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ARTICLE INFO ABSTRACT

Editor: S.-L. Zhu We extend the Bethe-Salpeter formalism to systems made of five valence particles. Restricting ourselves to two-
body interactions, we derive the subtraction terms necessary to prevent overcounting. We solve the five-body
Bethe-Salpeter equation numerically for a system of five scalar particles interacting by a scalar exchange boson.
To make the calculations tractable, we implement properties of the permutation group S5 and construct an
approximation based on intermediate two- and three-body poles. We extract the five-body ground and excited
states along with the spectra obtained from the two-, three-, and four-body equations. In the limit of a massless
exchange particle, the two-, three, four- and five-body states coexist within a certain range of the coupling
strength, whereas for heavier exchange particles the five-body system becomes Borromean. Our study serves

as a building block for the calculation of pentaquark properties using functional methods.

1. Introduction

There are presently five pentaquark candidates with minimal quark
content gqqcc (with g =u,d, s), which have been observed by the LHCb
collaboration in the J /¥p and J /YA invariant mass spectra [1-3]. The
proximity of their peaks to meson-baryon thresholds suggests a molec-
ular explanation in terms of meson-baryon molecules. This picture has
been frequently employed in effective field theory and model calcula-
tions, in analogy to several exotic meson candidates in the charmonium
sector, see e.g. [4-10].

In general, it is a highly interesting question how a state made of
valence quarks and/or antiquarks transforms into a molecular state,
given that quantum field theory does not provide the means to rig-
orously distinguish between these scenarios. In the analogous case of
four-quark (gqGq) states, one way to identify such a mechanism is the
Bethe-Salpeter equation (BSE) [11-13]: In its solution, the four-quark
wave function dynamically develops two-body clusters in the form of
meson-meson and diquark-antidiquark configurations. For baryons with
three valence quarks, the analogue is the formation of internal diquark
clusters [14,15]. In the case of pentaquarks, the internal clusters are
mesons and baryons, which naturally leads to molecular configurations
in the vicinity of meson-baryon thresholds.

Motivated by these ideas, in the present work we extend the Bethe-
Salpeter formalism [16-19] to five-body systems. As a first application
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we consider the massive Wick-Cutkosky model [20-22], which describes
the interactions of scalar particles through scalar exchanges. The ap-
plications of the two-body BSE in this model are well explored by
now [22-39] and the three-body BSE has been investigated in [40-42].
In the present study we extend this approach to also calculate the spec-
trum of four- and five-body states.

The paper is organized as follows. In Sec. 2 we establish the five-
body BSE and derive the subtraction terms for the two-body kernel that
are necessary to avoid overcounting. We discuss approximations based
on the multiplet structure of the permutation group S5 [43] and the
emergence of internal two- and three-body poles. In Sec. 3 we present
our results, and we conclude in Sec. 4. The supplementary material col-
lects technical details on n-body BSEs. We employ a Euclidean metric
throughout this work, see [14] for conventions.

2. Five-body equation
2.1. General form of the BSE

Our starting point is the homogeneous BSE for a five-body system
shown in Fig. 1:

r®=gOcIro, ¢h)
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Fig. 1. Five-body Bethe Salpeter equation with two-, three-, four- and five-body
kernels.

Here, K©® is the five-body interaction kernel which consists of two-,
three-, four- and five-body interactions, Gés) is the product of five
dressed particle propagators, and I'® is the five-body Bethe-Salpeter
amplitude. In this compact notation, each multiplication represents an
integration over all four-momenta in the loops.

Like any other homogeneous BSE, the five-body BSE can be derived
from the pole behavior of the 5-body scattering matrix 7, which is a
ten-point correlation function and satisfies the scattering equation

T =K + KOGOT®. )

At a given bound-state or resonance pole with mass M, it assumes the
form

TG

TG —_
P2+ M?

3
where T® is the charge-conjugate amplitude. Comparing the residues
on both sides of the equation yields the homogeneous equation (1).

In the following we neglect irreducible three-, four- and five-body
forces, so that the resulting kernel consists of irreducible two-body in-
teractions only. We will denote this two-body kernel by K and assume
that K©® ~ K.

