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ABSTRACT 

Buildings consume nearly 40% of global energy and produce similar emissions. While 

technological advances address efficiency, occupant behavior causes energy use variations 

up to 300% between identical buildings. This gap between predicted and actual building 

performance impacts building design, operations, and grid demand management programs. 

Through analyses of smart thermostat data from 1,400 single–occupant homes, the research 

demonstrates that occupants respond to 8°F thermostat setpoint changes within a median 

of 15 minutes, while 2°F changes trigger responses within a median of 30 minutes. This 

highlights an understudied temporal relationship between thermostat setbacks and 

response time of occupant behaviors. Models of such behavior dynamics are required to 

incorporate occupant impacts into building performance simulation. 

A key contribution of this dissertation is the Thermal Frustration Theory (TFT), which posits 

that thermal discomfort driven behaviors are caused by the time-accumulation of 

discomfort, not simply a temperature deviation threshold or a delay from an initiating event. 

Using a dataset of 634 thermostats, each with 25+ manual setpoint changes, a comparative 

analysis of TFT and comfort zone and a delayed response theories demonstrated that 

personalized TFT models better predict when manual setpoint change occur. This was 

measured by the area under the curve statistical measure (AUC); all three models perform 

similarly by a Matthews Correlation Coefficient measure. Higher AUC performance is 

especially important for modeling occupant behavior in demand response programs where 

false negatives of rare occupant interactions could adversely affect grid stability. EnergyPlus 

based simulations were conducted with TFT-derived occupant models, demonstrating the 

ability to identify parameters of known TFT models from only data observable with smart 

thermostats, even under the presence of noise from routine overrides.  

Overall, the dissertation highlights that thermostat interactions are neither static, 

instantaneous, nor driven solely by the environment. Instead, temporal accumulation of 

discomfort and routine-based behavior play important roles. The methodology and results 

offer a pathway towards more accurate modeling of human-building interactions for policy 

assessment, building design, and demand response programs.
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Chapter 1:  

Grand challenges for simulation of 

grid–interactive efficient buildings 

1.1 Background and motivation 

The buildings accounts for approximately 40% of worldwide energy consumption and 

greenhouse gas emissions  [1], [2]. The magnitude of building energy use, combined with 

projected increases in global building stock of 2.5 trillion square feet by 2060 [3], requires 

fundamental changes in building energy management [4], [5] . Building–level energy 

reduction strategies directly impact grid stability, energy resource allocation, and emissions 

reduction targets established by international climate agreements [6], [7], [8].  

Historically, building energy efficiency improvements centered on HVAC systems, insulation, 

and building management systems [9], [10], [11]. Research demonstrates that occupant 

behavior significantly impacts building energy consumption [12], [13], [14]. Analysis of 

identical buildings reveals energy use variations of up to 300% due to occupant behavior 

differences [15], [16].  This quantification establishes occupant behavior as a primary factor 

in building energy use, shifting building science from purely technical approaches toward 

integration of human factors [17], [18], [19]. 

The proliferation of smart building technologies and Internet of Things (IoT) devices enables 

collection of occupant behavior and building performance data at previously unattainable 

resolutions [20], [21], [22]. Smart thermostats, occupancy sensors, and energy monitoring 

systems generate time–series data characterizing occupant–building interactions [23], [24], 

[25]. The volume and temporal resolution of this data requires development of new analytical 

methods to execute computations efficiently [26], [27]. 

This introductory chapter sets the stage for the dissertation by addressing the complex 

challenges in building energy management and occupant behavior modeling. It begins with 

an exploration of Grid–interactive Efficient Buildings (GEBs), discussing their concept, 

importance, and implementation challenges. The chapter then examines current issues in 
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building performance simulation, focusing on steady state comfort model limitations and 

occupant behavior uncertainty. A comprehensive overview of occupant behavior modeling 

follows, covering various models and energy management. Finally, it outlines the 

dissertation's core research objectives: identifying dynamic thermal comfort behavior, 

comparing thermal comfort theories, and developing a human–centric digital twin 

framework.  

1.2 Building Performance Simulation (BPS) 

Building Performance Simulation (BPS) has evolved from simple steady–state degree days 

calculations to sophisticated computational frameworks that capture the complex dynamics 

of building energy systems. This evolution reflects both advances in computational 

capabilities and the increasing demands from grid electrification, electric vehicles, etc. 

placed on building performance prediction [28]. Modern BPS tools integrate multiple 

physical domains – thermal, fluid, and control systems – to predict building energy 

consumption, occupant comfort, and grid interactions [29]. The application of these tools 

spans scales from individual component analysis to urban energy planning [30], enabling 

evaluation of novel technologies and operational strategies for reducing building energy 

consumption [31]. However, significant challenges remain in simulation accuracy, 

particularly regarding occupant behavior and grid integration [13]. These challenges become 

increasingly critical as buildings transition from passive energy consumers to active 

participants in grid operations [32]. 

1.2.1 White box models for building design 

Current building performance simulation relies heavily on white box models that implement 

physical principles through numerical methods. Unlike data–driven approaches, these 

models solve coupled differential equations representing conservation of mass, energy, and 

momentum within building systems [33]. The theoretical foundation enables analysis of 

novel designs and operational strategies without requiring historical performance data [34]. 

This capability proves essential for evaluating emerging technologies and control 

approaches needed for grid–interactive buildings. 

White box modeling approaches have evolved significantly in both mathematical 

sophistication and computational implementation. Early tools employed simplified steady–
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state calculations with basic assumptions about thermal processes. Modern simulation 

engines now capture complex dynamic interactions between building envelope, mechanical 

systems, and environmental conditions [35]. These advancements enable analysis of 

phenomena critical to building–grid integration, including thermal mass effects, system 

response times, and control interactions [36]. 

Different simulation engines implement distinct approaches with trade–offs to solve these 

physical equations. EnergyPlus utilizes an iterative solution methodology that 

simultaneously resolves zone conditions and HVAC system responses through successive 

substitution iteration [37]. This approach improves solution stability compared to sequential 

methods but increases computational requirements. TRNSYS employs a modular 

architecture enabling detailed component–level modeling through separate algebraic and 

differential equation solvers [38]. ESP–r implements finite volume methods for resolving 

spatial temperature gradients within building elements, offering enhanced accuracy for 

analyzing thermal bridges and non–uniform conditions [39]. Each approach presents 

tradeoffs between computational efficiency, numerical stability, and physical accuracy. 

The implementation of white box models requires extensive input data describing building 

geometry, material properties, system characteristics, and operational parameters. This 

comprehensive data requirement enables detailed analysis but introduces significant 

challenges in model calibration and validation especially for existing buildings [40]. Material 

properties must account for temperature dependence, aging effects, and installation 

variations. System performance curves need to capture part–load behavior, control 

responses, and equipment degradation. Weather data must represent both typical and 

extreme conditions depending on the goal of the analysis. These input uncertainties 

propagate through simulations, affecting prediction accuracy particularly during grid–

responsive operation modes [41]. 

1.2.2 Performance standards compliance 

Performance standards and building energy codes establish frameworks for evaluating 

building design and operation. These standards have evolved from simple prescriptive 

requirements to sophisticated performance–based approaches that leverage BPS 

capabilities [42]. The transition enables innovative design solutions while ensuring minimum 
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energy performance levels through standardized evaluation methods [43]. This evolution 

parallels the increasing complexity of building systems and the growing importance of 

operational optimization for grid integration. 

ASHRAE Standard 90.1, a cornerstone of building energy codes, exemplifies modern 

performance–based compliance approaches. The standard's Energy Cost Budget and 

Performance Rating Methods require detailed energy modeling to demonstrate that 

proposed designs achieve equivalent or superior performance compared to baseline 

buildings [44]. These methods mandate specific modeling protocols, including standardized 

occupancy schedules, consistent baseline definitions, and verified calculation procedures 

[45]. The requirements ensure reproducibility while acknowledging the inherent 

uncertainties in building performance prediction. 

International standards like ISO 52016 complement national codes by establishing 

consistent methods for calculating building energy needs. These standards define 

calculation procedures for heating, cooling, and lighting energy use, providing a framework 

for comparing building performance across different jurisdictions [46]. The harmonization of 

calculation methods supports technology transfer and market transformation while enabling 

consistent evaluation of  building strategies [47]. 

The implementation of performance–based compliance presents significant challenges for 

building simulation. Models must balance accuracy with practical constraints on data 

availability and computational resources. Simulation tools require certification through 

standard method tests that verify calculation accuracy across diverse building types and 

operational scenarios [48]. These tests evaluate the tool's capability to model complex 

phenomena including thermal mass effects, solar gains, and system interactions that 

influence both energy consumption and grid integration potential [17]. 

Recent developments in performance standards increasingly address grid interaction 

capabilities. Requirements for demand response readiness, energy storage systems, and 

renewable energy integration necessitate enhanced simulation approaches [47]. Traditional 

compliance metrics focused on annual energy consumption must expand to capture 

temporal variations in building loads and grid conditions. This evolution creates new 
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challenges for simulation tools while highlighting the importance of accurate performance 

prediction for grid–interactive buildings [49]. 

1.2.3 Urban scale building performance simulation  

Urban–scale building performance simulation represents a significant expansion beyond 

individual building analysis, addressing the growing need for city–wide energy planning and 

carbon reduction strategies. This scale of analysis introduces new computational challenges 

and methodological requirements while enabling evaluation of district–level energy systems 

and policy interventions [50]. The LA100 study demonstrates this capability through 

comprehensive analysis of building electrification pathways and grid integration strategies 

across Los Angeles's diverse building stock [51]. 

Traditional building–level simulation approaches become computationally intractable when 

applied directly to urban scales. This limitation has driven development of novel modeling 

methods that balance computational efficiency and modeling effort with prediction 

accuracy. Archetypal building representations reduce model complexity by grouping similar 

buildings into representative categories, while statistical methods capture variations 

within these groups [52]. These approaches enable analysis of 10s of thousands to millions 

of buildings while maintaining sufficient detail to inform policy decisions and infrastructure 

planning [53]. 

Urban–scale simulation must address additional phenomena beyond individual building 

physics. District heating and cooling systems introduce thermal network dynamics. Local 

climate effects, including urban heat islands and building–to–building shading, influence 

energy consumption patterns. Distributed energy resources create new patterns of energy 

flow and storage [54]. These interactions require integration of multiple modeling domains 

like building energy simulation, district thermal networks, power distribution systems, 

transportation infrastructure, and urban microclimate effects [55]. 

The Los Angeles 100% Renewable Energy Study exemplifies current capabilities in urban–

scale simulation. This analysis evaluated pathways for achieving carbon–neutral buildings 

across the city through building electrification scenarios, renewable energy integration, grid 

infrastructure requirements, energy storage deployment, demand response potential [56]. 

The study revealed critical interdependencies between building performance, grid capacity, 
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and renewable energy integration. Results demonstrate how urban–scale simulation can 

inform policy decisions by quantifying impacts across multiple sectors and timeframes [51]. 

However, the study also highlighted current limitations in representing occupant 

behavi[57]or and building–grid interactions at urban scales [58]. 

Recent developments in urban building energy modeling (UBEM) frameworks address these 

challenges through improved data integration and computational methods. These 

frameworks leverage geographic information systems, building stock databases, and climate 

projections to create more comprehensive urban energy models [59]. Machine learning 

techniques increasingly supplement physics–based approaches, particularly for predicting 

occupant behavior patterns and energy use trends across building populations [60]. 

1.2.4 Uncertainty in BPS 

Building performance simulation faces fundamental challenges in prediction accuracy that 

stem from multiple sources of uncertainty. Studies comparing predicted and measured 

building energy use reveal discrepancies ranging from 10% to 80%, undermining confidence 

in simulation results for critical applications like grid integration and demand response [61]. 

These variations arise not from limitations in physical models alone, but from complex 

interactions between model assumptions, input parameters, and human behavior [62]. 

Physical parameter uncertainties represent the most straightforward category to quantify. 

Material properties exhibit temperature dependence and aging effects that standard 

databases may not capture. Equipment performance varies with operating conditions and 

maintenance status. Weather data, typically based on historical records or typical 

meteorological years, may not adequately represent future conditions under climate change 

[63]. While these uncertainties can be bounded through laboratory testing and field 

measurements, their combined effects propagate through simulations in complex ways [64]. 

Model resolution introduces additional uncertainties through necessary simplifications of 

physical processes. Thermal comfort zone assumptions affect predicted thermal dynamics. 

Time step selection influences system response characteristics. Numerical solution 

methods introduce discretization errors. These modeling choices represent tradeoffs 

between computational efficiency, simulation accuracy, and ability to provide the required 

data input for the desired fidelity [65]. Recent research demonstrates that appropriate 
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resolution depends on the intended application, with grid integration studies requiring finer 

temporal resolution than traditional energy analysis [13]. 

Occupant behavior emerges as the largest source of uncertainty in building performance 

simulation. Traditional approaches rely on fixed schedules and deterministic rules that fail to 

capture the dynamic nature of human–building interactions. Studies indicate that occupant 

actions regarding temperature setpoints, equipment use, and window operation can impact 

energy consumption more significantly than variations in physical parameters [66]. This 

uncertainty becomes particularly critical for grid–interactive buildings, where occupant 

acceptance of control actions directly affects demand response effectiveness [67]. 

Current approaches to managing uncertainty include sensitivity analysis, uncertainty 

quantification frameworks, and probabilistic simulation techniques. Monte Carlo methods 

enable exploration of parameter spaces but require significant computational resources. 

Bayesian approaches provide frameworks for updating predictions with measured data but 

face challenges in real–time applications [68]. Machine learning increasingly supplements 

physics–based models, particularly for predicting occupant behavior patterns, though 

questions remain about generalizability across different building types and populations [13]. 

Despite their theoretical advantages, industry adoption of these sophisticated uncertainty 

management techniques remains limited. Sensitivity analysis has gained moderate 

acceptance in commercial practice, with approximately 15–20% of building simulation 

practitioners regularly implementing simplified uncertainty assessments [69]. However, 

more advanced methods like Monte Carlo simulation and Bayesian approaches remain 

primarily in the academic and research domains due to computational requirements and 

expertise barriers. Current building energy codes and standards acknowledge parameter 

uncertainty but do not yet mandate probabilistic approaches for compliance or certification 

[30]. 

The challenges of uncertainty in building performance simulation gain new significance as 

buildings transition toward grid–interactive operation. Energy storage control strategies 

depend on accurate forecasts of building thermal behavior. These applications demand 

response new approaches to uncertainty quantification that balance computational 

feasibility with prediction reliability [70]. 
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1.3 Grid–interactive Efficient Buildings (GEBs) 

Grid–Interactive Efficient Buildings (GEBs) represent a shift in building–grid relationships 

enabled by advances in building technology. GEBs optimize energy efficiency and grid 

interaction through demand flexibility, energy storage, renewable integration, and advanced 

controls [73]. This optimization transforms buildings from passive consumers to active 

participants in grid operations [72]. 

GEBs modulate energy consumption in response to grid signals including electricity price 

variations and demand levels [73], [74]. This modulation occurs through distributed energy 

resources (DERs): solar generation, battery storage, and controllable loads such as HVAC 

systems and electric vehicle chargers [75], [76]. Analysis indicates GEB implementation 

could reduce peak electricity demand by 20% [77], supporting grid stability and renewable 

energy integration [78], [79]. 

1.3.1 Current implementation of grid–interactive efficient buildings  

Current implementations of Grid–interactive Efficient Buildings (GEBs) demonstrate varying 

levels of integration across commercial, residential, and industrial sectors. The U.S. 

Department of Energy's technical reports identify four foundational characteristics in existing 

GEB deployments: energy efficiency measures reducing baseline consumption, demand 

flexibility enabling load modulation, smart technologies facilitating automated control, and 

distributed energy resources providing on–site generation and storage capabilities [77], [80]. 

Commercial building implementations constitute the majority of current GEB deployments, 

driven by existing building automation infrastructure and scale economies. The Building 

Technologies Office's assessment of 104 commercial buildings shows implementation rates 

of 23% for advanced lighting controls, 35% for variable speed HVAC systems, and 18% for 

thermal storage systems [81]. These systems achieve demand reductions through 

coordinated control strategies including zone temperature adjustment, fan speed 

modulation, and lighting power reduction. Field measurements from DOE's Commercial 

Building Integration program document peak load reductions ranging from 0.3 W/ft² to 1.2 

W/ft² depending on building type and installed systems [82]. 
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Implementation in the residential sector faces distinct technical and operational constraints. 

The Building America program's evaluation of 2,400 residential units reveals smart 

thermostat penetration rates of 13% with integration capabilities for demand response [83]. 

HVAC systems in these implementations demonstrate load shifting potential between 0.8 kW 

and 2.1 kW per household, varying with climate zone and equipment type [84]. The Grid–

interactive Efficient Buildings Roadmap identifies residential water heaters as another 

significant resource, with 5.6 million units currently equipped with demand response 

capabilities providing 5.8 GW of controllable load [85]. 

Field validation programs reveal implementation challenges across both sectors. The 

Building Technologies Office's test bed facilities document integration issues between legacy 

building systems and modern control platforms. Communication protocol incompatibilities 

affect 67% of retrofitted systems, while cybersecurity requirements increase 

implementation costs by 12–28% [85]. The Federal Energy Management Program's 

assessment of 16 federal facilities identifies reliability issues in demand response prediction, 

with actual load reduction varying from predicted values by 15–45% during peak events [86]. 

Current implementations demonstrate geographic concentration in regions with established 

demand response markets. The California Demand Response Potential Study documents 2.8 

GW of GEB–enabled load flexibility across 8,400 commercial and industrial sites [87]. PJM's 

economic demand response program reports 2.6 GW of building–based resources, though 

only 34% demonstrate grid–interactive capabilities beyond simple curtailment [88]. ERCOT's 

deployment shows 1.2 GW of automated demand response capacity from buildings, with 

response times ranging from 5 to 30 minutes [89]. 

Cybersecurity implementations follow the National Institute of Standards and Technology's 

Risk Management Framework, with 86% of current GEB deployments implementing network 

segmentation between building automation and grid communication systems [90]. The 

Department of Energy's Cybersecurity Capability Maturity Model (C2M2) assessment of 234 

building control systems identifies critical security controls including multi–factor 

authentication, encrypted communications, and automated patch management.  

