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A R T I C L E I N F O A B S T R A C T 

Editor: S.-L. Zhu We extend the Bethe-Salpeter formalism to systems made of five valence particles. Restricting ourselves to two

body interactions, we derive the subtraction terms necessary to prevent overcounting. We solve the five-body 
Bethe-Salpeter equation numerically for a system of five scalar particles interacting by a scalar exchange boson. 
To make the calculations tractable, we implement properties of the permutation group 𝑆5 and construct an 
approximation based on intermediate two- and three-body poles. We extract the five-body ground and excited 
states along with the spectra obtained from the two-, three-, and four-body equations. In the limit of a massless 
exchange particle, the two-, three, four- and five-body states coexist within a certain range of the coupling 
strength, whereas for heavier exchange particles the five-body system becomes Borromean. Our study serves 
as a building block for the calculation of pentaquark properties using functional methods.

1. Introduction

There are presently five pentaquark candidates with minimal quark 
content 𝑞𝑞𝑞𝑐𝑐 (with 𝑞 = 𝑢, 𝑑, 𝑠), which have been observed by the LHCb 
collaboration in the 𝐽∕Ψ𝑝 and 𝐽∕ΨΛ invariant mass spectra [1--3]. The 
proximity of their peaks to meson-baryon thresholds suggests a molec

ular explanation in terms of meson-baryon molecules. This picture has 
been frequently employed in effective field theory and model calcula

tions, in analogy to several exotic meson candidates in the charmonium 
sector, see e.g. [4--10].

In general, it is a highly interesting question how a state made of 
valence quarks and/or antiquarks transforms into a molecular state, 
given that quantum field theory does not provide the means to rig

orously distinguish between these scenarios. In the analogous case of 
four-quark (𝑞𝑞𝑞𝑞) states, one way to identify such a mechanism is the 
Bethe-Salpeter equation (BSE) [11--13]: In its solution, the four-quark 
wave function dynamically develops two-body clusters in the form of 
meson-meson and diquark-antidiquark configurations. For baryons with 
three valence quarks, the analogue is the formation of internal diquark 
clusters [14,15]. In the case of pentaquarks, the internal clusters are 
mesons and baryons, which naturally leads to molecular configurations 
in the vicinity of meson-baryon thresholds.

Motivated by these ideas, in the present work we extend the Bethe

Salpeter formalism [16--19] to five-body systems. As a first application 
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we consider the massive Wick-Cutkosky model [20--22], which describes 
the interactions of scalar particles through scalar exchanges. The ap

plications of the two-body BSE in this model are well explored by 
now [22--39] and the three-body BSE has been investigated in [40--42]. 
In the present study we extend this approach to also calculate the spec

trum of four- and five-body states.

The paper is organized as follows. In Sec. 2 we establish the five

body BSE and derive the subtraction terms for the two-body kernel that 
are necessary to avoid overcounting. We discuss approximations based 
on the multiplet structure of the permutation group 𝑆5 [43] and the 
emergence of internal two- and three-body poles. In Sec. 3 we present 
our results, and we conclude in Sec. 4. The supplementary material col

lects technical details on 𝑛-body BSEs. We employ a Euclidean metric 
throughout this work, see [14] for conventions.

2. Five-body equation

2.1. General form of the BSE

Our starting point is the homogeneous BSE for a five-body system 
shown in Fig. 1:

Γ(5) =𝐾 (5)𝐺(5)
0 Γ(5). (1)
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Fig. 1. Five-body Bethe Salpeter equation with two-, three-, four- and five-body 
kernels.

Here, 𝐾 (5) is the five-body interaction kernel which consists of two-,

three-, four- and five-body interactions, 𝐺(5)
0 is the product of five 

dressed particle propagators, and Γ(5) is the five-body Bethe-Salpeter 
amplitude. In this compact notation, each multiplication represents an 
integration over all four-momenta in the loops.

