Eq. (4), and the three proposed flow solutions including the von Mises flow solution, Tresca
flow solution and Zhu-Leis flow solution in Eq. (30).
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Figure 8. Comparison of burst pressure predictions with burst test data for thin and thick-walled
pipes as a function of n.

Comparison of Fig. 8 with Fig. 6 shows all prediction results in these two figures are similar, and
thus all observations obtained in Fig. 6 are also applicable to Fig. 8 for the EPRG burst data.

Figure 9 plots the statistical analysis results of the burst pressure prediction to test data ratios
(i.e., the burst pressure predictions normalized by the burst test data shown in Fig. 8) for the
large diameter, thin and thick-walled pipes, where the burst pressure is predicted by the von
Mises strength model (or Nadai model), Tresca model (or Turner model), von Mises flow
solution, Tresca flow solution, Zhu-Leis flow solution, Svensson model, and Faupel model. In
particular, Fig. 9(a) shows the mean errors of these prediction models, and Fig. 9(b) shows the
standard errors of these prediction models. Comparison of Fig. 9 with Fig. 7 shows that all
statistical errors are similar for each prediction model, and thus all observations made in Fig. 7
are applicable to Fig. 9 for the EPRG burst data. As a result, it is again concluded that the Zhu-
Leis flow solution is the best prediction model of burst pressure, while the Svensson and Faupel
models significantly overestimate burst pressure for thick-walled pipes.

19



Mean error

Standard error

20%

15%

10%

5%

0%

-5%

-10%

2.0%

1.6%

1.2%

0.8%

0.4%

0.0%

-0.4%

Revised Paper to International Journal of Mechanical Sciences (1JMS-D-23-02063)

(@)

von Mises Tresca von Mises T a Zhu-Leis Svensson  Faupel
strength  strength flow flow model model

S S T T ST T TN NN Y S SN S SN A SN SN NN S [N N N U N N SN SN S S |

(b)

von Mises Tresca von Mises Tresca Zhu-Leis Svensson  Faupel
strength  strength flow flow flow model model

| S I Sy T Sy Oy |

20



Revised Paper to International Journal of Mechanical Sciences (IJMS-D-23-02063)

Figure 9. Statistical analysis results of the burst prediction to test data ratio: (a) mean error, and
(b) standard error.

In summary, the experimental evaluations performed above validate that the Zhu-Leis flow
solution for thick-wall pipes can accurately predict burst pressure for both thin and thick-walled
pipes with small to large D/t ratios. In contrast, the Mises and Tresca flow solutions can serve as
the upper and lower bound predictions of burst pressure for the thick-walled pipes.

5. Conclusions

This paper developed three exact solutions of burst pressure for defect-free, thick-walled
pipes with capped ends using the flow theory of plasticity in terms of the Tresca, von Mises, and
Zhu-Leis yield criteria, respectively. It was assumed that the pipe steel obeys the power-law
strain hardening rule, and the large plastic deformation was described by the finite strain theory.
On this basis, internal pressure was determined as a power series function of the effective strains
on the inside and outside surfaces of the thick-walled pipe with use of the second Bernoulli
numbers. At burst failure, these effective strains and stresses were obtained, and then three flow
solutions of burst pressure were determined as a power series solution in a function of the D, /D;
ratio, n, and UTS. In order to determine a closed-form exact solution, a general flow solution of
burst pressure was then proposed for the three yield criteria, and the results showed that the
proposed exact solution matches well with the power series solution for each yield criterion. Two
datasets of full-scale burst tests were then utilized to evaluate the four existing burst prediction
models and the three proposed flow solutions of burst pressure for thick-walled pipes. The final
results are concluded as follows:

1) The Nadai model (i.e., von Mises strength solution), the empirical Faupel model, and the
approximate Svensson model all significantly overpredict the burst pressure, and thus
their burst pressure predictions are nonconservative.

2) The Turner model (i.e., Tresca strength solution) overall determines an adequate
prediction of the burst pressure data, particularly for n < 0.1, and thus its predictions may
be acceptable for engineering applications.

3) The von Mises power series solution is equivalent to the von Mises flow solution, and
serves as an upper bound prediction of burst pressure for both thin and thick-walled
pipes.

4) The Tresca power series solutions is equivalent to the Tresca flow solution, and serves as
a lower bound solution of burst pressure for both thin and thick-walled pipes.

5) The Zhu-Leis power series solution is equivalent to the Zhu-Leis flow solution, and
serves as an intermediate prediction that correlates best with burst pressure data on
average.