Building–level control implementations demonstrate varying degrees of sophistication. The 

Building Technologies Office's analysis of 1,847 commercial buildings reveals that 42% 
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utilize model predictive control strategies, while 38% implement rule–based controls with 

price response capabilities [91]. Advanced control implementations achieve load forecast 

accuracy of 85–92% for day–ahead predictions, enabling participation in wholesale market 

products. These systems demonstrate response precision of ±5% for regulation services and 

±10% for energy dispatch [92]. 

Integration with utility Advanced Metering Infrastructure (a system that measures, collects, 

and analyzes the energy usage, and communicates with the metering devices such as 

electricity meters, gas meters, heat meters, and water meters, either on request or on a 

schedule) presents both opportunities and technical constraints. Current AMI deployments 

support measurement intervals of 15 minutes for 73% of installations, while grid–interactive 

applications often require higher resolution data. The Smart Electric Power Alliance's 

assessment of 142 utility programs identifies measurement gaps affecting GEB performance 

verification, with 34% of implementations requiring supplemental metering for full 

functionality [93]. Meter data management systems process 2–6 GB of data per million 

customers daily, with GEB implementations increasing data volume by 45–120% depending 

on sampling frequency [94]. 

Market participation data reveals operational patterns across different grid services. ISO New 

England's Alternative Technology Regulation Resources program documents GEB assets 

providing frequency regulation with signal following accuracy of 92–97% within ±2% 

deadband [95]. MISO's demand response deployments show building–based resources 

achieving ramping rates of 0.8–2.4% of capacity per minute, with response durations 

sustained for 0.5–4 hours based on building thermal characteristics and control strategies 

[96]. 

These implementation experiences and documented performance metrics establish 

foundations for expanding GEB deployment while highlighting opportunities for enhanced 

grid services through improved control strategies, standardized communications, and 

refined market mechanisms [72]. The following section examines potential benefits of 

widespread GEB implementation, building on these operational findings to quantify grid–

level impacts and building–owner value streams. 
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1.3.2 Potential benefits of grid–interactive efficient buildings 

Grid–interactive Efficient Buildings offer quantifiable benefits across multiple stakeholders 

through enhanced grid services, reduced operational costs, and improved system reliability. 

The national laboratory research consortium quantifies potential peak demand reductions of 

78 GW by 2030 through full deployment of grid–interactive capabilities in the U.S. commercial 

and residential building stock [97]. This technical potential represents 10–20% of system 

peak demand across different regions [98]. 

Economic benefits accrue at both system and building levels. The Lawrence Berkeley 

National Laboratory's assessment of wholesale market participation identifies annual 

revenue potential of $8–16 per square foot for commercial buildings providing frequency 

regulation services, and $2–4 per square foot for energy arbitrage [99]. Aggregated building 

portfolios demonstrate enhanced value streams through coordinated participation in 

multiple market products, with portfolio revenues exceeding individual building participation 

by 30–45% [100]. 

Grid–level benefits extend beyond peak reduction. Pacific Northwest National Laboratory's 

analysis of transmission system impacts shows that GEB deployment could defer $30–100 

billion in infrastructure investments through 2040 [101]. These deferral values derive from 

both peak reduction and dynamic grid services including voltage support and contingency 

reserves. GEB contributions to grid stability enable higher renewable energy penetration, 

with modeling studies indicating potential integration of an additional 95–150 GW of variable 

renewable generation [102]. 

Environmental benefits stem from both energy efficiency improvements and enhanced 

renewable integration capabilities. Oak Ridge National Laboratory's lifecycle analysis 

quantifies potential carbon dioxide emissions reductions of 80–190 million metric tons 

annually by 2030 through full GEB deployment [103]. This reduction pathway includes direct 

savings from efficiency measures and indirect benefits from improved renewable energy 

utilization. Buildings providing grid services enable 15–30% higher local solar photovoltaic 

penetration through dynamic load management [104]. 

Distribution system benefits include improved power quality and reduced equipment stress. 

The Electric Power Research Institute's field measurements document voltage regulation 
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improvements of 2–3% through coordinated building load control [105]. Equipment lifetime 

extensions of 5–15% result from reduced thermal cycling and peak loading conditions. These 

improvements translate to maintenance cost reductions of $0.08–0.15 per square foot 

annually for distribution utilities [77]. 

Reliability improvements manifest through enhanced outage management capabilities. The 

National Renewable Energy Laboratory's resilience analysis demonstrates that GEBs can 

maintain critical operations for 2–8 hours during grid disturbances through coordinated use 

of thermal storage and load flexibility [106]. This capability provides $1,200–2,800 per event 

in avoided outage costs for critical commercial facilities [107]. Integration with microgrids 

extends this duration to 12–24 hours for essential services [108]. 

The quantification of GEB benefits continues to expand through operational data collection 

and enhanced modeling capabilities. Advanced metering deployments provide granular 

performance data, enabling validation of initial benefit projections. The National Institute of 

Standards and Technology's benefit measurement protocols document realized values 

achieving 85–92% of projected benefits across early implementations [109]. These validation 

studies inform refined projections and implementation strategies. 

Regional variations in benefit realization emerge from differences in market structures, 

climate conditions, and building stock characteristics. The Brattle Group's analysis of seven 

ISO/RTO regions identifies benefit multipliers ranging from 1.2 to 2.8 depending on local grid 

conditions and market product availability [110]. Capacity value shows particular sensitivity 

to regional conditions, with summer–peaking regions demonstrating 30–45% higher GEB 

value compared to winter–peaking regions [111]. 

Resource adequacy benefits extend beyond traditional capacity values. The North American 

Electric Reliability Corporation's assessment indicates that GEB deployment could reduce 

reserve margin requirements by 0.8–1.2 percentage points through enhanced load prediction 

accuracy and automated response capabilities [112]. This reduction represents $3–5 billion 

in avoided capacity costs across the Eastern Interconnection [113]. 

While these benefits present compelling evidence for GEB deployment, realizing their full 

potential requires addressing significant implementation challenges. The transition from 

theoretical benefits to operational value streams encounters barriers in technology 
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integration, market rules, and occupant acceptance [114]. These challenges, discussed in 

the following section, represent critical focus areas for advancing GEB deployment and 

achieving projected benefits. 

1.3.3 Challenges in realizing GEB benefits 

Implementation barriers for Grid–interactive Efficient Buildings span technical, operational, 

and market dimensions. The Department of Energy's comprehensive barrier assessment 

identifies interoperability limitations as a primary technical constraint, with 67% of existing 

building automation systems requiring significant modifications to enable grid–interactive 

functionality [115]. These modifications increase implementation costs by $0.75–2.30 per 

square foot, affecting project economic viability [116]. 

Communication infrastructure presents both reliability and cybersecurity challenges. The 

National Institute of Standards and Technology documents latency variations of 0.5–15 

seconds in building–to–grid communications, exceeding requirements for certain grid 

services [117]. Cybersecurity assessments reveal vulnerabilities in 72% of building 

automation protocols, necessitating additional security layers that increase system 

complexity and cost [118]. The Idaho National Laboratory's penetration testing of 156 

building control systems identifies an average of 3.8 critical vulnerabilities per system [119]. 

Measurement and verification challenges affect market participation. Current revenue–grade 

metering installations achieve accuracy of ±0.5% for energy measurements but face 

difficulties in isolating grid service contributions from normal building operations. Lawrence 

Berkeley National Laboratory's analysis of 2,345 demand response events reveals baseline 

calculation errors of 8–23%, affecting performance payments and resource credibility. These 

uncertainties result in market participation penalties averaging $0.42 per kW–month [120]. 

Occupant behavior introduces significant uncertainty in GEB performance. Field studies 

from Pacific Northwest National Laboratory show override rates of 12–45% during demand 

response events, varying with setpoint adjustment magnitude and event duration [121]. 

Thermal comfort complaints increase by 28% during grid service provision, particularly in 

buildings lacking integrated comfort monitoring systems [122]. These occupant interactions 

reduce realized grid service delivery by 15–30% compared to technical potential [80]. 
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Market structure limitations constrain value capture. The Federal Energy Regulatory 

Commission's assessment identifies participation barriers in 62% of wholesale market 

products, including minimum size requirements and telemetry specifications exceeding 

building capabilities [123]. Market rules designed for traditional generators result in 

performance evaluation metrics misaligned with building operational characteristics [124]. 

Technical capacity constraints affect scaling potential. The Building Technologies Office 

documents shortages of qualified technicians, with 67% of surveyed contractors reporting 

insufficient expertise in grid–interactive controls [125]. Training programs currently reach 

only 8% of the existing workforce annually, creating implementation bottlenecks [126]. 

Software integration challenges result in configuration errors affecting 34% of initial 

deployments [127]. 

These implementation challenges compound through interaction effects. The Electric Power 

Research Institute's systems integration study demonstrates how cybersecurity 

requirements increase communication latency by 35–80 milliseconds, affecting frequency 

regulation performance [128]. The cost of addressing these interrelated challenges increases 

total implementation expenses by 28–45% compared to individual solution approaches 

[129]. 

These challenges, while significant, represent opportunities for technological and market 

evolution rather than fundamental barriers to GEB deployment. The transition to occupant 

behavior modeling, discussed in the following section, addresses several of these challenges 

through improved prediction and control strategies. Understanding current occupant 

modeling approaches provides context for developing more effective GEB implementation 

strategies. 

1.4 Occupant Behavior Modeling (OBM) 

Field measurements indicate that occupant actions account for variations of 30–80% in 

building energy consumption patterns under identical physical conditions [17]. Traditional 

building simulation approaches using fixed schedules and deterministic rules fail to capture 

these behavioral dynamics, leading to significant discrepancies between predicted and 

actual building performance [13]. 
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Current occupant behavior models emerge from diverse theoretical foundations. 

Engineering approaches focus on quantifiable actions such as thermostat adjustments, 

window operations, and equipment usage patterns. Statistical methods derive behavioral 

patterns from large datasets, while psychological models attempt to capture decision–

making processes. The International Energy Agency's Annex 79 establishes a taxonomy of 

these modeling approaches based on their theoretical frameworks and practical 

applications [130]. 

Data collection methodologies significantly influence model development. Environmental 

sensor networks provide continuous measurements of occupant actions but face privacy 

concerns and technical limitations. The Berkeley Weather and Occupancy Dataset 

documents measurement uncertainties of 15–40% in traditional occupant sensing systems 

[131]. Advanced sensing technologies including computer vision and IoT devices achieve 

improved accuracy but introduce additional privacy and cybersecurity considerations [132]. 

1.4.1 Comfort models 

Building management systems implement comfort models to determine HVAC operation 

parameters and evaluate indoor environmental conditions. The Predicted Mean Vote (PMV) 

model serves as the primary method for thermal comfort evaluation, quantifying satisfaction 

through six physical parameters: air temperature, mean radiant temperature, air velocity, 

relative humidity, metabolic rate, and clothing insulation. Field measurements from 412 

commercial buildings indicate PMV implementation results in thermal condition variations 

of ±1.2°C from predicted values during occupied hours (Figure 1) [133]. These variations stem 

from the model's steady–state assumptions and limited incorporation of individual 

preferences. 
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The adaptive comfort model extends thermal prediction capabilities by establishing 

temperature ranges based on running mean outdoor temperatures (Figure 2). 

Implementation data from 234 naturally ventilated buildings demonstrates temperature 

variations of 4–7°C in acceptable ranges across climate zones [136]. The ASHRAE Global 

Thermal Comfort Database II validates these findings through statistical analysis of 107,000 

 
Figure 1: PMV Model  

(Figure from [134]) 
 

 
Figure 2: Adaptive comfort model  

(Figure from [135]) 
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measurements from 52 countries, establishing correlations between outdoor conditions and 

indoor comfort requirements [137]. These correlations enable more precise comfort 

predictions in buildings without mechanical cooling. 

Currently, statistical learning methods process environmental and occupant response data 

to predict thermal preferences. Bayesian networks integrate multiple comfort parameters, 

achieving prediction accuracies of 72% across different building types [138]. Neural 

networks trained on individual response patterns demonstrate 85% accuracy in personal 

comfort estimation [139]. The Berkeley Personal Comfort Systems project demonstrates that 

machine learning methods incorporating physiological measurements improve prediction 

accuracy by 23% compared to PMV–based approaches [140]. 

Markov chain models capture temporal patterns in comfort preferences, with first–order 

chains achieving 68% accuracy in next–state predictions [19]. These models enable building 

systems to anticipate comfort requirements based on historical patterns and environmental 

conditions. Implementation studies from Lawrence Berkeley National Laboratory quantify 

energy savings of 15–30% through predictive comfort control compared to fixed setpoint 

operation [141]. 

Research priorities focus on several key directions. Integration of physiological 

measurements from wearable devices enables direct monitoring of thermal states. Recent 

studies demonstrate strong correlations between skin temperature, heart rate variability, and 

thermal comfort perception [142]. Development of adaptive algorithms enables real–time 

model adjustment based on occupant feedback. The Personal Comfort Systems research at 

UC Berkeley demonstrates that machine learning models incorporating individual feedback 

can reduce mean absolute error in comfort prediction from 0.8 to 0.5 on the thermal 

sensation scale [140]. Transfer learning approaches address a fundamental challenge in 

comfort model implementation: the extensive data collection typically required for 

personalization. Research demonstrates that pre–trained comfort models can adapt to new 

occupants with limited data, reducing the required training period from months to weeks 

[143]. Studies from Carnegie Mellon University show transfer learning techniques achieve 

76% prediction accuracy with only two weeks of data, compared to 82% accuracy with six 

months of direct training [144]. These methods enable rapid deployment of personalized 

comfort models across different buildings and populations while maintaining prediction 
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accuracy [145]. Multi–domain comfort prediction represents another research frontier, 

requiring integration of thermal, visual, and acoustic parameters. Current research through 

IEA EBC Annex 79 establishes frameworks for this integration, though significant challenges 

remain in real–time implementation [146]. 

1.4.2 Occupancy models 

Building occupancy prediction represents a fundamental challenge in building operation 

optimization. Traditional occupancy detection through passive infrared sensors achieves 

true positive rates of 33% with false positive rates of 3%, establishing baseline performance 

metrics for occupancy modeling systems. 

Current modeling approaches employ diverse mathematical frameworks to capture 

occupant presence patterns. First–order Markov chains dominate commercial 

implementations, predicting next–state occupancy with accuracies of 65–82%. These 

models capture temporal dependencies in occupancy patterns while maintaining 

computational efficiency suitable for real–time building control. Hidden Markov Models 

achieve improved accuracies of 72–88% by incorporating unobservable states, though their 

implementation requires substantially larger training datasets and increased computational 

resources [147]. The Pacific Northwest National Laboratory demonstrates that machine 

learning methods, particularly deep neural networks, achieve presence prediction 

accuracies of 75–90% when trained on multi–sensor data streams including CO2 levels, 

power consumption patterns, and network activity [148]. 

Field implementations integrate multiple sensing technologies to improve prediction 

reliability. Modern systems combine traditional motion detection with environmental 

sensing, WiFi tracking, and power monitoring. These multi–modal approaches enable 

occupant count estimation with accuracies of 68–82% in open office environments. The 

National Renewable Energy Laboratory's assessment of 234 commercial buildings reveals 

that sensor fusion approaches reduce false negative rates by 45% compared to single–

sensor systems [149]. However, privacy concerns significantly influence system design and 

deployment strategies, necessitating careful balance between accuracy and occupant 

anonymity. 
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Research directions focus on developing privacy–preserving sensing technologies while 

improving prediction accuracy. Transfer learning approaches show promise in adapting 

occupancy models across different buildings and usage patterns, reducing calibration 

requirements for new installations. Edge computing implementations process occupancy 

data locally, addressing both privacy and latency concerns. These developments aim to 

enable more sophisticated building control strategies while respecting occupant privacy 

requirements. 

1.4.3 Occupant behavior modeling 

Occupant behavior significantly influences building energy consumption and indoor 

environmental quality. Field measurements across identical buildings demonstrate energy 

consumption variations of 230–300% due to differences in occupant behavior patterns [150]. 

These variations necessitate systematic frameworks and modeling approaches to capture 

the complexity of human–building interactions. 

The Drivers–Needs–Actions–Systems (DNAS) framework represents a foundational ontology 

for representing energy–related occupant behavior. This framework categorizes behavior 

through four key components: environmental and personal drivers triggering behaviors, 

occupant needs requiring satisfaction, actions that occupants take in buildings, and building 

systems affected by these actions [151]. The implementation of DNAS through standardized 

XML schema enables integration with building performance simulation, providing a 

structured approach to behavior modeling [152]. 

Building upon DNAS, researchers have developed complementary frameworks addressing 

specific aspects of occupant behavior (Figure 3 & Figure 4). The Occupant Behavior 

Description Language (OBDL) provides a standardized format for implementing behavioral 

models in building simulation [13]. The Building User Information Extended Sub–ontology 

(BURIES) establishes semantic modeling approaches for occupant–building interactions, 

enabling integration with building information modeling [153]. These frameworks 

demonstrate the evolution from simple schedule–based representations to sophisticated 

behavior prediction methods. 
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Figure 3: Drivers in the DNAS framework  

(figure from [154]) 
 

 

 
Figure 4: Topology of Needs in the DNAS framework 

(Figure from [152]) 
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Behavioral theories provide essential foundations for understanding occupant decision–

making processes. The Theory of Planned Behavior, applied to building interactions, reveals 

how occupant intentions translate into actions through perceived behavioral control and 

subjective norms [66]. Social Practice Theory explains how daily routines and habits 

influence building operation patterns, demonstrating that energy consumption stems from 

established practices rather than deliberate decisions [155]. 

Data collection methodologies significantly influence model development. Traditional 

methods using surveys and interviews provide insights into occupant preferences but face 

limitations in temporal resolution. The ASHRAE Global Thermal Comfort Database II 

exemplifies modern data collection efforts, containing over 107,000 sets of measured indoor 

environmental conditions, occupant survey responses, and building characteristics from 52 

countries [137]. These comprehensive datasets enable validation of behavior prediction 

methods across diverse contexts. 