Like any other homogeneous BSE, the five-body BSE can be derived 
from the pole behavior of the 5-body scattering matrix 𝑇 (5) , which is a 
ten-point correlation function and satisfies the scattering equation

𝑇 (5) =𝐾 (5) +𝐾 (5)𝐺(5)
0 𝑇 (5) . (2)

At a given bound-state or resonance pole with mass 𝑀 , it assumes the 
form

𝑇 (5) ⟶ Γ(5) Γ(5)

𝑃 2 +𝑀2 , (3)

where Γ(5) is the charge-conjugate amplitude. Comparing the residues 
on both sides of the equation yields the homogeneous equation (1).

In the following we neglect irreducible three-, four- and five-body 
forces, so that the resulting kernel consists of irreducible two-body in

teractions only. We will denote this two-body kernel by 𝐾 and assume 
that 𝐾 (5) ≈𝐾 .

2.2. Subtraction diagrams

Like in the case of the four-body equation [44--46], a naive summa

tion of two-body kernels leads to overcounting in Eq. (2) and one needs 
subtraction terms. In a five-body system there are ten possible two-body 
kernels

𝐾𝑎 ∈
{
𝐾12 , 𝐾13 , 𝐾14 , 𝐾15 , 𝐾23 ,

𝐾24 , 𝐾25 , 𝐾34 , 𝐾35 , 𝐾45
}
,

(4)

where the indices label the valence particles, and 15 independent 
double-kernel configurations of the form

𝐾𝑎𝐾𝑏 ∈
{
𝐾12𝐾34 , 𝐾12𝐾35 , 𝐾12𝐾45 , 

𝐾13𝐾24 , 𝐾13𝐾25 , 𝐾13𝐾45 , 

𝐾14𝐾23 , 𝐾14𝐾25 , 𝐾14𝐾35 , 

𝐾15𝐾23 , 𝐾15𝐾24 , 𝐾15𝐾34 , 

𝐾23𝐾45 , 𝐾24𝐾35 , 𝐾25𝐾34
}
.

(5)

By contrast, in a four-body system there are only six two-body kernels 
and three double-kernel configurations.

If we now define

𝐾1 ∶=
10 ∑
𝑎 
𝐾𝑎 , 𝐾2 ∶=

15 ∑
𝑎≠𝑏 

𝐾𝑎𝐾𝑏 , (6)

one can show that the combination

𝐾 =𝐾1 −𝐾2 (7)

Fig. 2. Five-body BSE with two-body kernels and their subtraction terms as given 
in Eq. (7).

is free of overcounting, i.e., each possible monomial of the 𝐾𝑎 appears 
exactly once and with coefficient 1 in the scattering matrix 𝑇 (5) =𝐾 +
𝐾2+𝐾3+… that follows from Eq. (2) by iteration, where we suppressed 
the propagator factors 𝐺(5)

0 for brevity. The resulting equation is shown 
in Fig. 2.

Eq. (7) can also be derived as follows. We define the complementary 
three-body kernel 𝐾𝑎′ for a given two-body kernel 𝐾𝑎 as

𝑎 = 12 ∶ 𝐾𝑎′ =𝐾345 =𝐾34 +𝐾35 +𝐾45 ,

𝑎 = 13 ∶ 𝐾𝑎′ =𝐾245 =𝐾24 +𝐾25 +𝐾45 ,
(8)

and so on. Now suppose all interactions between the subsystems 𝑎 and 
𝑎′ (say, 𝑎 = 12 and 𝑎′ = 345) were switched off. In that case, the full 
correlation function 𝐺(5) = 𝐺

(5)
0 + 𝐺

(5)
0 𝑇 (5)𝐺(5)

0 must factorize into the 
product 𝐺𝑎 𝐺𝑎′ . Suppressing again the propagators in the notation, we 
have

𝐺(5) = 1 + 𝑇 (5) ! 
=𝐺𝑎 𝐺𝑎′ = (1 + 𝑇𝑎)(1 + 𝑇𝑎′ ) (9)

⇒ 𝑇 (5) = 𝑇𝑎 + 𝑇𝑎′ + 𝑇𝑎 𝑇𝑎′ . (10)

Here, 𝑇𝑎 and 𝑇𝑎′ are the scattering matrices for the two- and three

body subsystems, which satisfy scattering equations analogous to Eq. (2)

(written symbolically):

𝑇𝑎 =𝐾𝑎 (1 + 𝑇𝑎) =
𝐾𝑎

1 −𝐾𝑎

,

𝑇𝑎′ =𝐾𝑎′ (1 + 𝑇𝑎′ ) =
𝐾𝑎′

1 −𝐾𝑎′
.