2.2. Subtraction diagrams

Like in the case of the four-body equation [44-46], a naive summa-
tion of two-body kernels leads to overcounting in Eq. (2) and one needs
subtraction terms. In a five-body system there are ten possible two-body
kernels
K,€{Kyy, Ki5, K4, K5, Ko3, @

Ky, Kas, Ky s Kss, Kys ),

where the indices label the valence particles, and 15 independent
double-kernel configurations of the form

K, K, € {Kip Kyy, Kip K35, Kip Kys s
K13 Koy K3 Kys, Ky3 Kys
K4 Koz, K14 Kos, Kiy Kss, (5)
K5 Koz, Kis Kpg, Kis Ky,
Koz Kys, Koy Kss, Kos Kay ) -

By contrast, in a four-body system there are only six two-body kernels
and three double-kernel configurations.
If we now define

10 15
K =YK, K=Y KK, 6)
a a#b

one can show that the combination

K=K, -K, @
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Fig. 2. Five-body BSE with two-body kernels and their subtraction terms as given
in Eq. (7).

is free of overcounting, i.e., each possible monomial of the K, appears
exactly once and with coefficient 1 in the scattering matrix T® = K +
K2+ K3+ ... that follows from Eq. (2) by iteration, where we suppressed
the propagator factors G(()S) for brevity. The resulting equation is shown
in Fig. 2.

Eq. (7) can also be derived as follows. We define the complementary
three-body kernel K, for a given two-body kernel K, as

a=12: Kar:K345:K34+K35+K45,

(3

a=13: Ky =Ky5=Ky+Kys+Kys,

and so on. Now suppose all interactions between the subsystems a and
a' (say, a =12 and o’ = 345) were switched off. In that case, the full
correlation function GO = G(()S) + Gf)s) T Gf)s) must factorize into the
product G, G, . Suppressing again the propagators in the notation, we
have

1
GO =1+T9=G,Gy=(1+T)(1+T,) )
> TO =T, +Ty+T,T,. 10)

Here, T, and T, are the scattering matrices for the two- and three-
body subsystems, which satisfy scattering equations analogous to Eq. (2)
(written symbolically):

K{I
T,=K,(1+T,) = ,

1-K,
an
K,y
Ta/ = Ka’ (1 +Ta/)= 1_—]{(]/ .
Plugging Eq. (11) into (10) yields
K
TO=K(1+T®)= —— 12
( )=1o% (12)

with K given by K = K, + K, — K, K. This is just Eq. (7) if the inter-
actions between the clusters (12) and (345) are switched off, because in
that case the kernels K; and K, in Eq. (6) reduce to

Ky =K+ K3y + Ks5 + K5,
13

Ky = K5 (K34 + K35 + Kys)
and therefore K, — K, = K, + K,y — K, K, for a=12 and o’ = 345.
Since this relation holds for any combination of clusters ad’, Eq. (7) is
the full two-body kernel.

We also note a subtle difference compared to the four-body equation.
In that case, Eq. (7) contains six single-kernel terms and three double-
kernel subtraction terms. This can also be written as the sum over three
topologies (12)(34), (13)(24) and (14)(23), where each contribution is
givenby K, + K, — K, K, (e.g., K|, + K34, — K|, K34). In the five-body
case this cannot be directly taken over due to the different meaning of
K, and K, . However, it is still possible to define a kernel K, for each
single two-body topology in Eq. (4) such that

10
K=Y Ky 14
ad

is the sum over the ten topologies. To this end, we define
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10
Kyi=) Ky,
a/

Because each K, is the sum of three two-body kernels, and because K
and K, contain 10 and 15 terms, respectively, this entails K; = 3K; and
K, =2K,. Thus we can write the full two-body kernel K as

10
Ky =) K,Ky. (15)

ad

K=K, —K,=aK, +(1 Ks _ K
=K, -K,=aK; +/( _a)T_T’ (16)

where «a is an arbitrary parameter. Each contribution is now a sum over
10 terms, so one can read off the single-topology kernel K, s in Eq. (14).