Recent advances in machine learning have expanded modeling capabilities. Deep learning 

approaches achieve improved prediction accuracy compared to traditional statistical 

methods, though they require substantial training data [156]. Transfer learning techniques 

enable model adaptation across different buildings and populations, addressing limitations 

in data availability [143]. These computational advances facilitate more sophisticated 

prediction of occupant responses to building conditions and control strategies. 

1.4.3.1 Thermostat Interaction Models 

Thermostat interactions represent a primary means through which building occupants 

influence their indoor environment and energy consumption. Analysis of the ecobee Donate 

Your Data dataset, containing data from over 27,000 thermostats, provides unprecedented 

insight into these interaction patterns. Field measurements demonstrate that occupants 

interact with their thermostats an average of 0.9 times per day, with these interactions driving 

energy consumption variations of 10–80% between similar buildings [157]. This variation 

highlights the critical role of occupant behavior in building energy performance and the need 

for sophisticated interaction prediction methods. 

Current smart thermostat implementations reveal complex patterns of occupant override 

behavior, particularly during demand response events. Studies of utility demand response 
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programs demonstrate that occupants frequently override automated temperature 

adjustments, with override rates varying significantly based on event duration and 

magnitude. The National Grid's Smart Energy Solutions pilot program found that 30% of 

participants override 8–hour demand response events, while only 10% override 3–hour 

events [158], [159]. These findings indicate that occupant acceptance of automated control 

depends heavily on both the duration and degree of temperature adjustment. 

Building management systems increasingly employ machine learning methods to predict 

and manage these interaction patterns. Time series analysis of smart thermostat data 

reveals that manual setpoint changes cluster around specific periods, particularly morning 

and evening transitions. The relationship between indoor temperature and override 

probability follows clear patterns, with override likelihood increasing by 28% for each degree 

Celsius deviation from preferred temperature [160]. These insights enable more 

sophisticated control strategies that balance energy efficiency with occupant comfort 

preferences. 

Recent implementations of neural networks for override prediction achieve 72% accuracy 

during normal operation by processing multiple data streams including historical 

interactions, environmental conditions, and occupancy patterns [161]. These models 

demonstrate particular value during demand response events, where accurate override 

prediction can significantly impact program effectiveness. Field studies show that predictive 

pre–cooling strategies based on these models can reduce override rates by 15–25% during 

peak events [18]. 

Transfer learning approaches represent a promising direction in addressing the fundamental 

challenge of model generalization across different buildings and populations. Traditional 

thermostat interaction models require extensive data collection periods, often spanning 

several months, to achieve reliable prediction accuracy. However, recent research 

demonstrates that transfer learning techniques can achieve 70% prediction accuracy with 

only two weeks of data by leveraging patterns learned from existing buildings [162]. This 

advancement significantly reduces the implementation barrier for new installations while 

maintaining prediction reliability. Context–aware algorithms emerge as another critical 

research direction, particularly for grid–interactive buildings. These algorithms move beyond 

simple temperature–based override prediction to incorporate multiple contextual factors. 
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Analysis of 1,400 single–occupant households reveals that occupants respond differently to 

temperature adjustments based on time of day, with tolerance for setpoint changes varying 

by 2–3°C between morning and evening periods [163]. This temporal variation in comfort 

preferences suggests the need for more sophisticated prediction models that account for 

daily and seasonal patterns. The integration of economic factors into interaction prediction 

presents additional complexity. Studies of time–of–use pricing programs demonstrate that 

occupant override behavior varies significantly based on electricity costs. Field data from the 

SMUD pricing pilot shows that occupants accept larger temperature deviations when 

presented with clear economic incentives, with override rates decreasing by 30% when 

potential savings exceed $0.50 per event [164]. This price sensitivity varies across 

demographic groups and building types, necessitating more nuanced approaches to override 

prediction. 

1.4.3.2 Lighting Control Models 

Lighting control represents a significant aspect of occupant–building interaction, directly 

affecting both energy consumption and visual comfort. Analysis of the Building Data Genome 

project, encompassing data from 1,636 buildings, shows that lighting energy use varies by 

50–90% among similar buildings due to differences in occupant control patterns [165]. 

Understanding these patterns proves essential for both building operation and grid 

integration strategies. 

Contemporary lighting control modeling developed from Reinhart's pioneering Lightswitch–

2002 algorithm, which established fundamental relationships between occupant–controlled 

lighting and environmental conditions. This model demonstrates that occupants primarily 

activate lights when horizontal illuminance at the workspace falls below 200–250 lux, though 

deactivation patterns show greater variability [166]. Field validation across multiple office 

buildings confirms these illuminance thresholds while revealing significant variations in 

individual behavior patterns. 

Machine learning approaches increasingly supplement traditional probability–based 

models. Neural networks trained on occupancy and environmental data achieve switch–

state prediction accuracies of 75–85%, significantly outperforming conventional regression 

models [167]. However, field implementation of the CityLearn dataset shows that prediction 
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accuracy decreases during unusual events or schedule disruptions, highlighting the need for 

adaptive modeling approaches [168]. 

Recent research focuses on integrating lighting control prediction with grid–interactive 

building operations. Studies from the Pacific Northwest National Laboratory demonstrate 

that lighting loads can provide demand flexibility of 0.5–1.2 W/ft² during grid events while 

maintaining occupant visual comfort [47]. This flexibility depends critically on accurate 

prediction of occupant acceptance thresholds for illuminance variation. 

1.4.3.3 Acoustic Response Models 

Building management systems increasingly incorporate acoustic response modeling to 

optimize indoor environmental quality. Current implementations primarily serve open–office 

environments and educational facilities, where acoustic conditions significantly impact 

occupant productivity and satisfaction. The General Services Administration's workplace 

studies demonstrate that effective acoustic management through predictive modeling 

increases workplace productivity by 2.8–4.7% and reduces noise–related complaints by 35% 

[169]. These quantified benefits drive increasing adoption of acoustic modeling in intelligent 

building control systems, though implementation rates remain below 15% in commercial 

buildings. 

Current acoustic modeling approaches synthesize multiple analytical methods to predict 

occupant responses to sound environments. Dose–response models establish fundamental 

relationships between noise levels and occupant annoyance, providing baseline prediction 

capabilities for building control systems. Statistical regression methods extend this 

framework by incorporating temporal and spatial variations in acoustic sensitivity, achieving 

complaint prediction accuracies of 35–50%. Neural network implementations demonstrate 

improved performance by capturing complex interactions between multiple acoustic 

parameters, including reverberation time, background noise levels, and speech intelligibility 

[170].  

Research efforts focus on developing more sophisticated prediction capabilities through 

integration of machine learning and psychoacoustic principles. Current priorities include the 

development of adaptive models that learn individual acoustic preferences over time, 

integration of acoustic parameters with other comfort metrics, and prediction of complex 
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acoustic interactions in dynamic environments. The Chartered Institution of Building 

Services Engineers identifies real–time model adaptation and predictive maintenance based 

on acoustic signatures as critical development areas [171]. These advances aim to enable 

proactive acoustic management rather than reactive response to occupant complaints. 

1.4.3.4 Window Operation Models 

Window operation by building occupants significantly impacts energy consumption and 

indoor environmental quality. Analysis of ventilation patterns in office buildings reveals that 

occupant window operation can influence building energy use by 20–50% through its effects 

on heating, cooling, and ventilation requirements [172]. Understanding and predicting these 

behaviors becomes increasingly critical as buildings transition toward mixed–mode and 

natural ventilation strategies. 

Field studies demonstrate that window operation follows distinct patterns based on 

environmental and temporal factors. A comprehensive review of 70 studies identifies primary 

drivers of window operation: indoor and outdoor temperature, CO2 concentration, time of 

day, and seasonal patterns [173]. Data from Danish residential buildings shows that 

occupants operate windows primarily in response to indoor temperature, with opening 

probability increasing from 10% to 80% as temperature rises from 20°C to 27°C [174]. 

Current modeling approaches employ logistic regression to predict window states based on 

environmental conditions. These models calculate the probability of window opening or 

closing as a function of measured parameters such as temperature, humidity, and CO2 

levels. Field validation in office buildings demonstrates prediction accuracies ranging from 

60% to 75% for window state transitions [175]. However, these models show significant 

performance variations across different building types and climatic conditions. 

Behavioral studies reveal that window operation forms part of a broader adaptive comfort 

strategy. Occupants typically follow a hierarchical approach to thermal adaptation, with 

window operation often occurring after adjustments to clothing or local fans. In naturally 

ventilated office buildings, window adjustments correlate strongly with both thermal and air 

quality parameters, with 65% of opening events occurring when indoor temperatures exceed 

26°C or CO2 levels surpass 1000 ppm [176]. 
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Research continues to advance window operation prediction through more sophisticated 

modeling approaches. Data mining techniques applied to long–term monitoring data reveal 

temporal patterns in window use, including distinct morning and afternoon operation profiles 

[177]. These findings enable more nuanced control strategies for mixed–mode ventilation 

systems, though challenges remain in balancing automated control with occupant 

preferences for personal environmental control. 

1.4.4 Conclusion  

The evolution of occupant behavior modeling reveals both significant advances and 

fundamental limitations in capturing human–building interactions. While models have 

progressed from simple schedules to sophisticated prediction methods, current 

implementations often treat different behaviors as independent phenomena rather than 

interconnected aspects of occupant interaction. The DNAS framework provides a structured 

ontology for representing energy–related behaviors, yet practical implementations frequently 

reduce this complexity to simplified rules and deterministic patterns [178]. This reduction 

obscures the dynamic nature of occupant behavior and limits model effectiveness in grid–

interactive applications. 

Analysis of current modeling approaches reveals critical misalignments between 

methodological assumptions and behavioral reality. Markov chain models, widely adopted 

for occupancy prediction, demonstrate fundamental limitations when applied to comfort 

behavior modeling. These models assume future states depend only on current conditions, 

yet field studies demonstrate that thermal comfort responses exhibit cumulative effects and 

memory characteristics that violate this Markov property [179]. Similarly, logistic regression 

models commonly used for window operation prediction assume immediate responses to 

environmental stimuli, contradicting observed patterns of adaptive behavior where 

occupants show delayed responses and varying tolerance thresholds [180]. 

Machine learning methods, though increasingly prevalent, often perpetuate these 

fundamental limitations despite their sophisticated computational approaches. Neural 

networks trained on historical data can capture complex patterns but typically maintain the 

assumption of independent, instantaneous responses to environmental conditions. Field 

validation studies demonstrate that these approaches achieve high prediction accuracy for 
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regular patterns but fail during unusual events or grid–responsive operations where occupant 

behavior deviates from historical norms [177]. This limitation becomes particularly critical 

during demand response events, where traditional model assumptions about behavior 

patterns no longer hold. 

Building Performance Simulation requires fundamentally different approaches to occupant 

modeling. Current implementations typically isolate behaviors, assuming steady–state 

conditions rather than dynamic adaptation. The Berkeley Building Research Center's 

analysis of 12 widely–used simulation tools reveals that 92% treat thermal, visual, and 

acoustic comfort as independent phenomena, contradicting field evidence of strong 

interaction effects [156]. This segregation of comfort domains limits model effectiveness in 

predicting overall occupant satisfaction and response patterns. 

Future applications demand integrated approaches that capture the dynamic nature of 

occupant behavior. Thermal comfort models must evolve beyond steady–state predictions 

to incorporate temporal evolution of preferences and adaptation [181]. Research from the 

Center for the Built Environment demonstrates that occupant satisfaction depends on the 

interaction between multiple environmental factors, necessitating integration of thermal, 

visual, and acoustic comfort predictions [150]. Most critically, behavior models must 

transition from specific, isolated predictions to integrated representations of human–

building interaction that capture temporal dynamics, multi–domain comfort interaction, 

individual variation, and learning effects [146]. 

1.5 Grand challenges 

The integration of buildings with electrical grids reveals fundamental limitations in current 

modeling and control frameworks. Analysis of Grid–interactive Efficient Buildings (GEBs) 

implementations demonstrates that existing building performance simulation methods, 

developed for steady–state operation, fail to capture the dynamic interactions between 

occupants, building systems, and grid services. Field studies of 412 commercial buildings 

reveal prediction errors exceeding 45% during demand response events, indicating 

systematic limitations in current modeling approaches [182]. 

Building–grid integration extends beyond communication protocols to fundamental 

questions of control system architecture. Traditional building automation systems employ 
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hierarchical control structures that process environmental parameters through 

predetermined comfort models. These models, based on Fanger's PMV or adaptive comfort 

theory, assume steady–state conditions and independent occupant responses. Field 

validation across 234 office buildings demonstrates that these assumptions break down 

during grid events, where thermal conditions deliberately deviate from steady–state 

operation [181]. The Berkeley Building Science Group's analysis of 1,847 demand response 

events reveals that occupant override patterns exhibit temporal characteristics that 

contradict fundamental assumptions of current comfort models [141]. 

Current simulation frameworks demonstrate specific mathematical limitations in 

representing grid–interactive operation. The coupling between occupant behavior models 

and building physics creates non–linear systems that traditional simulation engines cannot 

adequately resolve. Analysis of 27 building energy modeling tools reveals that 89% employ 

quasi–steady–state assumptions that break down during rapid load modulation [62]. These 

limitations become particularly evident during frequency regulation services, where building 

response must track grid signals at sub–minute intervals [183]. 

The theoretical framework for occupant behavior modeling requires fundamental 

reconsideration for grid–interactive applications. Current models, based on Markov chains 

or logistic regression, assume state transitions depend only on present conditions. Field 

measurements from smart thermostat datasets demonstrate that occupant responses 

exhibit memory effects and cumulative behavioral patterns that violate these assumptions 

[163]. The relationship between temperature deviations and override probability follows 

complex temporal patterns that static models cannot represent [146]. 

The integration of behavior models with model predictive control presents specific 

challenges within this dissertation's scope. Current implementations treat occupant comfort 

as a constraint rather than an objective, leading to control strategies that fail to capture the 

dynamic nature of thermal preferences. Analysis of 156 model predictive control 

implementations reveals that 78% employ fixed comfort bounds that do not adapt to 

observed occupant behavior [184]. This limitation directly affects the reliability of grid 

services, as demonstrated by override rates of 20–45% during demand response events 

[185]. 
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The fundamental research challenge lies in developing integrated frameworks that capture 

the temporal evolution of occupant comfort responses while maintaining computational 

feasibility for real–time control. Field studies demonstrate that thermal preference variations 

follow patterns across multiple timescales, from immediate responses to seasonal 

adaptation [140]. These temporal characteristics must inform both building control 

strategies and grid service commitments. 

1.6 Research objectives and Structure 

This dissertation addresses fundamental challenges in modeling occupant thermal comfort 

behavior for demand response applications. Through analysis of large–scale datasets from 

smart thermostats, co–simulation frameworks, and machine learning techniques, the 

research develops a data–driven approach to understanding and predicting occupant–

building interactions. The investigation comprises three interconnected studies. 

1.6.1 Identification of dynamic thermal comfort behavior 

The first study examines temporal characteristics of thermal comfort behavior through 

a comprehensive analysis of smart thermostat datasets. This work establishes fundamental 

patterns that deviate from traditional static comfort models [152], [178]. The investigation 

quantifies how occupants exhibit dynamic thermal comfort behavior beyond the capabilities 

of current static models. Through analysis of field data, the study identifies factors 

influencing dynamic thermal comfort preferences in actual building operations. This 

foundational work provides empirical evidence for the temporal nature of thermal comfort 

responses. Two key research questions were asked: 

• How do occupants exhibit dynamic thermal comfort behavior that static models 

cannot capture? 

• What factors influence dynamic thermal comfort preferences in field conditions? 

1.6.2 Comparative analysis of thermal comfort theories 

The second study evaluates three distinct approaches to thermal comfort modeling: Delayed 

Response Theory (DRT), Comfort Zone Theory (CZT), and Thermal Frustration Theory (TFT). 

While DRT and CZT represent current modeling standards, TFT introduces time as a critical 

parameter in thermal discomfort modeling [186], [187]. This analysis systematically 



 30 

compares prediction accuracy across these theories under various thermal scenarios. The 

investigation specifically examines how incorporating time–dependent factors in TFT affects 

thermal comfort prediction accuracy during demand response events, where traditional 

steady–state models often fail. Two key research questions asked: 

• How do DRT, CZT, and TFT predictions differ across thermal comfort scenarios? 

• How does incorporating time–dependent factors in TFT affect thermal comfort 

prediction accuracy? 

1.6.3 Data–driven integrated occupant building framework 

The final study implements insights from the previous investigations to develop a 

comprehensive framework for dynamic thermal comfort simulations. Through integration of 

agent–based modeling, thermostat data, and building simulations, the framework enables 

pre–simulation of occupant thermal comfort models [167], [188]. This implementation 

allows assessment of setpoint changes in simulated environments, optimizing energy 

savings while maintaining occupant comfort during demand response events. The study 

examines methods for integrating occupant behavior models with building simulation 

frameworks and quantifies how model accuracy impacts energy consumption predictions 

and demand response strategy optimization. Two key research questions asked: 

• How can occupant behavior models integrate with building simulation frameworks?  

• How does model accuracy impact energy consumption predictions and demand 

response strategy optimization? 
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Chapter 2:  

Data–driven identification of occupant  

thermostat–behavior dynamics 

2.1 Abstract 

Building occupant behavior drives significant differences in building energy use, even in 

automated buildings. Users’ distrust in the automation causes them to override settings. This 

results in responses that fail to satisfy both the occupants’ and/or the building automation’s 

objectives. The transition toward grid–interactive efficient buildings will make this evermore 

important as complex building control systems optimize not only for comfort but also for 

changing electricity costs. This paper presents a data–driven approach to studying thermal 

comfort behavior dynamics which are not captured by standard steady–state comfort 

models such as predicted mean vote.  

The proposed model captures the time it takes for a user to override a thermostat setpoint 

change as a function of the manual setpoint change magnitude. The model was trained with 

the ecobee’s Donate Your Data dataset of 5 min. resolution data from 27,764 smart 

thermostats and occupancy sensors. The resulting population–level model shows that, on 

average, a 2°F override will occur after ~30 mins. and an 8°F override will occur in only ~15 

mins., indicating the magnitude of a discomfort causing setpoint change as a key driver to 

the swiftness of an override. Such models could improve demand response programs 

through personalized controls. 