(11)

Plugging Eq. (11) into (10) yields

𝑇 (5) =𝐾 (1 + 𝑇 (5)) = 𝐾

1 −𝐾
(12)

with 𝐾 given by 𝐾 =𝐾𝑎 +𝐾𝑎′ −𝐾𝑎𝐾𝑎′ . This is just Eq. (7) if the inter

actions between the clusters (12) and (345) are switched off, because in 
that case the kernels 𝐾1 and 𝐾2 in Eq. (6) reduce to

𝐾1 =𝐾12 +𝐾34 +𝐾35 +𝐾45 ,

𝐾2 =𝐾12 (𝐾34 +𝐾35 +𝐾45)
(13)

and therefore 𝐾1 − 𝐾2 = 𝐾𝑎 + 𝐾𝑎′ − 𝐾𝑎𝐾𝑎′ for 𝑎 = 12 and 𝑎′ = 345. 
Since this relation holds for any combination of clusters 𝑎𝑎′ , Eq. (7) is 
the full two-body kernel.

We also note a subtle difference compared to the four-body equation. 
In that case, Eq. (7) contains six single-kernel terms and three double

kernel subtraction terms. This can also be written as the sum over three 
topologies (12)(34), (13)(24) and (14)(23), where each contribution is 
given by 𝐾𝑎 +𝐾𝑎′ −𝐾𝑎𝐾𝑎′ (e.g., 𝐾12 +𝐾34 −𝐾12𝐾34). In the five-body 
case this cannot be directly taken over due to the different meaning of 
𝐾𝑎 and 𝐾𝑎′ . However, it is still possible to define a kernel 𝐾𝑎𝑎′ for each 
single two-body topology in Eq. (4) such that

𝐾 =
10 ∑
𝑎𝑎′

𝐾𝑎𝑎′ (14)

is the sum over the ten topologies. To this end, we define
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𝐾3 ∶=
10 ∑
𝑎′
𝐾𝑎′ , 𝐾4 ∶=

10 ∑
𝑎𝑎′

𝐾𝑎𝐾𝑎′ . (15)

Because each 𝐾𝑎′ is the sum of three two-body kernels, and because 𝐾1
and 𝐾2 contain 10 and 15 terms, respectively, this entails 𝐾3 = 3𝐾1 and 
𝐾4 = 2𝐾2. Thus we can write the full two-body kernel 𝐾 as

𝐾 =𝐾1 −𝐾2 = 𝛼 𝐾1 + (1 − 𝛼) 
𝐾3
3 

−
𝐾4
2 
, (16)

where 𝛼 is an arbitrary parameter. Each contribution is now a sum over 
10 terms, so one can read off the single-topology kernel 𝐾𝑎𝑎′ in Eq. (14). 
For example, choosing 𝛼 = 1 yields 𝐾𝑎𝑎′ =𝐾𝑎−𝐾𝑎𝐾𝑎′ ∕2, whereas 𝛼 = 1

4
gives

𝐾𝑎𝑎′ =
𝐾𝑎

4 
+
𝐾𝑎′

4 
−
𝐾𝑎𝐾𝑎′

2 
. (17)

2.3. Explicit form of the BSE

To write down the explicit form of the five-body equation, we con

sider a scalar system made of five scalar particles; the generalization 
to particles with spin is straightforward. The Bethe-Salpeter amplitude 
Γ({𝑝𝑖}) in Fig. 1 depends on five momenta 𝑝1…𝑝5, whose sum is the 
total onshell momentum 𝑃 with 𝑃 2 = −𝑀2. According to Eq. (7) and 
Fig. 2, the five-body equation can be written as

Γ({𝑝𝑖}) =
10 ∑
𝑎 
Γ(𝑎)({𝑝𝑖}) −

15 ∑
𝑎≠𝑏 

Γ(𝑎,𝑏)({𝑝𝑖}) , (18)

where Γ(𝑎)({𝑝𝑖}) is the diagram with a two-body kernel attached to the 
particle pair 𝑎 = (𝑎1, 𝑎2) from Eq. (4), and Γ(𝑎,𝑏)({𝑝𝑖}) is the diagram 
with two kernels attached to the pairs 𝑎 = (𝑎1, 𝑎2) and 𝑏 = (𝑏1, 𝑏2) from 
Eq. (5):