For example, choosing a = 1 yields K, , = K,— K, K/ /2, whereas a = i

gives
K, Ky K,Ky
Kaa’ = T + 4 - 2 . (17)

2.3. Explicit form of the BSE

To write down the explicit form of the five-body equation, we con-
sider a scalar system made of five scalar particles; the generalization
to particles with spin is straightforward. The Bethe-Salpeter amplitude
I'({p;}) in Fig. 1 depends on five momenta p, ... p5, whose sum is the
total onshell momentum P with P2 = —M?2. According to Eq. (7) and
Fig. 2, the five-body equation can be written as

10 15
Tdph) = X TUpD = X TanUph), as)
a a#b

where I',)({p; }) is the diagram with a two-body kernel attached to the
particle pair a = (a;,a,) from Eq. (4), and [, ;,({p;}) is the diagram
with two kernels attached to the pairs a = (a;,a,) and b = (b;, b,) from
Eq. (5):

d*r
Qr)*
X D(q,,) D(q,,)T({p;}. @),

r _ d*r
@nUpiH = WK(palsqalapaz’qu)

X D(qal) D(quz)r(b)({pi La).

Here, K (pa1 24> paz,qaz) are the two-body kernels and D(p?) the single-
particle propagators. The particle momenta inside the loop, where r is
the exchanged four-momentum, are given by

Foph= K(pa, 94, Pay>9a,)

(19)

oy =Pay =Ts  day =P, +7- (20)

The amplitudes inside the loop are

I'({pi},a)=T(py, ...

where p, is replaced by g, and p,, by q,,. The same applies to
[y ({p;},a), which is the amplitude I, ({p;}) obtained from the solu-
tion in Eq. (19) but with replaced momenta.

In practice it is useful to work with the total momentum P and four
relative momenta g, p, k, [ instead of the five particle momenta p; with
i=1...5. To this end, we employ the momenta

+4ay> -+ day> -+ P5)> @n

_Pi—bps _P2—bps
o2 o2
b3 —Ps = Py — D5
2 7 2
The amplitude I'(q, p, k, [, P) then depends on 15 Lorentz invariants that
can be formed from these momenta, namely

(22)
k=
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Table 1
S, multiplet counting for an n-body system [43], see text for the dis-
cussion.

n S, P Pt M Total Indep.

2 1 1 1 - 3 3

3 1 1 2 2 - 6 6

4 1 1 3 3 2 10 10

5 1 1 4 4 5 15 14

6 1 1 5 5 9 21 18

n 1 1 n—1 n—1 n(n—3)/2 n(n+1)/2 4n—6

q2 w;=4q-p,
pz’ oy =q-k, m=q-P,
' wy=q-1, m=p-P,
k2, 3 (23)
2 ws=p-k, m=k-P,
PZ’ ws=p-1, n=1-P.
’ wg=k-1,

These can be arranged into multiplets of the permutation group S,
namely two singlets, two quartets and a quintet [43]. The singlet vari-
ables are

6
1 s 2, 2 o 1
50—§<q +p 4k +1 —EZw, 24

i=1

and P? = —M?. One quartet is constructed from the angular variables 7;,
and the remaining variables are distributed over a quartet and a quintet.
In four spacetime dimensions there is an additional relation between
these 15 variables so that only 14 are independent. In practice this leads
to a nontrivial relation between the quintets, quartets and singlets which
involves five powers in the variables (23), see Appendix D of Ref. [43]
for details.

Table 1 shows the extension of the multiplet construction to general
n-body systems, which are subject to the permutation group S, [43].
For any  one can construct a singlet S, analogous to Eq. (24), and P>
is always a singlet. A general n-body system has n — 1 relative momenta
and hence n — 1 angular variables #;, which form an (n — 1)-dimensional
multiplet of S,,. The variables pf pﬁ form another (n — 1)-plet, with
their sum being constrained by S. In total there are n(n + 1)/2 Lorentz
invariants, so the difference n(n —3)/2 gives another multiplet (denoted
by M in Table 1). For example, a two-body system forms two singlets
(¢*> and P?) and an antisinglet (¢ - P). A three-body system gives two
singlets (S, and P?) and two doublets [47,48], and a four-body system
two singlets (S, and P2), a doublet and two triplets [49]. For five-body
systems one also encounters for the first time the dimensional constraint
relating the Lorentz invariants, because n four-vectors can only depend
on 4n — 6 independent variables.