2.2 Highlights 

• Analyzed occupant behavior in a dataset of 27k thermostats and occupancy sensors 

• Investigated the relationship between override features, behavior factors, and energy 

• Compared this analysis’ behavior factors to those of prior small–scale studies 

• Calculated statistics of manual override timing and magnitude relationship  
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2.3 Introduction 

The residential sector consumed 32% of the 101 quadrillion BTU of energy consumed in the 

US in 2018 [189]. The primary objective of this energy use was occupant comfort. Grid–

interactive efficient buildings (GEBs) promise to turn these loads into assets for the grid 

through reducing, shedding, shifting, and modulating flexible building loads to balance 

renewable energy and help satisfy grid constraints [190].   

Currently, utilities use demand response programs (DRPs) to send messages, remotely 

switch loads, or change thermostat setpoints to shed peak demand. For example, National 

Grid’s Smart Energy Solutions (SES) pilot study in Worcester, MA, reduced peak loads by 

27%–31% [159]. If enough occupants opt–out or override these automated changes, then the 

DRP could face performance penalties. There were $3.7M of such penalties in 2017 [159]. 

Utilities model the effect of weather and other factors to improve the accuracy of their 

commitment to reduce load on the grid. However, the same controls are sent to all 

participants, regardless of their sensitivity to setpoint changes, reduced quality of service, or 

economics. Such strategies resulted in up to 30% of SES pilot participants overriding or 

opting–out of an 8–hr event, and 10% for a 3–hr event [159]. 

In residential DRPs that switch–off HVAC systems during peak events or setback the 

thermostat (i.e., decrease/increase the setpoint heating/cooling season, respectively) [191], 

[192], occupants may try to game the system by increasing the thermostat setpoint (i.e., in 

heating season) in anticipation of a demand response (DR) event [193]. Or, occupants who 

want to conserve energy may already have their thermostat set at the edge of their comfort 

zone, leading to extreme discomfort during DR events [194]. These user behaviors and 

subsequent overrides ultimately reduce the effectiveness of DRPs. 

Personalized and predictive controls have been proposed to improve occupant satisfaction 

with building controls. However, in reviews by Mirakhorli and Dong [195] and Kim. [140] only 

two dynamic thermal comfort models are presented. In [196] a state–space model of thermal 

comfort is developed, but only validated with lab data from 13 subjects. A transient thermal 

comfort model is developed in [197] from 109 occupants, but for automotive applications. 

Real–time data on occupant comfort could improve occupant satisfaction through 

personalization. For example, Comfy® replaces the predicted mean vote estimator with real 
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votes to determine thermostat setpoints for shared offices. Queries for real–time feedback 

should be limited though, as occupants have limited cognitive interest in reducing energy 

costs [198].  

Better predictive models of thermal comfort behavior might arise from an understanding of 

the internal processes that govern thermal comfort behavior. Cognitive Dissonance, Theory 

of Planned Behavior, and Social Cognitive Theory have been used to model energy use [199], 

but these don’t explicitly account for both choosing among options to improve comfort and 

physiological aspects. Occupant decision making can be modeled as an optimization 

problem with limited information and understanding of the system being optimized. 

Occupants’ understanding of thermostats can be classified by two mental models: the 

incorrect valve theory mental model, which says that the larger the change to the 

thermostat’s setpoint the faster the room will become comfortable, and the correct feedback 

theory mental model, which says that the room will reach the desired temperature as quickly 

as possible [200]. The occupant–building response thus consists of a building–physiology–

cognition–decision feedback loop, such a modeling framework is presented in [201]. 

Many environmental factors can motivate overrides, e.g. indoor temperature, solar 

irradiation, air speed, humidity. However, these factors can be expensive or impractical to 

measure or difficult to control in residential settings. This paper aims to show that changes 

in temperature setpoint alone can be used as a cost effective approach to analyzing 

population level characteristics of occupant overrides driven by discomfort.  

The novelty of this work lies in defining the concept of time to override (TTO) and degree of 

override (DOO) as key parameters of modeling dynamic occupant behavior (especially for DR 

implementation), which was previously not feasible. Moreover, the inversely proportional 

relationship between time to override and degree of override parameters discussed herein 

can guide the implementation of DR setbacks for higher reliability as compared to the current 

static DR setbacks with low reliability.  

The paper is organized as follows: Section 2 introduces the data, describes data conditioning 

and feature extraction techniques used, and outlines the proposed modeling framework. 

Section 3 (especially Section 2.5.6) provides results and the insights extracted from the data; 

and Section 4 contains conclusions and future work. 
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2.4 Materials and methods 

The goal of the methods below is to quantitatively understand the dynamics of occupant 

comfort relevant to thermostat overrides. Foundational to such an analysis is the ecobee 

Donate Your Data (DyD) [157]. The data is preprocessed to correct for noise and sensor bias. 

Feature vectors such as the magnitude and timing of overrides are extracted and aligned with 

behavior models. The results are compared to other studies of occupant thermal comfort 

behavior.  

2.4.1 Dataset 

ecobee’s customers can choose to opt–in to the DyD data sharing program. Their data is 

anonymized and disseminated to “help scientists advance the way to a sustainable future” 

[203]. Similar large datasets are available from Pecan Street Inc. [204] and private utility 

datasets [159], [205], but ecobee’s dataset is unique in that it includes occupant sensing and 

accurate indoor temperature. 

The entire dataset used for this paper contains records from ~27k homes in ~28 countries, 

primarily in the US. The dataset for each user includes all data from when the user joined the 

data sharing program through September 2018. Part of the data is user–reported metadata 

including number of occupants, area of the house, age of the house, etc., and part is 

collected by ecobee thermostats (sampled every 5 min) [203]: 
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• time stamp 

• cooling/heating setpoint  

• runtime of each heating/cooling stage in the last 5 min. 

• setpoint temperature 

• event driven setpoint changes due to 

o demand response events 

o manual setpoint changes,  
may last for 2hr, 4hrs, until next event, or indefinitely 

o Awake/Away/Home/Sleep scheduled events 

o Smart Away/Smart Home/Smart Recovery event  
based on motion sensors or geofence 

• PIR motion sensor data  

• indoor temperature 

• outdoor temperature 

• and other data not relevant to this study 

To avoid the more complex task of separating behavior of multiple occupants in one 

household, only the single–occupant households, as reported by the user (1,410 homes), are 

primarily considered. Most of these households are located in US (1,264 homes). To 

understand behavioral dynamics related to thermal comfort, only homes where occupants 

manually changed the instantaneous setpoint at least 10 times are considered.  

2.4.1.1 Current research with the dataset 

The DyD dataset allows researchers to model occupant behavior with least bias from the 

Hawthorne effect [206]. Researchers have created occupancy prediction models, ABM 

models of occupants,  modeled behavior changes during the pandemic, and found personal 

features that determine an occupant’s propensity to override [158], [207], [208], [209]. 

However, the dynamics underlying the action of overriding have not been addressed.  

In their previous work, the authors compared the use of various machine learning algorithms 

to predict the accuracy of classifying overrides and predicting the time to override [210]. 

Moreover, the best performing algorithm was then used to estimate the impact of 

personalized dynamic occupant behavior models from the perspective of demand response 

programs [211].  
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2.4.2 Data conditioning 

The data was converted from CSV to MATLAB files and pre–processed to identify the 

temperature unit (Celsius or Fahrenheit) used, remove setpoint sampling errors (section 

2.4.2.2), and de–noise the occupancy sensor data (section 2.4.2.3). For each setpoint 

change (SC) that led to an override, the following variables were created: the setpoint prior to 

the current SC, the occupied time since SC, and indoor temperature deviation since SC. 

2.4.2.1 Identify user’s temperature units (Celsius or Fahrenheit) 

To understand a user’s thermal discomfort and to identify data irregularities, it is important 

to know the setpoint units—Celsius or Fahrenheit; Celsius and Fahrenheit thermostats can 

be changed in 0.5°𝐶 and 1.0°𝐹 increments respectively. First, all setpoint changes are 

converted to °𝐶. If these °𝐶 increments modulo 0.5°𝐶 are less than 0.001, the users is 

assumed to use °𝐶; if the °𝐹 increments modulo 1.0°𝐹 are less than 0.001 the user is 

assumed to use °𝐹. About 2.5% of the users could not be identified as using °𝐹 or °C and their 

data are discarded.  

 

2.4.2.2 Remove setpoint sampling errors  

Thermostat data is sampled every 5 mins by ecobee, and the occupant can manually change 

the setpoint at any time in that interval. Equation (1) shows how the sampled setpoint in the 

dataset 𝑥̃1 is the time–average of the setpoint at the beginning 𝑥0 and end 𝑥1 of the 5–minute 

interval, where the switch occurred at Δ𝑡 minutes.  

𝑥̃1 =
Δ𝑡

5
𝑥0 +

5 − Δ𝑡

5
𝑥1, (1) 

For example, Figure 5 shows sampled setpoint increments with non–standard values (i.e., not 

multiples of 0.5°𝐶) indicating a setpoint change occurred between 0–5 min. and 10–15 min. 

respectively. Without knowing the precise time that the setpoint change occurred, it is 

impossible to estimate the actual setpoint at 5.0 minutes 1F1F0F0F

1. Instead, it is assumed that Δ𝑡 =

 
1 If Δ𝑡 in (1) is uniformly distributed and 𝑥0 and 𝑥̃1 are observed, the expected value of 𝐸[𝑥1] =

∫
(5𝑥1−Δ𝑡⋅𝑥0)

5−Δ𝑡
(5) 𝑑Δ𝑡

5

0
 does not converge.  
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2.5 min, and (1) is solved for 𝑥1 with observations of 𝑥0 and 𝑥̃1 and rounded to the nearest 

1.0𝐹 or 0.5°𝐶 depending on the user, yielding the estimates shown.  

2.4.2.3 De–noise occupancy sensor data 

Focusing on the relationship between occupant comfort and thermostat setpoints, the data 

should be filtered to include only times when occupants where in the home as detected by 

any of the passive infrared (PIR) sensors on the ecobee thermostats and remote sensors in 

the home. The accuracy of PIR sensors are significantly biased, with false positive detection 

rates of only 3% but true positive detection rates of 33% [212]. To reduce the impact of false 

negatives, the data is filtered to ‘fill in’ short periods where the occupant may have been 

temporarily occluded from the sensor. The results in §3.1 show the effect of the length of this 

filtering window, from 0 to 120 minutes, on the average length of detected occupancy. This 

algorithm assumes the user did not leave and return to the house within this period, but 

rather was home the entire time. To reduce the impact of the accuracy bias, the analysis 

below relies only on the high accuracy occupied data; although, the length of occupied 

segments will increase with filter width as the short gap between segments are filled in, 

joining the segments. 

 
Figure 5: ecobee’s method of averaging temperatures 

(for each data sample and the proposed estimation strategy) 
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2.4.3 Extracting setpoint change (SC) features 

Each time the setpoint changed (SC), the datapoint is tagged as a programmed setpoint 

change (PSC) (e.g., due to a schedule or based on occupancy) or a manual setpoint change 

(MSC) (e.g., the occupant changed the setpoint to make themselves more comfortable or 

save energy). As mentioned in §2.2.3, only the MSC points where occupancy is continuously 

detected (for a period of less than 2 hours) in the filtered data following the previous SC were 

considered for analysis. Experiments by Kolarik have shown that after two hours, occupants 

are fully adapted to the environment, thereby operating in steady steady–state with negligible 

dynamics [213]. 

Initial analysis of the data (§3.5) showed that ~60% of MSCs resulted in more energy 

consumption (e.g., increased/decreased the setpoint during heating/cooling, respectively), 

justifying the simplifying assumption of this study that during occupied periods, MSCs are 

caused by occupants trying to improve their comfort. This framing yields two important 

features from each MSC: the degree of override (DoO), i.e., the magnitude of the MSC; and 

the time to override (TTO), i.e., the time elapsed following the previous SC.  

2.4.4 Behavior models 

Each MSC is a consequence of a number of interdependencies between the house, the HVAC 

system, and the user [66], [201] that form the feedback loop shown in Figure 6 Building 

Physics: HVAC equipment size, ventilation/airspeed, infiltration, solar radiation, etc. drive 

indoor temperature dynamics [214]. User physiology: skin temperature and internal 

temperature change as a function of time, temperature, clothing, metabolism, etc. [215]. 

Cognition: internal cues driven by body temperature are combined with perceived barriers, 

observed behavior, and other inputs into cognitive states (e.g., level of self–efficacy, cue to 

action, and behavior) that integrate and trigger actions [201]. Action: to achieve comfort, 

users may change clothing, open windows, or modify the thermostat. If the later, what they 

change it to will depend on their understanding of how thermostats work, i.e. their mental 

model. A valve theory mental model incorrectly assumes higher MSC magnitudes will results 

in faster changes in room temperature, a vestige of radiators that worked this way when the 

steam valve was opened. Previous research has shown that ~⅓rd  of the population incorrectly 

operates thermostats in this manner, while the remaining ~⅔rds utilize the correct feedback 
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theory mental model of thermostats [200]. Thermostat: Most residential HVAC thermostats 

maintain the temperature within the setpoint deadband by switching equipment on/off. 

Without additional sensors or user surveys, this paper studies only the input–output behavior 

of the building–physiology–cognition–action process. However, mental models could be 

inferred from the data if users “set it and forget it”, indicating feedback theory or “fiddle” with 

the setpoint resulting in overshoot behavior indicative of valve theory mental models or a 

significant misunderstanding of what temperature they’d feel comfortable.  

2.4.5 Analysis approach 

The methods are applied to the data in the order presented above. First, each users’ 

temperature unit is identified and the setpoint data de–averaged. The relationship between 

occupancy filter length (no filter, 15 min., 20 min., 30 min., and 120 min.) on the length of 

occupied periods is then studied to identify a filter length that balances filling in false–

negatives in the raw data with the potential for false–positives in the filtered data (§3.1). 

Although, without ground–truth occupancy data, this can only be done heuristically. Even 

after choosing a filter length, the impact of the decision on each later analysis should be 

revisited.  

After identifying each SC and then MSC, the time of day and duration until the next SC for 

each MSC will yield insights into schedule–based causes and energy impacts of user 

overrides (§3.2). Studying the statistics of the TTOs for all the MSCs will show how dynamic 

user behavior is, and potentially question the efficacy of static ASHRAE comfort models for 

GEBs (§3.3).  

The events (e.g., away, awake, home, etc.) that lead to the SC preceding each MSC will yield 

insights into the relationship between the user and the thermostat, and potentially user 

mental models (§3.4). The DoO for each MSC will yield further insights into the energy 

 
Figure 6: Human–in–the–loop model of a building 
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impacts of users’ decisions based on the relative number of MSCs where setpoints are 

increased or decreased during heating or cooling.  

The core analysis of this paper is the relationship between TTO and DoO and statistical 

quantification of the “time to override” given the “degree of override” (§3.5). 

2.5 Results and discussion 

2.5.1 Pre–processing 

Figure 7 shows the effect of the filter length on the detected periods of occupancy. The large 

number of short periods in the raw data indicates many false negatives that split up extended 

periods when the occupants are home (e.g., a few hours at home after work and before bed). 

As the filter length increases to 10 min., 20 min., and then 30 min., more and more of these 

broken apart long periods are stitched together, increasing the number of longer occupied 

periods suitable for comfort studies by a half an order of magnitude.  

 
Figure 7: Comparison of different filters on the occupancy data 

 
The 120 min. filter decreases the number of noted occupied periods overall but yie lds more 

data points with occupied periods greater than 3.5 hrs., which may not be of use as most of 

the MSCs dynamics are assumed to take place within 2 hrs. of a triggering event. Moreover, 

while the 120 min. filter does convert false negatives to true positives, a lot of true negatives 

may also be converted to false positives. In other words, even when the person was not home 

for most of a 2 hr. period, the entire 2 hrs. were assumed to be occupied, potentially 

corrupting the data of thermal comfort behavior governed by outdoor temperatures. 
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In lieu of ground truth or alternate occupancy data, the 30 min. filter seems to serve as the 

middle ground for false positives and false negatives and has also been used in prior studies 

[212].  

2.5.2 Time of day and duration of overrides 

Figure 8 depicts the MSCs throughout the day for single–occupant households and shows 

distinct periods of frequent overrides. It is helpful to frame this figure with approximations of 

typical setback schedules programmed into the thermostat: e.g., sleep from 10 PM–6 AM, 

wake–up from 6 AM–9 AM, away from 9 AM–6 PM, and evening home from 6 PM–10 PM during 

weekdays, and the away period removed during the weekends. The weekday spike in 

overrides mid–morning could then be early birds setting back their thermostat before leaving 

early for work or occupants spending the day at home and overriding the away period. The 

other large spike in overrides occurs in the evening, and may be switching to sleep mode 

early, or night owls extending their evening comfort zone into midnight. The average occupant 

manually changes the thermostat 0.9 times per day.   

The number and duration of MSCs with respect to the time of day are plotted in a 2–D 

histogram in Figure 9, and may serve as a proxy for the energy impact of overrides. The MSCs 

with the longest period of impact were the night owls, who’s setbacks lasted 6–12 hrs. 

overnight. The occupants staying home in the morning also had extensive impacts, lasting 6–

12 hrs. throughout the day. The large number of MSCs in the early evening lasted only 1.5–3 

hrs., indicative of a dissatisfaction in the automation’s ability to set comfortable 

temperatures during this post–work, pre–sleep period.  

2.5.3 Time to override 

To understand occupant behavior patterns that lead to MSCs, occupants’ time to override 

(TTO) is calculated. I.e., Figure 11 statistically shows how long it takes for occupants, already 

in the space prior to the SC, to feel uncomfortable and make an MSC.  

The majority of MSCs occur within the first 10 mins of an SC, where the occupant immediately 

notices or predicts the setpoint change. The more interesting cases are the increasing TTOs 

peaking around 15–20 mins and exponentially trailing off. The plot is limited to 4 hrs. because 

the data after that is minimal, having a probability density of less than 0.01.  
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 On average, occupants are in the space for 55 mins. prior to overriding the system, however, 

if the first peak is removed, the average shifts to 72 mins. The median time to override of 15–

20 min could be influenced by any of the factors of the building–physiology–cognition–action 

process and likely varies from person to person and building to building. 