Γ(𝑎)({𝑝𝑖}) = ∫
𝑑4𝑟 
(2𝜋)4

𝐾(𝑝𝑎1 , 𝑞𝑎1 , 𝑝𝑎2 , 𝑞𝑎2 )

×𝐷(𝑞𝑎1 ) 𝐷(𝑞𝑎2 ) Γ({𝑝𝑖}, 𝑎) ,

Γ(𝑎,𝑏)({𝑝𝑖}) = ∫
𝑑4𝑟 
(2𝜋)4

𝐾(𝑝𝑎1 , 𝑞𝑎1 , 𝑝𝑎2 , 𝑞𝑎2 )

×𝐷(𝑞𝑎1 ) 𝐷(𝑞𝑎2 ) Γ(𝑏)({𝑝𝑖}, 𝑎) .

(19)

Here, 𝐾(𝑝𝑎1 , 𝑞𝑎1 , 𝑝𝑎2 , 𝑞𝑎2 ) are the two-body kernels and 𝐷(𝑝2) the single

particle propagators. The particle momenta inside the loop, where 𝑟 is 
the exchanged four-momentum, are given by

𝑞𝑎1
= 𝑝𝑎1

− 𝑟 , 𝑞𝑎2
= 𝑝𝑎2

+ 𝑟 . (20)

The amplitudes inside the loop are

Γ({𝑝𝑖}, 𝑎) = Γ(𝑝1,… , 𝑞𝑎1
,… 𝑞𝑎2

,…𝑝5) , (21)

where 𝑝𝑎1 is replaced by 𝑞𝑎1 and 𝑝𝑎2 by 𝑞𝑎2 . The same applies to 
Γ(𝑏)({𝑝𝑖}, 𝑎), which is the amplitude Γ(𝑏)({𝑝𝑖}) obtained from the solu

tion in Eq. (19) but with replaced momenta.

In practice it is useful to work with the total momentum 𝑃 and four 
relative momenta 𝑞, 𝑝, 𝑘, 𝑙 instead of the five particle momenta 𝑝𝑖 with 
𝑖 = 1…5. To this end, we employ the momenta

𝑞 =
𝑝1 − 𝑝5

2 
, 𝑝 =

𝑝2 − 𝑝5
2 

,

𝑘 =
𝑝3 − 𝑝5

2 
, 𝑙 =

𝑝4 − 𝑝5
2 

.

(22)

The amplitude Γ(𝑞, 𝑝, 𝑘, 𝑙, 𝑃 ) then depends on 15 Lorentz invariants that 
can be formed from these momenta, namely

Table 1
𝑆𝑛 multiplet counting for an 𝑛-body system [43], see text for the dis

cussion.

𝑛 0 𝑃 2 𝜂𝑖 𝑝21 …𝑝2
𝑛

 Total Indep. 
2 1 1 1 − − 3 3 
3 1 1 2 2 − 6 6 
4 1 1 3 3 2 10 10 
5 1 1 4 4 5 15 14 
6 1 1 5 5 9 21 18 
𝑛 1 1 𝑛− 1 𝑛− 1 𝑛(𝑛− 3)∕2 𝑛(𝑛+ 1)∕2 4𝑛− 6

𝑞2 ,
𝑝2 ,
𝑘2 ,
𝑙2 ,
𝑃 2 ,

𝜔1 = 𝑞 ⋅ 𝑝 ,
𝜔2 = 𝑞 ⋅ 𝑘 ,
𝜔3 = 𝑞 ⋅ 𝑙 ,
𝜔4 = 𝑝 ⋅ 𝑘 ,
𝜔5 = 𝑝 ⋅ 𝑙 ,
𝜔6 = 𝑘 ⋅ 𝑙 ,

𝜂1 = 𝑞 ⋅ 𝑃 ,
𝜂2 = 𝑝 ⋅ 𝑃 ,
𝜂3 = 𝑘 ⋅ 𝑃 ,
𝜂4 = 𝑙 ⋅ 𝑃 .