While a system depending on such a large number of variables is
extremely costly to solve numerically, the .S, construction allows one
to switch off entire multiplets without affecting the symmetries of the
system. This is especially useful for constructing approximations where
one singles out the multiplets with the largest impact on the dynam-
ics. Previous solutions of two-, three- and four-body systems show that
the dependence on the angular variables #; is usually small or even
negligible [11]. Similarly, Bose-symmetric n-point functions like the
three- and four-gluon vertex, which are obtained from Table 1 by set-
ting P2 = 0 and all 7; = 0, show a planar degeneracy and depend mainly
on S, [47,50-53].

The crucial observation from four-body systems is that the BSE dy-
namically generates intermediate two-body poles in the solution pro-
cess. Specifically, a four-quark (¢qgq) equation in QCD produces in-
termediate meson (and diquark) poles and thus dynamically creates
resonance channels. In the four-body system these poles only appear
in the doublet M, so that the dynamics is largely determined by S, and
M. In a five-body system, on the other hand, there are 10 possible two-
and three-body configurations aa’ = (12)(345), (13)(245), ... which are
distributed over the quartet and quintet. Together with S, one would
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Fig. 3. Ground-state masses obtained from the n-body BSEs for f = 4 and differ-
ent values of the coupling c. The two- and three-body results (solid curves) are
full solutions, while the four-and five-body results (dashed curves) are obtained
in the singlet approximation. The squares show the regions where ground-state
solutions are possible.

thus still need to include 10 variables in the BSE to capture the impor-
tant dynamics.

Given that the leading momentum dependence of the amplitude be-
yond the singlet variable .S, comes from the two-body and three-body
clusters, here we follow a more efficient strategy that has been de-
veloped in the four-body case [13,54,55]: We reduce the momentum
dependence to S, but include the two- and three-body poles explicitly.
The resulting amplitude then reads

(4, p. k1, P) % £(S0) Y, Paat - (25)

ad

where e.g. for aa’ = (12)(345) the two- and three-body poles of the am-
plitude are given by

1 1
(P1+ P22+ M2, (p3+py+ps + M2

Pazyaas) =

Here, M, and M are the masses of the two- and three-body subsys-
tems (‘mesons’ and ‘baryons’), respectively. When plugging this ansatz
into the five-body equation (18)-(19), the resulting dressing function
f(Sy) depends only on S,. In this way, the pole ansatz effectively cap-
tures the dependence on the remaining variables which is dominated by
these poles.

In turn, this procedure requires knowledge of the bound-state masses
M ,;, Mp of the two- and three-body equations in the same approach.
We solve these equations in a sequence by employing tree-level propa-
gators for scalar constituent particles with mass m and a ladder approx-
imation for a boson exchange with mass u:

g2

D(p) = -
®) X

m, K(palvqal’pazaqaz)z (26)
where r is the exchange momentum according to Eq. (20). We con-
sider equal constituent masses for simplicity, but the generalization to
unequal-mass systems is straightforward. In the following we employ a

dimensionless coupling constant ¢ and mass ratio f via

2
g H
c=—, =—, (27)
(47m)? b m
so that all results only depend on ¢ and f# while the mass m drops out.
The details on the two-, three-, four- and five-body equations for the
scalar theory are provided in the supplementary material. In the fol-
lowing we distinguish three approximations when solving these n-body