6) The Zhu-Leis flow solution agrees well with the FEA burst model results obtained
recently by Johnson et a. [52] for thick-walled pipes.
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In summary, the Zhu-Leis flow solution is an accurate closed-form exact solution of burst
pressure for thin and thick-walled pipes. This exact solution of burst pressure is limited to
applications for power-law strain hardening materials, including ductile steels and ductile
polymers, but may be not applicable to brittle metals or other non-power-law strain hardening
materials. In practical applications, the thin-wall based Zhu-Leis flow solution in Eq. (7) is
recommended predict burst pressure for thin-walled pipes or cylinders with a large D/t ratio of
D/t > 20, whereas the thick-wall based Zhu-Leis flow solution in Eq. (27) is recommended
predict burst pressure for thick-walled pipes or tubes with a small D/t ratio of D/t < 10. See
Reference [51] for more discussions on when to use an appropriate flow solution to predict burst
pressure for pressure pipes with a different D/t ratio. In addition, Further experimental
validations are recommended for ensuring the general validity of the proposed exact solutions of
burst pressure for various thick-walled pipes with different geometries or different materials.
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Appendix A. Burst Strains for Thick-Walled Pipes

A.1 Burst failure conditions

Equation (23) shows that the applied pressure P can be a function of the effective strains € in
the case where & is a function of €. The burst pressure Py is then determined at the plastic
instability condition, that is, the differential of P with regard to €; is equal to zero:

oP el de, et

=2 T2 8 Al

681 1—8%82 681 1—8%81 O ( )
where C = 243 for the Zhu-Leis yield criterion or see Eq. (29) for other yield criteria. The

2V3
above equation leads to a relationship between the two burst strains €1, and €, at the plastic

instability of the thick-walled pipe:

(22)" = Loel g (A2)

2
€2b 1—ect2b 9¢1lp

where all variables with the subscription b denotes the variables at the pipe burst condition.

A.2 Relation between ¢; and &>

From Eq. (20), the strain compatibility equation for the Zhu-Leis yield criterion is rewritten

as:
d c

= Zdx (A.3)
1—eESA X

where x = ™ i5 a normalized current radius of the point in consideration. On the ID surface,

L

the hoop strain g9 = In(x,), and thus the effective stress €1 is given by:
c
& = Eln(xlz) (A4)

With the strain boundary condition in Eq. (A.4), integrating Eq. (A.3) obtains:

X

- ) (A5)

&y = Cln(
47 1-x%+x2

Because plastic deformation is incompressible, the volume of the pipe remains unchanged
during the plastic deformation, and thus the following geometrical relationship is obtained:

x5 —x¥+1=x? (A.6)
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where k = D, /D; is the diameter ratio of the pipe. From Eqgs. (A.5) and (A.6), the effective strain
€2 on the OD surface is obtained:

c 2_1+4x2

g =<l ("K—Z"l) (A7)

From Egs. (A.4) and (A.7), after eliminating x, the effective strain & is related to € in the form:
2.
—eC

& =§1m<1—1 = ) (A.8)

From this equation, the differential of &> with regard to €; is obtained as:
2.

de, eC

J82 _ e A9

01 K2—1+e%81 (A9

Substituting Eqgs. (A.8) and (A.9) into Eq. (A.2), the burst failure condition becomes:
2
n 2,Cc€1b
(Sl_b) = K (A.10)
€2b K2—14eCc1b

where €2y 1s related to €1p in Eq. (A.8). Thus, for a given value of n and «, €1p can be solved from
Eq. (A.10), and &2 is calculated from Eq. (A.8) with &1,. With the values of €1, and €2v, the exact
solution of burst pressure can be determined from Eq. (23) or (25).
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Appendix B. von Mises Flow Solution of Burst Pressure

This section analyzes the exact solutions of burst strains, burst stresses and burst pressure
solution for the von Mises yield criterion (i.e., C = 2/¥3), where the burst effective strains are
obtained from Egs. (A.8) and (A.10), the burst effective stresses are obtained from Eq. (9), and
the burst pressure is obtained by integrating Eq. (23) or directly calculated from the power series
solution in Eq. (28) (using the first ten terms) for different values of x and n in terms of the von
Mises criterion. The power series solution of burst pressure is then compared with the closed-
from exact solution in Eq. (30) for the von Mises criterion to confirm the validity of this closed-
form exact solution.

Figures B.1 and B.2 show the variations of von Mises burst strains €1, and €, and von Mises
burst stresses 61» and o2p with the diameter ratio of D, / D;, respectively, for five given strain
hardening exponent values of n = 0.05, 0.10, 0.15, 0.20, and 0.25. Figure B.1 shows that 1) the
two von Mises burst strains are nonlinearly related to D, / Dj, 2) all €1y values are larger than the
corresponding €2, values for a given n, and 3) all &, values increase, but the corresponding €
values decrease as Do / D; increases for a given n. Figure B.2 shows that 1) the two von Mises
burst stresses are also nonlinearly related to D, / Dj, 2) the von Mises burst stress 61, normalized
by the true UTS increases with D, / D; for a given n, and 3) the normalized von Mises burst
stress o2y decreases as both Do / Dj and n increase. Note that any of those von Mises burst strains
or stresses can be used as a critical value in the strain or stress-based von Mises failure
criterion to determine the burst pressure of a thick-walled pipe in an elastic-plastic FEA
simulation.
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Figure B.1. Variation of von Mises strain at burst failure with D, / D; for five given n values.
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Figure B.2. Variation of von Mises stress at burst failure with D, / D; for five given n values.