(23)

These can be arranged into multiplets of the permutation group 𝑆5, 
namely two singlets, two quartets and a quintet [43]. The singlet vari

ables are

0 =
1
5

(
𝑞2 + 𝑝2 + 𝑘2 + 𝑙2 − 1

2

6 ∑
𝑖=1 

𝜔𝑖

)
(24)

and 𝑃 2 = −𝑀2. One quartet is constructed from the angular variables 𝜂𝑖 , 
and the remaining variables are distributed over a quartet and a quintet. 
In four spacetime dimensions there is an additional relation between 
these 15 variables so that only 14 are independent. In practice this leads 
to a nontrivial relation between the quintets, quartets and singlets which 
involves five powers in the variables (23), see Appendix D of Ref. [43] 
for details.

Table 1 shows the extension of the multiplet construction to general 
𝑛-body systems, which are subject to the permutation group 𝑆𝑛 [43]. 
For any 𝑛 one can construct a singlet 0 analogous to Eq. (24), and 𝑃 2

is always a singlet. A general 𝑛-body system has 𝑛−1 relative momenta 
and hence 𝑛−1 angular variables 𝜂𝑖, which form an (𝑛−1)-dimensional 
multiplet of 𝑆𝑛. The variables 𝑝21…𝑝2

𝑛
form another (𝑛 − 1)-plet, with 

their sum being constrained by 0. In total there are 𝑛(𝑛+ 1)∕2 Lorentz 
invariants, so the difference 𝑛(𝑛−3)∕2 gives another multiplet (denoted 
by  in Table 1). For example, a two-body system forms two singlets 
(𝑞2 and 𝑃 2) and an antisinglet (𝑞 ⋅ 𝑃 ). A three-body system gives two 
singlets (0 and 𝑃 2) and two doublets [47,48], and a four-body system 
two singlets (0 and 𝑃 2), a doublet and two triplets [49]. For five-body 
systems one also encounters for the first time the dimensional constraint 
relating the Lorentz invariants, because 𝑛 four-vectors can only depend 
on 4𝑛− 6 independent variables.

While a system depending on such a large number of variables is 
extremely costly to solve numerically, the 𝑆𝑛 construction allows one 
to switch off entire multiplets without affecting the symmetries of the 
system. This is especially useful for constructing approximations where 
one singles out the multiplets with the largest impact on the dynam

ics. Previous solutions of two-, three- and four-body systems show that 
the dependence on the angular variables 𝜂𝑖 is usually small or even 
negligible [11]. Similarly, Bose-symmetric 𝑛-point functions like the 
three- and four-gluon vertex, which are obtained from Table 1 by set

ting 𝑃 2 = 0 and all 𝜂𝑖 = 0, show a planar degeneracy and depend mainly 
on 0 [47,50--53].

The crucial observation from four-body systems is that the BSE dy

namically generates intermediate two-body poles in the solution pro

cess. Specifically, a four-quark (𝑞𝑞𝑞𝑞) equation in QCD produces in

termediate meson (and diquark) poles and thus dynamically creates 
resonance channels. In the four-body system these poles only appear 
in the doublet , so that the dynamics is largely determined by 0 and 
. In a five-body system, on the other hand, there are 10 possible two-

and three-body configurations 𝑎𝑎′ = (12)(345), (13)(245),… which are 
distributed over the quartet and quintet. Together with 0, one would 
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Fig. 3. Ground-state masses obtained from the 𝑛-body BSEs for 𝛽 = 4 and differ

ent values of the coupling 𝑐. The two- and three-body results (solid curves) are 
full solutions, while the four-and five-body results (dashed curves) are obtained 
in the singlet approximation. The squares show the regions where ground-state 
solutions are possible.

thus still need to include 10 variables in the BSE to capture the impor

tant dynamics.