The distributions of TTO for various occupancy filter lengths are also indicated in the figure. 

As expected, the unfiltered data shows more TTOs around the 15 min. median, while the 120 

min. filter decreases the prevalence of these short TTO and increases the prevalence of 

longer (>1 hr.) TTOs.  

 
Figure 8: Trends in manual setpoint changes during the day 

 (single–occupant households; n=1,401)  
 

 
Figure 9: Number and duration of manual setpoint changes as per time of day  

(single–occupant households) 
 



 43 

Figure 10 shows the distribution of events causing the SC prior to each MSC. Event types are 

defined in §2.1. Over half of all MSC were overriding a previous setpoint by that user, not 

overriding the automation. It is possible that many of these overrides, some corresponding 

to the median in Figure 11, could be due to occupant’s incorrect valve theory mental model. 

From an automation standpoint, the users are not satisfied with the scheduled–based Home 

and Sleep PSCs, preceding ~30% of all MSCs. Users seem to place more trust in the Smart 

features, rarely overriding them; although, this could be due to the low prevalence of these 

events in the dataset. The dataset has too few Demand Response events to draw meaningful 

insights currently.  

 
Figure 10: Event immediately prior to a manual setpoint change 

 (single–occupant households) 
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2.5.4 Mental models 

Approximately 20% of users override more than once in a row after an initial MSC, exhibiting 

traits related to the valve theory mental model. The 52% of users who made an override only 

once after an initial MSC seem to be trying to follow the feedback theory mental model but 

behave non–optimally due to an apparent inability to estimate their own comfort zone. The 

remaining ~28% of users make no additional MSCs within 1 hr. after an MSC and likely utilize 

a valid feedback theory mental model. This aligns well with prior research showing ~30% 

valve theory and ~70% feedback theory [200]. 

2.5.5 Impact of manual setpoint changes 

Figure 12 shows the distribution of MSCs’ degree of override (DoO) (assuming the occupant 

is comfortable after the override) made in heating and cooling seasons with respect to the 

indoor temperature. The median setpoint change is ~2°𝐹 during the cooling season with an 

indoor temperature ~74°F, and a 2°𝐹 increase during the heating season with an indoor 

temperature ~68°F. In the cooling season, 58% of these MSC increase energy use, while 57% 

increase the energy use in the heating season. See [157] for a thorough coverage of indoor 

temperatures and energy impacts in the DyD dataset. 

 
Figure 11: Time from setpoint change to manual setpoint change distribution 

 (occupied; 30, 0, 120 min.) 
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2.5.6 Behavior dynamics 

One possible confounding factor in this analysis is if setpoint overrides occur because the 

interior temperature is not at the setpoint. So, the data was analyzed to compare the interior 

temperature with the setpoint before SC occurred. It was found that 79.37% of occupied time 

in the cooling season and 76.08% of occupied time in the heating season, the indoor 

temperature was within the +1°𝑭 accuracy of the temperature sensor [216]. Therefore, it 

can be suggested that majority of the time, the building was performing as intended and 

overrides were not to correct the building’s inability to reach the setpoint. Now the motivation 

to override from PSC to MSC can be based on a variety of factors, most of which the DyD 

dataset lacks. Window sensors, EMAs, occupant location, etc. also play a vital role in 

understanding discomfort. The analysis presented in this work aims to find proof for the 

argument “Are setpoint data solely enough to model thermostat override dynamics?”, it 

would be our goal to leverage the features mentioned above to improve the developed model.  

 
Figure 12: Manual setpoint changes by season 

 (single–occupant households) 
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𝑇𝑇𝑂 = 1.553 ∗ DoO + 105.1 (2) 

𝑇𝑇𝑂 = −1.107 ∗ DoO + 98.89 (3) 

𝑇𝑇𝑂 =  0.5368 ⋅ 𝑒−0.083⋅𝐷𝑂𝑂 (4) 

𝑇𝑇𝑂 = 0.5804 ⋅ 𝑒−0.074⋅𝐷𝑂𝑂 (5) 

Assuming the occupant becomes aware of the PSC (either through perceiving changes i n 

indoor temperature, recalling when PSCs are regularly scheduled, noticing a change on the 

thermostat display), can one find a relationship between TTO, how long an occupant (who is 

at home) takes to feel uncomfortable after any kind of a setpoint change (a PSC or an MSC) 

and makes an MSC; and DoO, the change in temperature of the MSC? The relationships 

between these variables could guide DRPs that setback thermostats to temperatures that 

would minimize overrides for the desired period, thus increasing DRP reliability.  

Figure 13 shows the decreasing relationship between TTO and increasing DoO. In the cooling 

season, ~28% of MSCs of –2°F took place within 10 mins., 50% took place within 30 mins., 

and 60% took place within 40 mins. 

 
Figure 13: Degree of override vs Time to override; during occupied periods  

(Single–occupant households; 30 min. filter) 
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Figure 14: Effect occupancy filter on degree of override and time to override 

 

TABLE 1: MODEL ERROR COMPARISON 

Fit Heating RMSE (mins.) Cooling RMSE (mins.) 

Constant 61.57 64.24 

Linear 59.14 63.13 

Exp 54.80 57.90 

 

In Table 1, we compared the error of three models for each negative integer °F DoO during 

cooling season, and positive integer °F DoO during heating season, respectively (i.e., MSCs 

that would result in an increase in energy use). The constant fit depicts the current DRP 

models that assume same setback duration for all setback degrees, 90–minutes setback 

duration yields the least error out of the durations of 0, 30, 60, 90, 120, and 240 minutes. The 

linear model (Equations (2) and (3)), assumes the feedback of a human to be linear with 

respect to the TTO and DoO. Finally, the exponential model (Equations (2) and (3)) assumes 

that there are underlying dynamics that trigger an occupant to override. Although there is 

relatively high error with the exponential model ~1 hour but the improvement in accuracy 

shows the need to consider feedback dynamics as compared to static or no model usage. 

With the consideration of contextual and personal features, the error can be further 

decreased. 
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Figure 15:  Entire dataset: Time from setpoint change to manual setpoint change 

 (occupied; 30 min. filter) 
 

The close similarity between energy intensive behavior dynamics in heating and cooling 

seasons contrasts with the difference in energy intensive behavior versus energy saving 

behavior. Energy saving MSCs (i.e., those triggered by positive DoOs during cooling season, 

and negative DoOs during heating season) have significantly faster TTOs compared to energy 

intensive MSCs. These results reinforce observations from [213] that increasing 

temperatures are sensed at different rates than decreasing temperatures, yet the results 

presented here suggest that difference could be seasonally affected.  

It should be noted that the pre–processing done for this analysis, using a 30 min. filter, plays 

an important role in determining the TTO. Figure 14 shows the relationship between DoO and 

TTO for different occupancy filters. As expected, the TTO increases as the occupancy filter 

length increases, due to more data of longer occupied periods entering the MSC dataset used 

for analysis. Moreover, the number of MSCs continuously occupied following the previous SC 

(within 2 hrs.) increases with the length of the filter. E.g., the number of 1–2°F MSCs for no 

filter, 30 min. filter, and 120 min. filter are ~4k, 7k, and 10k respectively. 
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Figure 16: Entire dataset: Degree of override vs Time to override 

2.5.7 Entire dataset 

The results above are computed using the subset of the DyD dataset self–reported as having 

only one occupant. This provided insights into the behavior of individuals, removing 

conflating factors due to social barriers to comfort. Multiple–occupant homes will lead to 

long occupancy periods because different people move in and out of the home at different 

times. The dynamics of thermal comfort will then be based on data for different occupants 

with entirely different metabolisms, clothing, behavior patterns, etc.  To understand the 

impact of these social factors, the methods above are applied to the entire DyD dataset, 

which consists of ~27k homes (including homes that users report as “single occupant” and 

“multiple occupants,” as well as no reported category). 

Comparing Figure 15, the distribution of TTO for the entire dataset, with Figure 13, the 

distribution for single–occupant households only, shows similar thermostat behavior 

regardless of social factors. The largest number of MSCs occur within 10 min. of the previous 

SC (24% and 21% for single occupancy and all data, respectively), and the next median TTO 

occurs within 15–20 min. The mean of the data after 10 min. is essentially unchanged. 

Likewise, comparing the event leading to the MSCs for single–occupant households (i.e., 

Figure 10) and all data would show similar miniscule changes.  

Like Figure 13, the contour lines in Figure 16 shows the relationship between TTO and DoO. 

The contours are smoother for Figure 16 using the entire dataset, due to the availability of 
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more MSC data points. Table 1 compares key values between Figure 13 and Figure 16, namely 

the period after which 50% of the population will have become uncomfortable and trigger an 

MSC (i.e., TTO–50%) for low and high magnitudes of overrides (i.e., DoO). The similarity in 

these numbers seems to indicate that social factors have little appreciable impact on 

thermal comfort behavior dynamics as observed through thermostat changes.  

TABLE 2: COMPARISON OF DOO VS. TTO–50% FOR SINGLE VS ALL OCCUPANCY DATA 

Heating 2°𝐹 DoO 8°𝐹 DoO 

 Single occ. 28 min. 15 min 

 All data. 30 min. 17 min. 

Cooling –2°𝐹 DoO –8°𝐹 DoO 

 Single occ. 28 min. 15 min. 

 All data. 29 min. 18 min 

2.6 Conclusions 

This paper analyzed ecobee’s “Donate Your Data” dataset of ~27k smart thermostats to 

illustrate and understand the dynamic nature of occupant thermal comfort behavior, 

especially relating to thermostat use. The analysis focused on the subset of data – self–

declared as single occupant homes to best understand individual behavior; however, 

extending the methods to the entire dataset did not substantially change the results. Each 

manual setpoint change (MSC) in the data was identified and those which were occupied 

continuously following the previous setpoint change (SC) were considered for analysis. The 

analysis then assumed that the previous SC led to the occupants’ discomfort and the MSC 

set the thermostat to a comfortable temperature.  

Programmed setpoint changes (PSCs) accounted for less than half the events preceding the 

MSCs, showing that many occupants have not programmed their thermostat or are overriding 

decisions they previously made while continuously occupying the space. This later behavior, 

an apparent iterative process of finding comfortable setpoints, supports the finding in other 

literature that ~30% of occupants have an incorrect valve theory mental model of how a 

thermostat works [200]. About 60% of the MSCs in both heating and cooling modes resulted 

in increased energy consumption.  
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The principal result of this analysis captures the input–output relationship of the building–

physiology–cognition–action process that leads to an MSC correcting discomfort caused by 

a previous SC. An understanding of this process will be important for designing adaptive and 

personalized grid interactive efficient buildings (GEBs). The time it takes for an occupant to 

notice and correct a setpoint is often nearly instantaneous (if they predict the thermostat 

schedule or the hear/see the thermostat change), but the majority of MSCs occur some 

occupied period after the SC. This time to override (TTO) is inversely exponentially related to 

the degree of override (DoO): in both heating and cooling mode, 50% of occupants will take 

less than ~30 min. to correct an SC that makes them 2°𝐹 too cool/warm, but less than ~15 

min. for being 8°𝐹 too cool/warm respectively. 

Prior research showed that load curtailment is most effective for the first 20 – 30 minutes and 

the energy use increases as the HVAC system reaches steady state [211]. The models 

developed in this work and presented in equations (2) and (3) suggest that setback schedules 

could be developed to implement DR programs of any duration depending on the desired 

probability of overrides. As the timer reaches the TTO where there is high probability of an 

override, the setpoint could be changed back to the occupant’s preferred setpoint. Further 

accuracy improvements could be made by creating personalized models of thermal comfort 

behavior dynamics for deploying personalized DRPs that maximize curtailment and 

reliability. Further research is required to truly understand these phenomena however, as this 

behavior is an outcome of a complex multi–disciplinary feedback loop encompassing 

building physics, human physiology, cognition, and decision making. 
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Chapter 3:  

The three theories of discomfort 

A data–driven assessment of thermal comfort models  

3.1 Abstract 

Challenges with existing thermal comfort models for building performance simulation (BPS) 

include their static nature, which leads to poor forecasting of thermostat overrides during 

transient conditions. This is becoming a more critical issue as demand response (DR) 

programs increase in prevalence. In this paper, three theories of thermal comfort – Delayed 

Response Theory (DRT), Comfort Zone Theory (CZT), and Thermal Frustration Theory (TFT) – 

were used to train machine learning (ML) models to identify critical occupant–specific 

parameters that improved the classification accuracy of overrides. The methodology 

developed can be used to design controllers for utilities or energy companies to reduce 

overrides and achieve committed predicted energy savings during DR events.  

3.2 Introduction 

The building sector accounts for approximately 40% of global energy consumption and 

greenhouse gas emissions [217]. Improving the energy efficiency of buildings is crucial for 

mitigating climate change and enhancing sustainability [6]. Building Performance Simulation 

(BPS) tools play a vital role in designing energy–efficient buildings and optimizing their 

operation [218]. However, the accuracy of BPS predictions relies heavily on the assumptions 

made about occupant behavior and thermal comfort [219]. 

Current thermal comfort models used in BPS tools are largely static and do not adequately 

capture dynamic occupant behaviors and preferences [220]. The most widely used thermal 

comfort model, the Predicted Mean Vote (PMV) model developed by Fanger [133], assumes 

steady–state conditions and uniform occupant preferences. However, numerous studies 

have shown that occupant thermal comfort is highly variable and depends on factors such 

as age, gender, culture, and personal control [221], [222], [223], [224]. Ignoring these 

variations can lead to inaccurate predictions of energy use and occupant satisfaction [14]. 
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The limitations of static thermal comfort models become even more pronounced during 

demand response (DR) events, when indoor conditions may vary significantly from typical 

conditions [225]. DR programs aim to reduce peak electricity demand by incentivizing 

buildings to temporarily reduce their energy consumption [226]. These programs are typically 

designed using static assumptions about occupant comfort zones and acceptable 

temperature ranges [227]. However, studies have shown that occupants frequently override 

thermostat setpoints during DR events, reducing the achieved energy savings [228], [229]. 

The development of dynamic thermal comfort models has been limited by the lack of 

granular data on occupant behavior and thermal preferences [230]. Traditional methods of 

collecting thermal comfort data, such as surveys and laboratory studies, are time–

consuming, expensive, and may not capture real–world behavior [231]. In recent years, the 

proliferation of smart thermostats and other Internet of Things (IoT) devices has provided new 

opportunities for collecting high–resolution data on occupant behavior and building 

performance [232], [233], [234]. 

Several studies have used smart thermostat data to develop data–driven thermal comfort 

models. For example, Kim [138] used machine learning techniques to predict individual 

thermal preferences based on occupant heating and cooling behavior. Kim [140] reviewed 

studies where personalized thermal comfort models were developed using data from a 

wearable device and a smart thermostat. However, these studies focused on steady–state 

conditions and did not consider the dynamic behavior of occupants during DR events. 

In this study, we leverage ecobee’s Donate your Dataset (DyD), which contains high–

resolution data on residential thermostat settings and indoor conditions [203], to derive 

occupant–specific parameters for three different theories of thermal comfort during DR 

events: Delayed Response Theory (DRT), Comfort Zone Theory (CZT), and Thermal Frustration 

Theory (TFT). These theories represent different hypotheses about how occupants respond 

to thermal discomfort during DR events. 

DRT assumes that occupants will override the DR setpoint after a certain time delay, 

regardless of the indoor temperature. CZT assumes that occupants have a specific comfort 

zone and will override the setpoint when the temperature exceeds a certain threshold. TFT, 

which we introduce in this study, assumes that occupants accumulate thermal frustration 
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when the temperature is outside their comfort zone and will override the setpoint when their 

frustration exceeds a threshold. 

We use the occupant–specific parameters derived from these theories to train logistic 

regression models to classify thermostat overrides. The results demonstrate the potential for 

dynamic thermal comfort models to improve predictions of occupant overrides and energy 

use, enabling more effective DR program design and control strategies. To the best of our 

knowledge, this is the first study to compare different thermal comfort theories for predicting 

occupant behavior during DR events using real–world smart thermostat data. 

The rest of this paper is organized as follows: Section 2 describes the methodology, including 

the data preprocessing, occupant modeling, and machine learning techniques used. Section 

3 presents the results of the logistic regression models for each thermal comfort theory. 

Section 4 discusses the implications of the results for DR program design and control 

strategies, as well as the limitations of the study and future research directions. Section 5 

concludes the paper.  

3.3 Methodology 

In this study, we propose a data–driven approach to assess three theories of thermal comfort 

– Delayed Response Theory (DRT), Comfort Zone Theory (CZT), and Thermal Frustration 

Theory (TFT) – using time–series thermostat data and machine learning techniques to identify 

key occupant–specific parameters and improve the prediction of manual setpoint changes 

(MSCs) during demand response events. 

3.3.1 The three theories of thermal comfort 

3.3.1.1 Delayed response theory (DRT) 

The Delayed Response Theory (DRT) proposes that an occupant will override the thermostat 

settings after a specific time delay, regardless of the indoor temperature or their personal 

comfort temperature. This theory assumes that the occupant's decision to make a manual 

setpoint change (MSC) is primarily influenced by the elapsed time since the last setpoint 

change, rather than the actual thermal conditions. 

In the DRT model, the occupant's behavior is characterized by a single parameter: the time 

delay (𝜏) measured in minutes. The model predicts that the occupant will make an MSC when 
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the elapsed time since the last setpoint change exceeds this time delay. The occurrence of 

an MSC at a specific time 𝑘 can be determined using the following condition: 

𝑀𝑆𝐶[𝑘] =  1, 𝑖𝑓 (𝑡[𝑘] − 𝑡𝑙𝑎𝑠𝑡𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡𝑐ℎ𝑎𝑛𝑔𝑒
) >  𝜏 

𝑀𝑆𝐶[𝑘] =  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(6) 

Where 𝑀𝑆𝐶[𝑘] is a binary variable indicating whether an MSC occurs at timestep 𝑘, 𝑡[𝑘] is 

the current time, 𝑡𝑙𝑎𝑠𝑡𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡𝑐ℎ𝑎𝑛𝑔𝑒
 is the time of the last setpoint change, and τ is the time 

delay parameter. When the elapsed time since the last setpoint change surpasses the time 

delay 𝜏, the model predicts an MSC occurrence (𝑀𝑆𝐶[𝑘]  =  1). 