equations. A ‘full solution’ refers to solving the respective BSE with-

Physics Letters B 866 (2025) 139525

out any further approximations on the kinematics in the amplitude. At
present, this is numerically only feasible for the two- and three body
equations. The ‘singlet X pole’ approximation refers to Eq. (25), with
explicit two- and three-body poles for the five-body equation (‘mesons’
and ‘baryons’), and two-body poles for the three- and four-body equa-
tions (‘mesons’ or ‘diquarks’). Finally, the ‘singlet approximation’ refers
to Eq. (25) without a pole ansatz, i.e., I'(q,p.k,I, P) = f(S,), which
will be used for comparisons. These approximations are similar in spirit
to cluster-type models, see e.g. Refs. [56-63]. However, as discussed
above, the internal poles would also appear dynamically if these ap-
proximations were dropped, as explicitly demonstrated in Ref. [11].
Moreover, since we started from the general n-body equations, one can
always relax these approximations and go back to the more complete
system, although this would come at the price of a significantly higher
numerical cost.

3. Results

In the following we present our solutions of the two-, three-, four-
and five-body equations in the setup described above. In practice the
BSEs turn into eigenvalue equations of the form

L(PHY,(PY) = K(P?)Y,(P?), (28)

where P2 € C is the total five-body momentum squared, K(P?) is the
kernel and the ‘I’i(Pz) are its eigenvectors with eigenvalues /li(Pz) for
the ground (i = 0) and excited states (i > 0). If the condition A[(Pz) =1
is satisfied, this corresponds to a pole in the scattering matrix at P2 =
-M 12 and determines the respective mass M;. All results depend on two
parameters, the coupling strength ¢ and the mass ratio f. We cross-
checked our results with the literature; our two-body solutions agree
with those obtained in Refs. [31,37] and our three-body solutions with
those in Ref. [40].

Fig. 3 shows the variation of the ground-state masses M, obtained
from the two-, three-, four- and five-body equations with the coupling
strength ¢ at a fixed value f = 4. One can see that for each system a
ground state only exists within a certain range of the coupling. If the
binding is too weak, the mass exceeds the respective threshold, and the
bound state will turn into a resonance or virtual state on the second
Riemann sheet. If the binding is too strong, the squared mass M? be-
comes negative and the bound state turns into a tachyon (see [37] for
explicit examples). The latter property is presumably an artifact of the
ladder approximation: Because the propagators remain at tree level and
the three-point interaction vertices are constant, the coupling strength
¢ only enters as an overall factor on each ladder kernel. In more ad-
vanced truncations where the n-point functions in the kernel are solved
from their Dyson-Schwinger equations, the masses M;(c) would even-
tually approach constant values; see [64] for a corresponding study of
the scalar two-body equation.

The lower coupling limit, below which the states become unbound,
implies that below certain values of ¢ not all ground states can coexist.
For example, in Fig. 3 the three-body equation displays a Borromean
behavior for ¢ $5.5, i.e., it admits a ground state while there is no cor-
responding two-body ground state. Similarly, for ¢ < 3 the five-body
equation admits a ground state while there are no two-, three- or four-
body ground states. Fig. 4 displays the resulting coupling ranges for
varying values of f. The coexistence regions are shown by the black
rectangles and only exist for small f values (8 < 0.5). For higher values
of f the five-body system becomes Borromean, i.e., there is a five-body
ground state without corresponding two- and three-body ground states.

In Fig. 5 we also show the radially excited states M, from the three-
, four- and five-body solutions. For the extraction of the excited states
we use an implementation of the Arnoldi algorithm [65].

As a consequence of the Borromean behavior, the five-body equation
can dynamically generate two- and three-body ground-state poles only
in the coexistence region. Outside this region, these poles would cor-
respond to resonances or virtual states. Thus, the pole ansatz (25) can
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Fig. 4. Coupling ranges where n-body ground states are possible shown for dif-
ferent values of f. The horizontal displacement is for better readability. The
color coding is the same as in Fig. 3. The black rectangles for small f values are
the regions where all solutions coexist.

also only be sensibly applied in the coexistence region, which is why
in Figs. 3, 4 and 5 we used the singlet approximation for the four- and
five-body equations.