Given that the leading momentum dependence of the amplitude be

yond the singlet variable 𝑆0 comes from the two-body and three-body 
clusters, here we follow a more efficient strategy that has been de

veloped in the four-body case [13,54,55]: We reduce the momentum 
dependence to 0 but include the two- and three-body poles explicitly. 
The resulting amplitude then reads

Γ(𝑞, 𝑝, 𝑘, 𝑙, 𝑃 ) ≈ 𝑓 (𝑆0)
∑
𝑎𝑎′

𝑎𝑎′ , (25)

where e.g. for 𝑎𝑎′ = (12)(345) the two- and three-body poles of the am

plitude are given by

(12)(345) =
1 

(𝑝1 + 𝑝2)2 +𝑀2
𝑀

1 
(𝑝3 + 𝑝4 + 𝑝5)2 +𝑀2

𝐵

.

Here, 𝑀𝑀 and 𝑀𝐵 are the masses of the two- and three-body subsys

tems (‘mesons’ and ‘baryons’), respectively. When plugging this ansatz 
into the five-body equation (18)--(19), the resulting dressing function 
𝑓 (0) depends only on 0. In this way, the pole ansatz effectively cap

tures the dependence on the remaining variables which is dominated by 
these poles.

In turn, this procedure requires knowledge of the bound-state masses 
𝑀𝑀 , 𝑀𝐵 of the two- and three-body equations in the same approach. 
We solve these equations in a sequence by employing tree-level propa

gators for scalar constituent particles with mass 𝑚 and a ladder approx

imation for a boson exchange with mass 𝜇:

𝐷(𝑝) = 1 
𝑝2 +𝑚2 , 𝐾(𝑝𝑎1 , 𝑞𝑎1 , 𝑝𝑎2 , 𝑞𝑎2 ) =

𝑔2

𝑟2 + 𝜇2
, (26)

where 𝑟 is the exchange momentum according to Eq. (20). We con

sider equal constituent masses for simplicity, but the generalization to 
unequal-mass systems is straightforward. In the following we employ a 
dimensionless coupling constant 𝑐 and mass ratio 𝛽 via

𝑐 = 𝑔2

(4𝜋𝑚)2
, 𝛽 = 𝜇

𝑚
, (27)

so that all results only depend on 𝑐 and 𝛽 while the mass 𝑚 drops out.

The details on the two-, three-, four- and five-body equations for the 
scalar theory are provided in the supplementary material. In the fol

lowing we distinguish three approximations when solving these 𝑛-body 
equations. A ‘full solution’ refers to solving the respective BSE with

out any further approximations on the kinematics in the amplitude. At 
present, this is numerically only feasible for the two- and three body 
equations. The ‘singlet × pole’ approximation refers to Eq. (25), with 
explicit two- and three-body poles for the five-body equation (‘mesons’ 
and ‘baryons’), and two-body poles for the three- and four-body equa

tions (‘mesons’ or ‘diquarks’). Finally, the ‘singlet approximation’ refers 
to Eq. (25) without a pole ansatz, i.e., Γ(𝑞, 𝑝, 𝑘, 𝑙, 𝑃 ) ≈ 𝑓 (𝑆0), which 
will be used for comparisons. These approximations are similar in spirit 
to cluster-type models, see e.g. Refs. [56--63]. However, as discussed 
above, the internal poles would also appear dynamically if these ap

proximations were dropped, as explicitly demonstrated in Ref. [11]. 
Moreover, since we started from the general 𝑛-body equations, one can 
always relax these approximations and go back to the more complete 
system, although this would come at the price of a significantly higher 
numerical cost.

3. Results

In the following we present our solutions of the two-, three-, four-

and five-body equations in the setup described above. In practice the 
BSEs turn into eigenvalue equations of the form

𝜆𝑖(𝑃 2) Ψ𝑖(𝑃 2) =(𝑃 2) Ψ𝑖(𝑃 2) , (28)

where 𝑃 2 ∈ ℂ is the total five-body momentum squared, (𝑃 2) is the 
kernel and the Ψ𝑖(𝑃 2) are its eigenvectors with eigenvalues 𝜆𝑖(𝑃 2) for 
the ground (𝑖 = 0) and excited states (𝑖 > 0). If the condition 𝜆𝑖(𝑃 2) = 1
is satisfied, this corresponds to a pole in the scattering matrix at 𝑃 2 =
−𝑀2

𝑖
and determines the respective mass 𝑀𝑖 . All results depend on two 

parameters, the coupling strength 𝑐 and the mass ratio 𝛽. We cross

checked our results with the literature; our two-body solutions agree 
with those obtained in Refs. [31,37] and our three-body solutions with 
those in Ref. [40].