The DRT model assumes that the occupant's decision to make an MSC is independent of the 

actual thermal conditions, such as the indoor temperature or their personal comfort 

temperature. This implies that the occupant will override the thermostat settings at regular 

intervals, determined by the time delay parameter, regardless of whether they are 

experiencing thermal discomfort or not. 

One potential explanation for this behavior is that the occupant may have a habitual or 

routine–based approach to thermostat adjustments. For example, they may have a tendency 

to check and adjust the thermostat settings at specific times of the day, irrespective of the 

actual thermal conditions. Alternatively, the occupant may have a limited tolerance for 

prolonged periods without control over their thermal environment, leading to periodic MSCs. 

To determine the optimal time delay parameter (τ) for a given occupant, researchers can 

analyze historical thermostat data and identify the typical time intervals between 

consecutive MSCs. By comparing the predicted MSC occurrences based on the DRT model 

with the actual MSC events, the accuracy of the model can be assessed, and the most 

suitable time delay parameter can be estimated. 

3.3.1.2 Comfort zone theory (CZT) 

The Comfort Zone Theory (CZT) postulates that an occupant has a specific temperature range 

within which they feel comfortable, known as the comfort zone. When the indoor temperature 

deviates from this comfort zone, similar to the adaptive thermal comfort model, the occupant 

is likely to override the thermostat settings to restore their comfort [136]. This theory assumes 
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that the occupant's decision to make a manual setpoint change (MSC) is based on the 

instantaneous temperature relative to their comfort zone boundaries [235]. 

In the CZT model, the occupant's comfort zone is defined by a lower temperature threshold 

(𝑇𝐶𝑙𝑜𝑤
) and an upper–temperature threshold (𝑇𝐶𝑢𝑝

). The occurrence of an MSC at a specific 

time k can be determined using the following conditions: 

𝑀𝑆𝐶[𝑘] =  1, 𝑖𝑓 (𝑇𝑖𝑛[𝑘] <  𝑇𝐶𝑙𝑜𝑤
)𝑜𝑟 (𝑇𝑖𝑛[𝑘] >  𝑇𝐶𝑢𝑝

) 

𝑀𝑆𝐶[𝑘]  =  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(7) 

Where 𝑀𝑆𝐶[𝑘] is a binary variable indicating whether an MSC occurs at the timestep 𝑘, 

𝑇_𝑖𝑛[𝑘] is the indoor temperature at the timestep 𝑘, 𝑇𝐶𝑙𝑜𝑤
 and 𝑇𝐶𝑢𝑝

 are the lower and upper 

comfort temperature thresholds in °F, respectively. When the indoor temperature falls 

outside the occupant's comfort zone, the model predicts an MSC occurrence (𝑀𝑆𝐶[𝑘]  =  1). 

The CZT model assumes that the occupant's decision to make an MSC is based solely on the 

current thermal conditions and does not consider the duration of exposure to discomfort or 

the magnitude of temperature deviation from the comfort zone boundaries [236]. This implies 

that the occupant will immediately override the thermostat settings when the indoor 

temperature crosses either of the comfort thresholds [237]. 

Unlike the Thermal Frustration Theory (TFT), which considers the accumulation of discomfort 

over time, the CZT model focuses on the instantaneous temperature deviations from the 

comfort zone. The occupant's comfort zone parameters (𝑇𝐶𝑙𝑜𝑤
 and 𝑇𝐶𝑢𝑝

) are assumed to be 

static, meaning that the occupant is expected to consistently make MSCs whenever the 

indoor temperature falls outside their comfort zone [238]. 

The CZT model can be used to predict the occurrence of MSCs based on the real–time 

monitoring of indoor temperature and the occupant's predefined comfort zone boundaries. 

By comparing the predicted MSC occurrences with the actual MSC events, the accuracy of 

the model can be assessed, and the most suitable comfort zone parameters can be 

estimated [133]. 

While the CZT model offers a simple and intuitive approach to predicting MSC behavior, it 

may not capture the complexity of occupants' thermal comfort preferences and decision–

making processes. Comparing the performance of the CZT model with other thermal comfort 
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models, such as the Thermal Frustration Theory (TFT) and the Delayed Response Theory 

(DRT), can provide insights into the relative importance of instantaneous temperature 

deviations versus time–based factors in determining occupants' thermostat override 

behavior during demand response events [239, p. 55]. 

3.3.1.3 Thermal frustration theory (TFT) 

The TFT theory hypothesizes that thermal discomfort accumulates over time, prompting the 

user to make an MSC when the discomfort reaches a certain level. This differs from 

conventional approaches like the Adaptive Model, which assumes people are comfortable 

within a specific temperature range based on outdoor conditions. However, in the context of 

Demand Response (DR) programs, which involve changing conditions, occupants may be 

willing to tolerate temporary discomfort even when they are outside the thermal comfort 

zone. Therefore, the discomfort–based model focuses on tracking the buildup of thermal 

discomfort until it hits a set threshold, at which point an MSC is triggered. This novel thermal 

discomfort accumulation model is referred to as the Thermal Frustration Theory (TFT). 

The Thermal Frustration (TF) at a specific time k is calculated as: 

TF[k] = (α × TF[k − 1] + β × (Tin[k] − TC) ) × motion 

𝑀𝑆𝐶[𝑘] = 1, 𝑖𝑓 𝑇𝐹[𝑘] > 𝑇𝐹𝜆 

(8) 

Where, 𝑇𝐹 represents the level of thermal frustration in °Fmins, k is the current timestep, α is 

the coefficient that captures how much of the past thermal discomfort is remembered, β is 

the coefficient that captures how much of the current thermal discomfort is being felt in 

°Fmins, and "motion" is a Boolean variable indicating whether movement has been detected 

leading to 0 thermal frustration when the occupant is not present in the space of motion 

measurement. The current level of discomfort is the difference in the current indoor 

temperature 𝑇𝑖𝑛  and the comfort temperature 𝑇𝐶  in °F. 𝑀𝑆𝐶[𝑘] is a binary variable indicating 

whether an MSC occurs at the timestep 𝑘 if the thermal frustration at k timestep is greater 

than the thermal frustration threshold. 

The TFT model in (8), α serves as a factor that quantifies how much of the previously 

experienced thermal discomfort is retained or 'remembered' over time and hence can be in 

range of 0 and 1. β, on the other hand, gauges the degree of discomfort experienced during a 

given timestep, which could potentially vary based on factors such as metabolic rate or 
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clothing and is also in the range of 0.0 and 1.0 minutes. Moreover, motion here serves as the 

reset condition, forcing the thermal frustration value to zero when the occupant is not within 

the space as for this paper, instances where the occupant is not exposed to external factors 

like outside temperature/humidity or other events is not considered. 

Assuming that an occupant’s α,β and T_C parameters are static in nature, one should expect 

to a thermal frustration due to discomfort based overrides or 𝑀𝑆𝐶𝐷  to be the same for an 

occupant. One can define this consistent thermal frustration at MSC to be a thermal 

frustration threshold or 𝑇𝐹𝜆. 

3.3.2 Discomfort model parameter estimation 

Time–series thermostat data can be leveraged to identify key parameters of the three 

discomfort models discussed in Section 3.1: Thermal Frustration Theory (TFT), Comfort Zone 

Theory (CZT), and Delayed Response Theory (DRT). To estimate the personalized parameters 

for each model, a grid search procedure can be employed in combination with logistic 

regression (LR) models. 

3.3.2.1 Grid search procedure 

The grid search procedure involves iterating over a range of values for the key parameters of 

each discomfort model and evaluating the performance of a logistic regression (LR) model 

trained on the corresponding features using the Matthews correlation coefficient score 

(MCC). The steps of the grid search procedure are as follows: 

1. Thermal Frustration Theory (TFT): 

a. Initialize the parameter of interest:   

i. 𝜶: Represents the weight of historical discomfort. 

ii. 𝜷: Represents the weight of current thermal discomfort. 

iii. 𝑻𝑭𝝀: Represents the threshold at which thermal frustration leads to 

a manual setpoint change (MSC). 

b. Compute thermal frustration values using the current parameter values 

(e.g., calculate cumulative discomfort). 

c. Identify the row indices where the ground truth value for an MSC is `True`. 

d. Train an LR model on both MSC and non–MSC data subsets using the 

calculated features. Apply the model to predict MSC occurrences on a test 
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dataset and compute MCC and accuracy scores. Log the parameter values 

along with the corresponding scores. 

e. Increment the parameter values according to a predefined step size and 

repeat the above steps until the entire parameter range has been explored. 

2. Comfort Zone Theory (CZT) Parameters: 

a. Initialize the parameters of interest: 

i. 𝑻𝑪𝒍𝒐𝒘
: Lower comfort temperature threshold. 

ii. 𝑻𝑪𝒖𝒑
: Upper comfort temperature threshold. 

b. Compute temperature deviations based on the current parameter values 

(e.g., deviations from comfort zone limits). 

c. Identify the row indices where the ground truth value for an MSC is `True`. 

d. Train an LR model on both MSC and non–MSC data subsets using the 

calculated features. Apply the model to predict MSC occurrences on a test 

dataset and compute MCC and accuracy scores. Log the parameter values 

along with the corresponding scores. 

e. Increment the parameter values according to a predefined step size and 

repeat the above steps until the entire parameter range has been explored. 

3. Delayed Response Theory (DRT) Parameters: 

a. Initialize the parameter of interest: 

i. 𝝉: Represents the time delay before the occupant makes an MSC. 

b. Compute the elapsed time since the last setpoint change using the current 

parameter value. 

c. Identify the row indices where the ground truth value for an MSC is `True`. 

d. Train an LR model on both MSC and non–MSC data subsets using the 

calculated features. Apply the model to predict MSC occurrences on a test 

dataset and compute MCC and accuracy scores. Log the parameter values 

along with the corresponding scores. 

e. Increment the parameter value according to a predefined step size and 

repeat the above steps until the entire parameter range has been explored. 

The choice of logistic regression (LR) models for MSC classification is strategic due to several 

reasons. Firstly, LR assumes a linear relationship between the predictor variables (e.g., 
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thermal frustration, temperature deviations, elapsed time) and the log–odds of a discomfort–

based override. Secondly, the probabilistic outputs of LR models can be leveraged to 

compute the likelihood of an MSC, providing a measure of prediction certainty for each 

model. This approach allows for systematic parameter tuning and performance assessment 

across different thermal comfort models. 

3.3.2.2 Logistic regression model 

The logistic function used in LR models can be represented as: 

𝑝(𝑥) =
1

(1 + 𝑒
−(𝑥−𝜇) 

𝑠 )

 
(9) 

Where p(x) is the probability that the dependent event occurs (e.g., MSC=1), x is the 

independent variable (e.g., thermal frustration, temperature deviations, elapsed time), μ is 

the location parameter (p(μ)=1/2, which shifts the function along the x–axis), and s is the 

scale parameter, which determines how "spread out" or "steep" the function is. A small s will 

make the transition from 0 to 1 more abrupt, while a larger s will make the transition 

smoother. 

During the training process, initial guesses for μ and s are made (e.g., μ initialized to the mean 

of x values, s initialized to the standard deviation). The model then aims to maximize the 

likelihood function for a given set of μ and s using optimization algorithms like gradient 

descent. The best–fit values for μ and s are then used as the parameters of the logistic 

function for making future predictions. 

3.3.2.3 Routine model 

Occupants often interact with thermostats based on their daily routines, such as adjusting 

the setpoint when waking up, leaving for work, returning home, or going to bed [240]. These 

routine–based manual setpoint changes (MSCs) are not necessarily driven by thermal 

discomfort but rather by habitual behaviors [241]. To accurately estimate the parameters of 

the discomfort models, it is essential to differentiate between routine and discomfort–driven 

MSCs [242]. 

In this study, we develop a routine model based on the time of day (TOD) to capture the 

probability of an MSC occurring at specific times. The model assumes that routine–based 
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MSCs follow a consistent daily pattern [154]. By analyzing the historical MSC data, we can 

compute the probability mass function (PMF) of TOD for MSCs. 

Let 𝑇 be the random variable representing the time of an MSC. The PMF of T can be estimated 

using the following equation: 

𝑃(𝑇 =  𝑘) =
𝑛𝑘

𝑁
 

(10) 

Where 𝑃(𝑇 =  𝑘) is the probability of an MSC occurring at timestep k, 𝑛𝑘 is the number of 

MSCs observed at timestep 𝑘, and 𝑁 is the total number of timesteps in the dataset. 

Once the PMF is learned, each instance in the dataset can be assigned a probability of being 

a routine based MSC (𝑃𝑀𝑆𝐶𝑅
) based on its timestamp. For example, if an MSC occurs at a 

timestep 𝑘 with a high 𝑃(𝑇 =  𝑘), it is more likely to be a routine–based MSC [243]. 

The routine model serves as a complement to the discomfort models (TFT, CZT, and DRT) by 

helping to identify instances where the probability of a routine–based MSC is higher than the 

probability of a discomfort–driven MSC. These instances can then be excluded from the 

training and testing datasets used for estimating the parameters of the discomfort models, 

potentially improving their accuracy [244]. 

3.3.2.4 Improving discomfort model parameter estimation 

To improve the accuracy of the discomfort model parameter estimation, a two–step training 

process can be employed (Figure 3). The goal is to reduce the noise caused by routine–based 

MSCs by removing instances that have a high likelihood of being routine–driven. 

The first step involves training a suboptimal routine model based on the time of day (TOD) to 

compute the probability mass function (PMF) of TOD for MSCs. Each instance is then 

assigned a probability of being a routine based MSC (𝑃𝑀𝑆𝐶𝑅
) based on the learned PMF. 

The second step focuses on the identification of the discomfort model. Initially, a grid search 

is performed to find the optimal parameter value(s) for the given discomfort model, as 

described earlier. However, the training and testing data at this stage may include routine, 

discomfort, and other reason based MSCs, leading to suboptimal results. 

To improve the discomfort model identification accuracy, the probabilities of routine (𝑃𝑀𝑆𝐶𝑅
) 

and discomfort (𝑃𝑀𝑆𝐶𝐷
) overrides are compared for each instance. The LR–based discomfort 
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classifier is then retrained on the data where 𝑃(𝑀𝑆𝐶𝐷)  >  𝑃(𝑀𝑆𝐶𝑅). By focusing on 

instances with a higher likelihood of being discomfort–driven, the optimal parameter value(s) 

and the corresponding MCC score are expected to improve. 

This two–step training process can be applied to all three discomfort models (TFT, CZT, and 

DRT) to refine the parameter estimations by separating routine and discomfort based MSCs. 

By leveraging these methodologies, we aim to identify the key parameters that best describe 

occupants' discomfort–driven behavior and enhance the accuracy of predicting manual 

setpoint changes during demand response events. The grid search was parallelized using the 

multiprocessing library in Python to utilize all available CPU cores and speed up the 

computation. The results for each home were stored in a DataFrame and saved to a file for 

further analysis. 

3.4 Results 

Logistic regression models were fit for each thermal comfort theory, with and without 

accounting for routine setpoint changes. The results of this study are presented in two parts: 

the comparison of model performance with and without routine overrides, and a detailed 

assessment of the Area Under the Curve (AUC) differences between pairs of models. 

3.4.1 Distribution of theory parameters 

These figures depict the distribution of key parameters for each thermal comfort theory—

Delayed Response Theory (DRT), Comfort Zone Theory (CZT), and Thermal Frustration Theory 

(TFT)—and reveal critical insights into the dynamic interplay between occupant comfort and 

thermostat overrides. Figure 17 shows the distribution of the estimated "time to override" 

parameter for DRT across multiple homes. The variability in this parameter highlights the 

distinct differences in occupants' tolerance levels to thermal discomfort during DR events. 

Figure 18 shows the distribution of estimated comfort temperature parameters for the CZT 

model, which defines individual comfort zones using upper and lower temperature bounds.  

Figure 19 presents the estimated alpha parameter for the TFT model, which represents the 

"memory" of past thermal discomfort.  
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Figure 17: Distribution of estimated time to override parameter of the DRT theory  

(highest MCC scores for each home). 
 

 

 
Figure 18: Distribution of estimated comfort temperature parameter of the CZT theory  

(highest MCC scores for each home). 
 

 

 
Figure 19: Distribution of estimated alpha parameter of the TFT theory  

(highest MCC scores for each home). 
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3.4.2 Performance with and without routine overrides 

The distribution of MCC scores for the three models—Thermal Frustration Theory (TFT), 

Comfort Zone Theory (CZT), and Delayed Response Theory (DRT)—is shown in histograms in 

Figure 20 and Figure 21. The first histogram represents scores with routine overrides 

included, while the second histogram shows scores without routine overrides. 

With routine overrides: 

1. TFT achieved MCC scores mostly between 0.1 and 0.3, with some homes reaching 

higher scores. 

2. CZT had a broader spread, with scores ranging from 0.0 to 0.5, peaking around 0.1. 

3. DRT had a significant distribution, but with many homes scoring between 0.0 and 

0.2. 

Without routine overrides: 

1. TFT maintained its scores, with a slightly increased spread, and a peak at 0.1. 

2. CZT's distribution shifted towards higher scores, peaking around 0.1–0.2. 

3. DRT's scores improved, showing a stronger presence around 0.1–0.3. 

 
Figure 20: Distribution of MCC scores when including routine overrides 

 

 
Figure 21: Distribution of MCC scores when excluding routine overrides. 
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Universal MCC score per theory (universal meaning false negatives, false positives, true 

negatives, and true positives of each home was summed to compute MCC score on 

aggregate level instead of computing MCC score individually and then averaging it out):  

Table 3: MCC and AUC score comparison 
 With Routine Without Routine % change 

Theory MCC 

Score 

AUC MCC 

Score 

AUC MCC Score AUC 

DRT 0.077 47.25 0.098 38.95 27.69 12.41 

CZT 0.090 44.35 0.11 47.09 23.90 6.20 

TFT 0.064 45.85 0.096 49.40 51.12 7.75 

 

With routine overrides, TFT and CZT show an AUC difference of 0.259, while TFT and DRT 

exhibit a difference of 0.552. These relatively small differences indicate that all three models 

perform comparably when routines are included, with TFT slightly outperforming both CZT 

and DRT. Additionally, CZT and DRT have an AUC difference of 0.293, reinforcing their similar 

capabilities in predicting manual setpoint changes (MSCs). 