To go beyond this approximation, we must choose values of f and
¢ inside the coexistence region. This is done in Fig. 6 for g = ¢ =0.5.
Here we plot the inverse ground-state eigenvalues 1/1,(P?) of the two-
, three-, four- and five-body BSEs as a function of M (corresponding
to P2 = —M?). We divide the mass by the sum of the propagator
masses, such that the threshold of each equationisn :=M /Y, m; =1.
The ground-state masses M, are then obtained from the intersections
AO(PZ) = 1. As before, the solid curves are the results from the full solu-
tions (which are available for the two- and three-body BSEs). The dotted
curves now correspond to the singlet approximation and the dashed
curves to the singlet X pole approximation. From the three-body curves
one can see that the singlet X pole approximation nicely agrees with
the full solution, as long as the mass is not too far from the thresh-
old, while the mass obtained with the singlet approximation is lower.
(Similar findings apply also to the excited states.) The singlet X pole
ansatz is therefore a very good approximation of the dynamics in the
system. The analogous observation in QCD is diquark clustering: The
solution of the three-body Faddeev equation dynamically generates di-
quark poles, which dominate the behavior of the system, and the spectra
and form factors in the quark-diquark approach agree well with those
of the three-body solution [14,15]. Likewise, four-quark (gqgq) systems
dynamically generate meson and diquark poles which dominate their
properties [11-13].

The vertical bands in Fig. 6 show the intersections of the eigenvalue
curves with 1 for the singlet and singlet X pole approximations. The
resulting masses differ by < 10%, so that already the singlet approxi-
mation yields reasonable estimates for them. However, this observation
does not translate well to QCD; e.g., for light scalar gq4q systems which
are dominated by zx channels, the singlet and singlet X pole approxi-
mations lead to very different results due to the small pion mass [11].

Because the five-body equation dynamically generates two- and
three-body poles, which is made explicit by the singlet X pole approx-
imation, this also lowers the threshold of the system from M = 5m to
M = My, + Mg, where M, is the ‘meson’ and M the ‘baryon’ mass.
For the parameter values in Fig. 6 this leads to the restriction # < 0.8.
Above this value, the five-body ground state turns into a resonance or
virtual state, and one would need to employ contour deformations and
analytic continuations to extract its mass [37,66]. Likewise, in the four-
body system the threshold changes from M =4mto M =2M,,, and in
the three-body system it changes from M =3mto M =m+ M,,.
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Fig. 6. Eigenvalues of the n-body BSEs for f = ¢ =0.5. Solid curves correspond
to full solutions, dotted curves to the singlet approximation and dashed curves
to the singlet X pole approximation. The vertical bands show the resulting mass
ranges when going from the singlet to the singlet X pole approximation.

Finally, in Fig. 7 we show the analogous eigenvalue plot for f ~ 0
corresponding to the massless Wick-Cutkosky model. With our defini-
tion (27) of the coupling strength, the inverse eigenvalues of the two-
body system for ¢ =1 and M =0 become integers, which can also be
determined analytically [21,31]. For the three-, four- and five-body sys-
tems, on the other hand, this does not appear to be the case.

4. Summary

We developed the five-body Bethe-Salpeter formalism and solved the
five-body equation for a scalar model in a ladder truncation. The five-
body Bethe-Salpeter amplitude depends on 14 momentum variables,
which can be arranged in multiplets of the permutation group S5. To
reduce this large number of variables, we employed an approximation
in terms of two- and three-body poles, which the full amplitude would
generate dynamically. Since this requires knowledge of the two- and
three-body bound state masses, we also solved the corresponding two-
, three- and four-body equations in the same approach. The two- and
three-body equations can be solved without any approximations on the
amplitude, and we find that a pole approximation in the three-body
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Fig. 7. BSE eigenvalues for # = 0.001, with ¢ = 1/4 to ensure coexisting solutions
for the two-, three-, four- and five-body BSEs (see Fig. 4). We rescaled the y axis
again with ¢ so that the condition 1/4; = 1 for the physical solutions becomes
¢/4; = 1/4, which is the baseline in the plot. The two- and three-body results
(solid curves) are full solutions, while the four- and five-body results (dashed
curves) are obtained in the singlet X pole approximation.

sector works very well. The approach developed in this work can be ex-
tended to QCD in view of investigating pentaquarks, and work in this
direction is underway.
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