Fig. 3 shows the variation of the ground-state masses 𝑀0 obtained 
from the two-, three-, four- and five-body equations with the coupling 
strength 𝑐 at a fixed value 𝛽 = 4. One can see that for each system a 
ground state only exists within a certain range of the coupling. If the 
binding is too weak, the mass exceeds the respective threshold, and the 
bound state will turn into a resonance or virtual state on the second 
Riemann sheet. If the binding is too strong, the squared mass 𝑀2

0 be

comes negative and the bound state turns into a tachyon (see [37] for 
explicit examples). The latter property is presumably an artifact of the 
ladder approximation: Because the propagators remain at tree level and 
the three-point interaction vertices are constant, the coupling strength 
𝑐 only enters as an overall factor on each ladder kernel. In more ad

vanced truncations where the 𝑛-point functions in the kernel are solved 
from their Dyson-Schwinger equations, the masses 𝑀𝑖(𝑐) would even

tually approach constant values; see [64] for a corresponding study of 
the scalar two-body equation.

The lower coupling limit, below which the states become unbound, 
implies that below certain values of 𝑐 not all ground states can coexist. 
For example, in Fig. 3 the three-body equation displays a Borromean 
behavior for 𝑐 ≲ 5.5, i.e., it admits a ground state while there is no cor

responding two-body ground state. Similarly, for 𝑐 ≲ 3 the five-body 
equation admits a ground state while there are no two-, three- or four

body ground states. Fig. 4 displays the resulting coupling ranges for 
varying values of 𝛽. The coexistence regions are shown by the black 
rectangles and only exist for small 𝛽 values (𝛽 ≲ 0.5). For higher values 
of 𝛽 the five-body system becomes Borromean, i.e., there is a five-body 
ground state without corresponding two- and three-body ground states.

In Fig. 5 we also show the radially excited states 𝑀𝑖>0 from the three

, four- and five-body solutions. For the extraction of the excited states 
we use an implementation of the Arnoldi algorithm [65].

As a consequence of the Borromean behavior, the five-body equation 
can dynamically generate two- and three-body ground-state poles only 
in the coexistence region. Outside this region, these poles would cor

respond to resonances or virtual states. Thus, the pole ansatz (25) can 
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Fig. 4. Coupling ranges where 𝑛-body ground states are possible shown for dif

ferent values of 𝛽. The horizontal displacement is for better readability. The 
color coding is the same as in Fig. 3. The black rectangles for small 𝛽 values are 
the regions where all solutions coexist.

also only be sensibly applied in the coexistence region, which is why 
in Figs. 3, 4 and 5 we used the singlet approximation for the four- and 
five-body equations.

To go beyond this approximation, we must choose values of 𝛽 and 
𝑐 inside the coexistence region. This is done in Fig. 6 for 𝛽 = 𝑐 = 0.5. 
Here we plot the inverse ground-state eigenvalues 1∕𝜆0(𝑃 2) of the two

, three-, four- and five-body BSEs as a function of 𝑀 (corresponding 
to 𝑃 2 = −𝑀2). We divide the mass by the sum of the propagator 
masses, such that the threshold of each equation is 𝜂 ∶=𝑀∕

∑
𝑖 𝑚𝑖 = 1. 

The ground-state masses 𝑀0 are then obtained from the intersections 
𝜆0(𝑃 2) = 1. As before, the solid curves are the results from the full solu

tions (which are available for the two- and three-body BSEs). The dotted 
curves now correspond to the singlet approximation and the dashed 
curves to the singlet × pole approximation. From the three-body curves 
one can see that the singlet × pole approximation nicely agrees with 
the full solution, as long as the mass is not too far from the thresh

old, while the mass obtained with the singlet approximation is lower. 
(Similar findings apply also to the excited states.) The singlet × pole 
ansatz is therefore a very good approximation of the dynamics in the 
system. The analogous observation in QCD is diquark clustering: The 
solution of the three-body Faddeev equation dynamically generates di

quark poles, which dominate the behavior of the system, and the spectra 
and form factors in the quark-diquark approach agree well with those 
of the three-body solution [14,15]. Likewise, four-quark (𝑞𝑞𝑞𝑞) systems 
dynamically generate meson and diquark poles which dominate their 
properties [11--13].