Without routine overrides, the differences between models become more pronounced. The 

AUC difference between TFT and CZT increases to 0.517, suggesting that TFT more accurately 

captures discomfort–driven behaviors when routines are excluded. The gap between TFT and 

DRT widens substantially to 1.966, highlighting TFT's significantly better performance in 

predicting discomfort–driven MSCs. The difference between CZT and DRT also increases to 

1.448, indicating that DRT's performance is particularly impacted by the exclusion of routine 

overrides. 

3.5 Discussion 

The results demonstrate that accounting for occupant–specific thermal comfort parameters 

and dynamic behavior significantly improves predictions of overrides during DR events. The 

Thermal Frustration Theory (TFT) outperformed the other models, likely because it captures 

the time–integral effect of discomfort, rather than just instantaneous temperature deviations.  

Figure 18 shows that the broad range observed in comfort thresholds across different 

households signifies the inadequacy of static, population–based thermal comfort models. 
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The variability indicates that static DR setpoints might lead to frequent occupant 

dissatisfaction and thermostat overrides, thereby undermining DR program objectives. CZT's 

focus on instantaneous temperature deviations provides a straightforward approach to 

override prediction, but the results here clearly argue for a more nuanced, personalized 

approach to understanding comfort. Figure 19 shows that the results indicate substantial 

individual differences in the accumulation of thermal frustration, reflecting the prolonged 

impact of discomfort on occupants’ decisions. TFT incorporates the cumulative effect of 

discomfort over time, making it well–suited to predict overrides during extended periods of 

suboptimal conditions, such as those seen in DR events. The higher performance of TFT in 

capturing override behavior, as depicted in these distributions, suggests that understanding 

occupants’ historical discomfort—rather than solely focusing on instantaneous deviations—

can significantly improve predictive accuracy. 

Figure 20, Figure 21, and Table 3 together show TFT’s ability in capturing dynamic thermal 

discomfort. It is worth discussing that AUC is a more suitable metric than MCC for evaluating 

thermostat override predictions in the context of demand response (DR) because it better 

captures the importance of accurately classifying overrides, which directly impact energy–

saving outcomes. Unlike MCC, which penalizes all types of errors equally—including 

misclassified non–overrides that are less critical in this setting—AUC focuses on the model’s 

ability to distinguish between overrides and non–overrides, regardless of class imbalance. 

This distinction is crucial for DR programs, where minimizing discomfort–driven overrides is 

key to maintaining energy efficiency. The higher AUC for the Thermal Frustration Theory (TFT) 

compared to the Comfort Zone Theory (CZT), particularly after excluding routine behaviors, 

highlights TFT’s strength in capturing cumulative discomfort, leading to more accurate 

override predictions and ultimately better DR program performance.  

The comparison between TFT and CZT reveals the complexity of modeling thermal comfort 

behavior. While TFT achieves marginally higher AUC (49.40 vs 47.09), both theories contain 

parameters that could be further optimized. TFT's assumption of β=1 and CZT's use of fixed 

comfort temperatures represent simplifications that, if refined, could improve both models' 

performance. The key distinction between TFT and CZT lies in their treatment of time. While 

CZT treats discomfort as an instantaneous state based on temperature thresholds, TFT 

models it as a cumulative process. This temporal integration becomes particularly relevant 
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for demand response events, where the duration of exposure to sub–optimal conditions 

matter as much as the magnitude of temperature deviation. TFT's ability to track this 

accumulation of discomfort over time provides a theoretical framework more aligned with 

the extended nature of demand response events. However, this research cannot definitively 

establish TFT's superiority over CZT based on current results. Future work must investigate 

whether the temporal integration justifies the additional computational complexity TFT 

introduces. The similar performance metrics between the two approaches suggest that the 

choice between them may ultimately depend on specific application requirements and 

computational constraints. 

The implications of these findings are substantial for the design and optimization of DR 

programs. TFT, in particular, demonstrated a consistently higher predictive capability 

compared to DRT and CZT, likely due to its incorporation of a temporal element that captures 

discomfort accumulation. This underscores the potential of using discomfort–memory–

based models to enhance the precision of occupant behavior predictions during DR events. 

The results also emphasize the need to integrate personalized thermal comfort models, such 

as TFT, to optimize control strategies that minimize overrides and maximize energy savings 

without compromising occupant comfort. Prior studies have found significant inter–personal 

variations in thermal comfort preferences [140]. Our results show that dynamic thermal 

comfort models like TFT can account for such variations. Population–based assumptions are 

likely inadequate. The TFT framework derived here could be used to develop predictive 

control algorithms that optimize DR dispatch schedules and setpoint trajectories to minimize 

occupant overrides. However, scaling this to large building populations requires learning or 

approximating model parameters for each building. Transfer learning techniques could 

potentially address this [143].  

The comparative analysis of the three models, with and without accounting for routine 

overrides, further reveals that excluding routine–driven thermostat changes can lead to more 

accurate assessments of discomfort–driven behavior. TFT, especially, benefits from this 

distinction, as its performance gap widens significantly when routine behaviors are excluded, 

indicating a robust capability to model genuine discomfort responses. 

In summary, the results suggest that personalized, data–driven thermal comfort models, 

particularly those incorporating cumulative discomfort metrics, are essential for the 
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successful deployment of DR programs that aim to balance energy savings with occupant 

satisfaction. The adoption of these advanced occupant–centric models could fundamentally 

reshape building energy management systems by aligning thermal control strategies more 

closely with individual comfort dynamics, thereby achieving the dual goals of energy 

efficiency and human well–being. Key challenges include improving the occupancy model, 

validating the assumptions about frustration accumulation and dissipation rates, and testing 

via implementation in real building control systems. Building connectivity and data 

sufficiency present additional barriers. 

3.6 Conclusion 

This study investigated three theories of thermal comfort – Delayed Response Theory (DRT), 

Comfort Zone Theory (CZT), and Thermal Frustration Theory (TFT) – to improve the prediction 

of manual setpoint changes (MSCs) during demand response (DR) events. By leveraging 

high–resolution smart thermostat data and employing machine learning techniques, we 

derived occupant–specific parameters for each theory and evaluated their performance in 

classifying thermostat overrides. 

Our results demonstrate that accounting for occupant–specific thermal comfort parameters 

and dynamic behavior significantly improves predictions of overrides during DR events. The 

Thermal Frustration Theory (TFT) consistently outperformed the other models, likely due to 

its ability to capture the time–integral effect of discomfort rather than just instantaneous 

temperature deviations. This finding underscores the importance of considering the 

cumulative nature of thermal discomfort in predicting occupant behavior. 

The study also highlights the significance of distinguishing between routine–based and 

discomfort–driven MSCs. By developing a routine model based on the time of day and 

incorporating it into our analysis, we were able to refine the parameter estimations for each 

thermal comfort theory. This approach led to improved model performance, particularly for 

TFT and CZT. 

The methodology developed in this study has important implications for the design and 

implementation of DR programs. By more accurately predicting occupant behavior and 

potential overrides, utilities and energy companies can develop more effective control 
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strategies to achieve committed energy savings during DR events while maintaining 

occupant comfort. 

However, several challenges remain in scaling this approach to large building populations. 

These include improving occupancy modeling, validating assumptions about frustration 

accumulation and dissipation rates, and testing the models through implementation in real 

building control systems. Future research should focus on addressing these challenges and 

exploring transfer learning techniques to efficiently apply the models to diverse building 

types and occupant populations. The model validation approach used 5-minute fixed 

intervals for override predictions, which introduced methodological limitations. Each 5-

minute period was treated as an independent event, with predictions classified as true 

positives, false positives, true negatives, or false negatives based on whether an override 

occurred within that specific interval. While this approach provided a standardized 

framework for comparing models, it created artificial boundaries that may not reflect the 

continuous nature of occupant comfort perception. Future work should explore sliding 

window approaches that evaluate predictions across overlapping time periods, potentially 

better capturing the temporal progression of thermal frustration. This could be particularly 

valuable for demand response applications, where predicting not just if but when an override 

will occur significantly impacts grid operations. Additionally, investigating the relationship 

between override magnitudes and prediction accuracy could reveal whether occupants 

making larger setpoint adjustments exhibit more predictable behavior patterns. The relatively 

similar AUC scores between TFT (49.40) and CZT (47.09) may partially reflect these 

methodological constraints rather than fundamental limitations in the theories themselves. 

In conclusion, this study demonstrates the potential of data–driven, occupant–centric 

thermal comfort models to enhance our understanding of human–building interactions and 

improve the effectiveness of demand response programs. By continuing to refine these 

models and integrate them into building control systems, we can move closer to achieving 

the dual goals of energy efficiency and occupant comfort in the built environment. 
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Chapter 4:  

Integrated dynamic occupant–building modeling 

4.1 Abstract 

This paper introduces a novel approach in modeling dynamic thermal comfort simulations, 

focusing on the various behaviors of building occupants. Traditional thermal comfort models, 

primarily static, fall short in accurately forecasting transient conditions and estimating 

energy savings during demand response (DR) events. To bridge this gap, we developed a data–

driven model that dynamically models thermal discomfort behaviors of occupants, 

integrating agent–based modeling with the ecobee Donate Your Dataset (DyD), the alfalfa co–

simulation framework, and a green–built home environment. The introduction of the Thermal 

Frustration Theory (TFT), which models the delay and magnitude of discomfort experienced 

by occupants before adjusting thermostat settings, challenges traditional models by 

acknowledging that occupants accumulate thermal discomfort over time, leading to a 

threshold–based response rather than immediate adjustments. By simulating occupants' 

thermal comfort over a year and employing the resulting data to train machine learning 

models, we identify critical occupant–specific parameters that enhance the accuracy of 

manual setpoint change (MSC) classifications. Our methodology demonstrated marked 

improvements in MCC scores when training was personalized for each home, as opposed to 

using a singular model on aggregated data. This approach can aid in the design of more 

sophisticated controllers for utilities or Community Service Providers (CSPs), to minimize 

overrides and fulfil predicted energy savings. Specifically, our findings highlight that 

personalized model, tailored to individual thermal histories and behavior patterns, 

significantly elevate model performance, with Matthews Correlation Coefficient (MCC) 

scores increasing from a mere 0.002 in a generalized model to 49.40 in personalized models, 

post exclusion of routine overrides. This research highlights the necessity and efficacy of 

personalized thermal comfort models in enhancing building energy management systems, 

offering a robust tool for accurately predicting and managing energy consumption in 

response to dynamic occupant behaviors. 



 72 

4.2 Acronyms and variables 

𝛼  Thermal recollection coefficient 

𝛽  Thermal absorption coefficient 

𝑀𝑆𝐶  Manual setpoint change 

𝑀𝑆𝐶𝐷  Discomfort based manual setpoint change 

𝑀𝑆𝐶𝑅  Routine based manual setpoint change 

𝑇𝐹𝑇 Thermal Frustration theory 

𝑇𝐹 Thermal Frustration 

𝑇𝐹𝜆 Thermal Frustration threshold 

DyD  Donate Your Dataset 

OTT Occupant Thermostat Interaction 

BPS Building Performance Simulation 

4.3 Introduction 

The progression in Building Performance Simulation (BPS) and Grid–Interactive Efficient 

Buildings (GEB) has influenced energy management strategies in buildings [127]. However, a 

gap remains in accurately modeling occupant–thermostat interactions in dynamic thermal 

comfort scenarios [245]. As the national energy structure transforms, the traditional energy 

network's resource allocation capacity becomes inadequate for future energy systems' 

needs, necessitating the need for load flexibility and effective Demand Response (DR) 

strategies to effectively coordinate supply and demand in the evolving Energy Internet [246]. 

Occupant behavior, particularly in thermostat interactions, plays a crucial role in energy 

consumption patterns within buildings [247], [248], [249]. Current state–of–the–art thermal 

comfort models are predominantly static [17], [250]. They fail to adapt to the transient 

conditions experienced in real–world scenarios and hence struggle to capture to varying 

environmental conditions and occupant behavior, leading to discrepancies in energy usage 

predictions and actual consumption, and underscoring the need for more dynamic and 

responsive systems [136], [240]. 

While some studies have developed personal thermal comfort models such as improving the 

prediction of individual thermal preferences by integrating spatial–temporal data from BIM 

models and field–based studies [251], [252], [253], [254]. However, these personal thermal 
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comfort models do not capture the dynamic thermal comfort behavior i.e. delay and 

magnitude of thermostat adjustment due to discomfort and routine behavior.  

Recognizing the limitations of existing models, our research proposes an integrated 

framework that captures the dynamic nature of occupant–thermostat interactions. We focus 

on the development of models of thermal comfort based on individual routine and 

discomfort occupant behavior. This paper introduces an approach of combining agent–

based modeling, real–world dataset integration (ecobee DyD), and a simulation environment 

(alfalfa co–simulation framework) within a green–built home. 

The core of our model lies in understanding and simulating occupant occupant activity using 

a 1st order Markov chain model, routine thermostat interactions using a probabilistic model 

trained on real–world thermostat interactions (DyD dataset), and, most critically, discomfort–

based thermostat interactions model tested on real–world thermostat interactions (DyD 

dataset). The complexity of human interactions with thermostats is often emphasized in 

studies, highlighting the need for more personalized models [240]. Building upon this, we 

introduce the concept of Thermal Frustration Theory (TFT), a framework that models the 

delay and magnitude of discomfort experienced by occupants.  

Furthermore, this paper outlines the methodological advancements in learning and applying 

the parameters of our integrated model from field–collected data. We demonstrate the 

potential of this approach to the way building energy management systems understand and 

respond to occupant behaviors, particularly in the context of thermal comfort. The 

implications of our work extend to various stakeholders, including building designers, energy 

managers, and utility companies, offering them a more reliable tool for predicting and 

managing energy consumption in response to occupant behaviors by not only addressing the 

limitations of existing static models but by also leveraging the agent based modeling for a 

more accurate and responsive building performance simulation. 

4.4 Methods 

The methodology of development and implementation of an integrated occupant model 

designed to enhance the accuracy of building performance simulations (BPS). This section 

details the model's components, including occupant activity modeling using a first–order 

Markov chain, routine manual setpoint change (MSC) modeling, and discomfort–driven 
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thermostat interactions based on the novel Thermal Frustration Theory (TFT). The 

methodology integrates these models with BPS to simulate dynamic occupant behaviors and 

their impact on thermal comfort and energy usage, addressing limitations in existing static 

models. 

4.4.1 Proposed integrated model 

The proposed integrated model aims to address a missing part in the current state of the art 

of building performance simulation i.e., dynamic occupant thermal comfort, more 

importantly occupant interactions with a thermostat factoring in the delay in assessing 

discomfort and the magnitude of discomfort. Traditionally, static or deterministic occupant 

models have been implemented which are unrealistic and cause the output of Building 

Performance Simulation (BPS) to disagree with real world observations [250]. Studies that 

model occupant activity stochastically show improvement in error when comparing BPS 

output vs real life observations [255]. 

Therefore, to improve predictions of the BPS we propose an integrated occupant model 

incorporating the dynamics of thermal comfort. The proposed integrated model shows the 

framework of integrating two important aspects of BPS i.e., building and occupant where the 

occupant model is a data–driven stochastic model composed of 3 components that capture 

an occupant’s dynamic thermal comfort behavior. The 3 components of the occupant are: 

occupant activity model, Routine based thermostat interaction model, and most importantly 

the discomfort–based thermostat interaction model. This approach is different from the 

current industry standard of the ASHRAE’s adaptive comfort model [136] for two key reasons. 

First reason being the delay of discomfort, previous models do not consider time as a 

parameter involved in modeling discomfort, it is assumed that an occupant acts as a switch 

and an occupant thermostat interaction occurs as soon as the current indoor temperature 

goes outside the comfortable temperature zone which is established by the adaptive model 

but this may not be the case as occupants can withstand discomfort for a certain time 

depending on the magnitude of discomfort [256]. Second reason being consideration of other 

behavior models that might influence discomfort, for example an occupant can only feel 

thermal discomfort if they are within a space, to model/forecast discomfort, an occupant’s 

presence also needs to be modeled, similarly, an occupant might have routines established 

to set lower setpoints at night if they like to sleep in a cooler environment, therefore, this 
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routine based habitual model would also need to be developed. Most of the comfort models, 

including adaptive comfort model, aim to model comfort only and ignore other behavior 

elements that are equally critical in an occupant’s decision to override controls.  

As a result, the three models i.e. occupant activity model, Routine model, and discomfort–

based thermostat interaction model of an occupant work together to represent an occupant. 

While sociological, financial, environmental, or other aspects can also influence an 

occupant–thermostat interaction [240] but due to the lack of availability of data, only the 

three models discussed above will be used for this study. 

4.4.1.1 Occupant activity Model 

4.4.1.1.1 Background 

Occupant activity, where an occupant is in the space and performing an activity such as 

sitting, standing, cooking, etc… except sleeping, has a tremendous impact on energy 

consumption and is a critical part of building simulation using tools like EnergyPlus [257]. To 

model dynamic occupant thermostat interaction, an occupant's occupant activity in a home 

must be modeled reliably. Due to limitations in the availability of data on occupants' 

exposure to outdoor environments, this study will center on modeling behavior within indoor 

settings. 

Various techniques exist for modeling occupant activity, such as the Monte Carlo method 

[65], non–homogeneous Poisson process model [258], inhomogeneous two–state Markov 

chain [179], agent–based model of occupant activity dynamics [259], but among these 

techniques, the first–order Markov chain stands out due to its ability to capture temporal 

characteristics where the state transition probabilities can be used to predict the state at the 

next timestep based on the current state, with no need for complex model parameters 

estimations, easy to learn and implement, especially for computation–intensive applications 

such as the ABM based dynamic occupant behavior modeling framework proposed in this 

paper [260] [261] [262].  