Using the above determined values of von Mises burst strains €1y and €2, the von Mises burst
pressure is calculated directly from the power series solution in Eq. (28) with the first ten terms
(or by integrating Eq. (23) with the trapezoidal rule and 50 equal incremental steps of

. . . . L . . P .
integration). Figure B.3 depicts variations of the von Mises burst pressure ratio, S . with the

s
uts

geometrical term In (%) calculated from Eq. (28) for five given values of n = 0.05, 0.10, 0.15,

0.20, and 0.25. Also included in Fig. B.3 for comparison is the closed-form exact von Mises
flow solution of burst pressure in Eq. (30), the Svensson approximate solution of burst pressure
in Eq. (4), and the Svensson table data in Table 2 of Reference [21]. The comparison shows that
1) the present calculated burst pressure values are nearly identical to the Svensson table data for
all n values, 2) the proposed von Mises flow solution in Eq. (30) agrees well with the calculated
data, and 3) the approximate Svensson solution is always less than the calculated data or the
proposed Mises flow solution for all n and all D, / D; ratios. From these observations, it can be
concluded that 1) the proposed von Mises flow solution in Eq. (30) is a closed-form exact
solution of burst pressure for thick-walled pipes, 2) the approximate Svensson model predicts a
less non-conservative burst pressure in comparison with the exact Mises burst solution for a
thick-walled pipe, and 3) the proposed integral equation (23) and the power series solution in Eq.
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(30) using the second Bernoulli numbers both are validated by Svensson [21] when the von
Mises yield criterion is adopted.
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Figure B.3. Mises burst pressure ratio S against In(D, / Dy) for five given n values.
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Appendix C. Tresca Flow Solution of Burst Pressure

This section analyzes the exact solutions of burst strains, burst stresses and burst pressure
solution for the Tresca yield criterion (i.e., C = 1), where the burst effective strains are obtained
from Eqgs. (A.8) and (A.10), the burst effective stresses are obtained from Eq. (9), and the burst
pressure is obtained by integrating Eq. (23) or directly calculated from the power series solution
in Eq. (28) (using the first ten terms) for different values of k and n in terms of the Tresca
criterion. The power series solution of burst pressure is then compared with the closed-from
exact solution in Eq. (30) for the Tresca criterion to confirm the validity of this closed-form
exact solution.

Figures C.1 and C.2 show the variations of Tresca burst strains €1p and €2» and Tresca burst
stresses o1, and oz, with the diameter ratio of D, / Dj, respectively, for five given strain
hardening exponent values of n = 0.05, 0.10, 0.15, 0.20, and 0.25. Figure C.1 shows that 1) the
two Tresca burst strains are nonlinearly related to Do / Dy, 2) all €1 values are larger than the
corresponding €2, values for a given n, and 3) all &, values increase, but the corresponding €2
values decrease as D, / Dj increases for a given n. Figure C.2 shows that 1) the two Tresca burst
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stresses are also nonlinearly related to Do / Dj, 2) the Tresca burst stress 61p normalized by the
true UTS increases with D, / D; for a given n, and 3) the normalized Tresca burst stress G2y
decreases as both D, / Di and n increase.
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Figure C.1. Variation of Tresca strain at burst failure with D, / D; for five given n values.
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Figure C.2. Variation of Tresca stress at burst failure with D, / D; for five given n values.

Using the above determined values of Tresca burst strains €ip and €2, the Tresca burst
pressure is calculated directly from the power series solution in Eq. (28) with the first ten terms
(or by integrating Eq. (23) with the trapezoidal rule and 50 equal incremental steps of

P )
b with the

uts

integration). Figure C.3 depicts variations of the Tresca burst pressure ratio,

geometrical term In (%) calculated from Eq. (28) for five given values of n = 0.05, 0.10, 0.15,

0.20, and 0.25. Also included in Fig. C.3 is the closed-form exact Tresca flow solution of burst
pressure in Eq. (30) for comparison. The comparison shows that the proposed Tresca flow
solution in Eq. (30) agrees well with the calculated data for all n values. From this observation, it
can be concluded that the proposed Tresca flow solution in Eq. (30) is also a closed-form exact
solution of burst pressure for thick-walled pipes when the Tresca yield criterion is adopted.
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