The vertical bands in Fig. 6 show the intersections of the eigenvalue 
curves with 1 for the singlet and singlet × pole approximations. The 
resulting masses differ by ≲ 10%, so that already the singlet approxi

mation yields reasonable estimates for them. However, this observation 
does not translate well to QCD; e.g., for light scalar 𝑞𝑞𝑞𝑞 systems which 
are dominated by 𝜋𝜋 channels, the singlet and singlet × pole approxi

mations lead to very different results due to the small pion mass [11].

Because the five-body equation dynamically generates two- and 
three-body poles, which is made explicit by the singlet × pole approx

imation, this also lowers the threshold of the system from 𝑀 = 5𝑚 to 
𝑀 =𝑀𝑀 +𝑀𝐵 , where 𝑀𝑀 is the ‘meson’ and 𝑀𝐵 the ‘baryon’ mass. 
For the parameter values in Fig. 6 this leads to the restriction 𝜂 ≲ 0.8. 
Above this value, the five-body ground state turns into a resonance or 
virtual state, and one would need to employ contour deformations and 
analytic continuations to extract its mass [37,66]. Likewise, in the four

body system the threshold changes from 𝑀 = 4𝑚 to 𝑀 = 2𝑀𝑀 , and in 
the three-body system it changes from 𝑀 = 3𝑚 to 𝑀 =𝑚+𝑀𝑀 .

Fig. 5. Radially excited state masses 𝑀𝑖>0 for 𝛽 = 4 and different values of the 
coupling 𝑐. The three-body results (solid curves) are full solutions, while the 
four- and five-body results (dashed curves) are obtained in the singlet approxi

mation.

Fig. 6. Eigenvalues of the 𝑛-body BSEs for 𝛽 = 𝑐 = 0.5. Solid curves correspond 
to full solutions, dotted curves to the singlet approximation and dashed curves 
to the singlet × pole approximation. The vertical bands show the resulting mass 
ranges when going from the singlet to the singlet × pole approximation.

Finally, in Fig. 7 we show the analogous eigenvalue plot for 𝛽 ≈ 0
corresponding to the massless Wick-Cutkosky model. With our defini

tion (27) of the coupling strength, the inverse eigenvalues of the two

body system for 𝑐 = 1 and 𝑀 = 0 become integers, which can also be 
determined analytically [21,31]. For the three-, four- and five-body sys

tems, on the other hand, this does not appear to be the case.

4. Summary

We developed the five-body Bethe-Salpeter formalism and solved the 
five-body equation for a scalar model in a ladder truncation. The five

body Bethe-Salpeter amplitude depends on 14 momentum variables, 
which can be arranged in multiplets of the permutation group 𝑆5 . To 
reduce this large number of variables, we employed an approximation 
in terms of two- and three-body poles, which the full amplitude would 
generate dynamically. Since this requires knowledge of the two- and 
three-body bound state masses, we also solved the corresponding two

, three- and four-body equations in the same approach. The two- and 
three-body equations can be solved without any approximations on the 
amplitude, and we find that a pole approximation in the three-body 
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Fig. 7. BSE eigenvalues for 𝛽 = 0.001, with 𝑐 = 1∕4 to ensure coexisting solutions 
for the two-, three-, four- and five-body BSEs (see Fig. 4). We rescaled the 𝑦 axis 
again with 𝑐 so that the condition 1∕𝜆𝑖 = 1 for the physical solutions becomes 
𝑐∕𝜆𝑖 = 1∕4, which is the baseline in the plot. The two- and three-body results 
(solid curves) are full solutions, while the four- and five-body results (dashed 
curves) are obtained in the singlet × pole approximation.

sector works very well. The approach developed in this work can be ex

tended to QCD in view of investigating pentaquarks, and work in this 
direction is underway.
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