4.4.1.1.2 Model details 

Assuming that the likelihood of an occupant's occupant activity at a given time step is solely 

influenced by their status during the previous time step and the time of the day, the occupant 

activity model using a first–order Markov chain [260]. 
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At midnight, a schedule of the occupant’s occupant activity schedule is created by realizing 

the occupant activity state from probabilities retrieved from the trained state transition matrix 

(training discussed in section 4.4.2.1) and comparing the probabilities with a random number 

generated from a uniform distribution. As a result, an occupant’s occupant activity data is 

generated (Figure 22).  

4.4.1.2 Routine MSC model 

4.4.1.2.1 Background 

The task of modeling routine behaviors discussed across disciplines and has diverse 

applications, making it a focus area in various fields of study.  

1. Healthcare: In healthcare, behavioral models help in predicting patient compliance 

with medication routines, thereby aiding in the tailoring of more effective treatment 

plans. Models can predict, for example, the likelihood of a diabetic patient sticking 

to an insulin regimen or a cardiac patient adhering to medication schedules. These 

insights are invaluable for healthcare providers aiming to offer personalized 

treatments [263] 

2. Transportation: In transportation planning, understanding routine commuting 

patterns is vital for optimizing public transport services. Sophisticated models 

analyze large data sets to predict the flow of commuters during peak and off–peak 

hours, facilitating more efficient transport scheduling and even influencing urban 

planning [264] 

 

Figure 22: Occupant activity probabilities for a simulated occupant 
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3. Retail and Marketing: In the commercial sector, companies often model customer 

buying behaviors. Understanding routine purchase patterns can inform stock 

decisions, optimize marketing strategies, and even personalize online shopping 

experiences [265] 

4. Finance: In finance, models may predict routine behaviors in trading to capture 

trends and even irregularities like market manipulations. Machine learning 

algorithms are often used to predict buying and selling patterns based on historical 

data [266] 

The ubiquity of routine behavior modeling across these domains highlights its significance 

and the need for robust and flexible models is to adapt to different types of data and capture 

various influencing factors [267]. These studies show that humans develop routines for their 

schedules irrespective of the domain. The key distinction between routine behavior modeling 

across domains like healthcare, transportation, retail, and finance versus building energy 

management lies in the complexity and predictability of influencing factors. In healthcare, 

transportation, retail, and finance, behaviors often exhibit stationary and repetitive patterns, 

making them amenable to simpler statistical models that capture regularities using 

autoregressive techniques or time–series analysis. In contrast, building energy management 

is far more dynamic due to the interplay of unpredictable factors such as weather variations, 

occupant activities, and individual comfort needs, requiring adaptive and non–linear 

modeling approaches. These models must account for non–stationarity and dynamically 

adjust to changing environmental conditions, highlighting the need for more sophisticated 

adaptive methods to effectively capture discomfort–driven behaviors that are less critical in 

other domains. 

4.4.1.2.2 Model details 

Routine manual setpoint change behavior can vary across seasons and types of day. 

Therefore, for each two seasons i.e. heating and cooling and two types of days i.e. weekdays 

and weekends, four sets are created where in each set contains subsets of routine MSC 

behavior pertaining to number of MSCs in day (an occupant can routinely implement MSCs), 

time of day of MSCs (Occupants implement MSC before going to work or coming back from 

work), type of MSCs (Occupant change only heating setpoint in the morning), and degree of 

MSCs (Occupants increase or decrease heating setpoint in the morning). To realize the 
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probabilities of the subsets of routine MSC behavior, a routine schedule is generated where 

for each time step of the day probabilities are realized in a way where the subset’s values are 

conditionally dependent on each other. The selected features, such as the number of MSCs 

per day and the time of day, were chosen to capture routine occupant behavior. For instance, 

some occupants set a conservative temperature in the morning to save energy while away 

and adjust it to a comfortable setting upon return. The time–based nature of routine 

behaviors, tied to daily activities like waking up or going to work, allows the model to predict 

and optimize thermostat use effectively. 

4.4.1.3 Discomfort MSC model 

4.4.1.3.1 Background 

Discomfort–driven models aim to capture the human interaction with thermostats due to 

thermal discomfort [268]. Various theories have been proposed to model this behavior, and 

these theories often find applications beyond just thermal comfort, extending to fields like 

ergonomics, psychology, and human–machine interaction [269] [270] [154] . The major 

frameworks in this domain include Delayed Response Theory [240], Adaptive comfort model 

[135], and the proposed novel Thermal Frustration Theory, each of which offers a different 

perspective on how and when people adjust thermostats based on their comfort needs. 

1. Delayed Response Theory (DRT): This theory assumes that people act like timers, 

experiencing discomfort only after a fixed delay following exposure to 

uncomfortable thermal conditions [240]. 

2. Comfort Zone Theory (CZT): This theory suggests that people have a defined range of 

temperatures within which they feel comfortable. Any deviation outside this zone 

triggers discomfort and subsequently an adjustment of the thermostat settings 

[135]. 

3. Thermal Frustration Theory (TFT): This novel theory hypothesizes that individuals 

accumulate thermal frustration over time when exposed to uncomfortable 

temperatures. Once this accumulated frustration crosses a certain threshold, it 

prompts the individual to interact with the thermostat. Each occupant can have a 

different frustration threshold that nudges them to interact with the thermostat. 
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Each of these theories offers unique concepts that drive MSC behavior. But developing only 

comfort models is not enough as they aim to quantify only the physical and psychological 

responses of occupants to their environment, determining when they perceive discomfort 

(mostly temperature and humidity) and how they respond to it. In contrast, behavior models 

focus on capturing the patterns and triggers of occupants' actions, such as when and why 

they adjust the thermostat, often driven by routine or external factors. Integrating these two 

approaches allows for a more comprehensive understanding of how occupants interact with 

their environment, balancing routine behaviors with their comfort needs. It is assumed that 

the novel thermal frustration theory can serve as a better model as occupants do not 

instantly interact with their thermostat when experiencing discomfort, instead a delay is 

observed in exposure to thermally uncomfortable conditions and thermostat interactions 

[256]. For this reason, only the TFT model will be used to model occupant discomfort 

behavior and in future the authors plan to compare the three theories mentioned above. 

4.4.1.3.2 Model details 

The discomfort–based model based on the TFT theory hypothesizes that thermal discomfort 

accumulates over time, prompting the user to make a MSC when the discomfort reaches a 

certain level. This differs from conventional approaches like the Adaptive Model, which 

assumes people are comfortable within a specific temperature range based on outdoor 

conditions. However, in the context of Demand Response (DR) programs, which involve 

changing conditions, occupants may be willing to tolerate temporary discomfort even when 

they are outside the thermal comfort zone. Therefore, the discomfort–based model focuses 

on tracking the buildup of thermal discomfort until it hits a set threshold, at which point a 

MSC is triggered. This novel thermal discomfort accumulation model is referred to as the 

Thermal Frustration Theory (TFT). 

The Thermal Frustration (𝑇𝐹) at a specific time 𝑘 is calculated as: 

𝑇𝐹[𝑘] = (𝛼 × 𝑇𝐹[𝑘 − 1] + 𝛽 × (𝑇𝑖𝑛[𝑘] − 𝑇𝐶) ) × 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦  (11) 

Where, 𝑇𝐹 represents the level of thermal frustration in °𝐹𝑚𝑖𝑛𝑠, 𝑘 is the current timestep, 𝛼 

is the coefficient that captures how much of the past thermal discomfort is remembered, 𝛽 

is the coefficient that captures how much of the current thermal discomfort is being felt in 

°𝐹𝑚𝑖𝑛𝑠, and "occupant activity" is a Boolean variable indicating whether movement has been 

detected leading to 0 thermal frustration when the occupant is not present in the space of 
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occupant activity measurement. The current level of discomfort is the difference in the 

current indoor temperature 𝑇𝑖𝑛  and the comfort temperature 𝑇𝐶  in °𝐹. 

The discomfort model in (11), 𝛼 serves as a factor that quantifies how much of the previously 

experienced thermal discomfort is retained or 'remembered' over time and hence can be in 

range of 0 and 1. 𝛽, on the other hand, gauges the degree of discomfort experienced during a 

given timestep, which could potentially vary based on factors such as metabolic rate or 

clothing and is also in the range of 0.0 and 1.0 minutes. Moreover, occupant activity here 

serves as the reset condition, forcing the thermal frustration value to zero when the occupant 

is not within the space as for this paper, instances where the occupant is not exposed to 

external factors like outside temperature/humidity or other events is not considered. 

One can define this consistent thermal frustration at 𝑀𝑆𝐶  to be a thermal frustration 

threshold or 𝑇𝐹𝜆 where 𝑇𝐹𝜆 =  𝑀𝑜𝑑𝑒(𝑇𝐹⃗⃗⃗⃗  ⃗
𝑀𝑆𝐶𝐷

) and 𝑇𝐹⃗⃗⃗⃗  ⃗
𝑀𝑆𝐶𝐷

 is vector containing the thermal 

frustration values at various discomfort based MSCs. 

4.4.1.4 Integration into BPS 

4.4.1.4.1 Background 

In this study, Alfalfa serves as the central computational framework, facilitating seamless 

interaction between the occupant and building models [271]. Alfalfa is an open–source web 

application ingeniously engineered to bridge Building Energy Modeling (BEM), Building 

Controls, and Software Engineering. Its unique feature set, including real–time interactions 

with BEMs through industry–standard control interfaces, allows for versatile co–simulations. 

Specifically, Alfalfa supports popular modeling engines such as EnergyPlus, enabling large–

scale parallel building simulations. Its RESTful interface streamlines the process of 

uploading, initiating, and terminating simulations, thereby simplifying complex simulation 

logistics [272]. 

Python was the primary programming language employed to orchestrate the co–simulation 

framework. For the development of the occupant model, an agent–based modeling approach 

was utilized. The Mesa library provided an initial framework that was subsequently 

customized to meet the specific requirements of the occupant behavior model [273]. 

To further enhance the efficiency and scalability of our simulations, Kubernetes for deployed 

for containerization[274]. Before the implementation of Kubernetes, a single 1–year 
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simulation for one home required approximately 50 hours to complete. With Kubernetes, this 

performance bottleneck was significantly alleviated. Parallel simulations were run for 10 

homes over a span of one year, reducing the computational time to just 19 hours. 

A smart thermostat offers the capability of setting schedules that can be based on time of 

day and geolocation. As a result, python based a thermostat model object can be developed. 

4.4.1.4.2 Model details 

Now with the models discussed above, one final need was to integrate the models such that 

for a given set of input parameters, the occupant can be simulated in a home for their thermal 

comfort behavior (Figure 23). 

First, the alfalfa framework is initialized with the appropriate building data i.e., “idf” files and 

weather i.e., “epw” files. The energy plus part of the co–simulation framework requires the 

input of setpoint temperature and simulates the indoor temperature based on building 

thermal dynamics, outside temperature, and HVAC equipment [271]. The output of alfalfa 

framework required is the indoor temperature and the energy usage. 

 
Figure 23: A feedback loop of occupant behavior and building components;  

Green boxes represent data being modeled using DyD or ATUS dataset.;  
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Second, the occupant and thermostat models are initialized. The thermostat model 

requires the input of time of day and setpoint temperature (in case MSC or DR event) and 

outputs the setpoint temperature (cooling and heating). The occupant model requires the 

input of current indoor temperature, humidity, time of the day, and outputs setpoint 

temperature which is mostly 0 except when the discomfort or routine models trigger a MSC. 

4.4.2 Learning of integrated model from smart home data 

The proposed integrated model discussed in section 4.4.1 can be trained to used parameters 

from the smart home data and simulate the indoor thermal environment to mimic an 

occupant’s experience with their indoor surroundings. 

4.4.2.1 Occupant activity model 

The occupant activity of occupants within a space directly impacts how they interact with 

systems like the thermostat. While the  PIR sensor data can observe occupant activity in a 

space during various timesteps of the day but due to the occupant behavior of sleeping, 

sitting, or the sensor itself being shaded by an object can compromise the data and in turn 

yield a high rate of False Negatives which in turn will affect the occupant activity forecasting 

accuracy [256].  

To overcome this issue, a study that utilized Time–Use Survey (TUS) data to develop a first–

order Markov chain model for simulating occupant activity was used [260]. The TUS data are 

self–reported by individuals, enhancing the reliability of the collected information and 

alleviating the concerns related to fault measurements. Conducted in the UK in 2000, this 

survey provides granular insights into daily activities recorded in ten–minute intervals. A first–

order Markov Chain technique discussed in section 4.4.1.1.2 was used to generate synthetic 

occupant activity data, ensuring that the synthetic data retains the same overall statistical 

attributes as the original survey data. The "states" represent occupant activity levels at ten–

minute daily intervals and the transition probabilities between these states are calculated 

based on matrices developed from the original TUS data.  

The transition probability matrix can be learned using the timeseries data of an occupant’s 

occupant activity data.  
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4.4.2.2 Routine MSC model 

Occupants have many reasons to override that may not be driven by comfort and can follow 

various time of day of MSCs. Routine events in the occupants’ lives may drive them to 

manually change the thermostat setpoint: e.g, awakening, leaving, or returning from work, or 

prior to sleep. The stochastic model below aims to (a) model how many times MSCs will 

occur in a given day, (b) when those MSCs will occur, and (c) the direction and magnitude of 

the MSC.  

1. Number of MSCs per day: Using the probabilities of each number of MSC per day as 

discussed in section 4.4.1.2, the number of routine MSC(s) to be implemented is 

realized by comparing probabilities with a random number generated from a uniform 

distribution.  

2. Time of day of MSCs: Given the number of MSCs per day value, the time of day of 

these routine MSCs can be computed based on routine MSC probabilities. 

3. Type of MSCs: The type of MSC i.e. heating, cooling or both can be determined by 

change in heating, cooling, or both setpoint temperature at a MSC. As a result, a 

type of MSC PMF conditional on time of day MSC can be computed. 

4. Degree of MSCs: The degree of MSC can be computed using the change in setpoint 

temperature data at MSC. The PMF of degree of 1st MSC i.e., heat or cool is 

conditional to number of MSC, type of MSC, and TOD of MSC. 

Upon performing the realizations discussed in the 4 steps above, a routine MSC schedule can 

be generated and implemented. 

4.4.2.3 Computing comfort temperature 

Calculating the comfort temperature of an occupant is a critical step in accurately modeling 

thermal preferences as it is used a reference to quantify thermal discomfort magnitude. For 

this purpose, we implement a mean value approach, which provides a straightforward 

method for estimating the temperature that occupants are most likely to find comfortable 

during routine periods of indoor activity. 

To apply this method, we first curate the dataset to include only instances where the 

occupants are passively interacting with their environment—meaning that no manual 

overrides (hold events) occurred prior to or during the recorded temperature readings. This 
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selection criterion ensures that the data used for calculating the comfort temperature 

reflects the occupants' natural preferences without the influence of external or irregular 

factors. 

The mean comfort temperature 𝑇𝐶   is then calculated as the average of all valid indoor 

temperature readings from the curated dataset that represents the most probable 

temperature that occupants find comfortable under normal conditions. By using this mean 

value as a baseline, the model can effectively predict thermal comfort, enabling the system 

to make informed adjustments that align with the occupants' habitual temperature 

preferences. 

This approach is particularly suited to our study's objectives, as it allows us to generalize the 

comfort temperature across different occupants while still capturing the essence of 

individual preferences.  

4.4.2.4 Discomfort MSC model 

A timeseries thermostat data can also be leveraged to identify key parameters of the TFT 

discomfort model discussed in section 4.4.1.3. 

To optimize the parameter 𝛼 in the context of 

time–series smart thermostat data, the following 

grid search procedure can be employed (as 

shown in Figure 24): 

1. Initialize the parameters 𝛼 = 0, 𝛽 = 1, 

and 𝑇𝐶  as a real number. 

2. Calculate the 'thermal frustration' feature 

for the entire dataset, using the given 𝛼, 𝛽, 

and 𝑇𝐶. 

3. Identify the row indices where the ground truth value for a MSC is True. 

4. Using these indices, train a logistic regression (LR) model on both MSC and non–

MSC data subsets. Apply the model to predict MSC occurrences on a test dataset. 

Compute both the accuracy and Matthews Correlation Coefficient (MCC) score. Log 

𝛼 along with its corresponding MCC and accuracy score. 

5. Increment 𝛼 by 0.05 and repeat steps 2–4 until 𝛼 = 1. 

 
Figure 24: Schematic of 𝛼 grid search 
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The choice of a simple LR model for MSC classification is strategic for several reasons, the 

most prominent being the assumption that relationship between the predictor variable—

thermal frustration—and the log–odds of a discomfort–based override is approximately 

linear. Furthermore, the probabilistic outputs can be leveraged to compute the likelihood of 

MSC based on discomfort or another model, hereby adding the degree of certainty the model 

has about its prediction [275]. 

Improving discomfort model parameters estimation: 

Figure 25 represents the schematic of two step training process to improve TFT model 

parameters estimation. Given that a timeseries thermostat data is available where the 

occupant interacted with the thermostat using the models discussed in 4.4.1, the goal is to 

now estimate key personal parameters of the occupant’s discomfort model discussed in 

4.4.1.3.2. The challenge is to reduce the noise caused by the routine model by removing 

instances of the MSCs that have high likelihood of routine MSC.  

The following methodology can be used to increase accuracy of ML models and get likelihood 

of appropriate reason for MSC. 

Train suboptimal routine model: 

For the identification of discomfort model, a complex routine model may not be necessary to 

be developed. Since, a routine is based on time of day, therefore, a simple suboptimal routine 

model can be trained to compute the PMF of TOD of MSCs using (12). Now since each 

instance has a time stamp, therefore each instance can be assigned a probability of routine 

based MSC i.e., 𝑃𝑀𝑆𝐶𝑅
 as a result of PMF learned using (12). Let 𝑇 be the random variable 

representing the time of a MSC, the PMFs can be represented as: 

𝑓𝑇(𝑘) =
𝑛𝑘

𝑁𝑘
 (12) 

Where 𝑓𝑇 represents the probability mass function of time of day of MSC at 𝑘 timestep of the 

day, 𝑛𝑘represent the number of MSCs at timestep 𝑘, 𝑁𝑘  represents the total number of 

instances of timestep 𝑘.  
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Identification of the discomfort model: 

1. First run of 𝛼 grid search: In parallel to 

the training of the simple routine 

model discussed in the section 

above, the first grid search of 𝛼 can be 

performed to find the optimal 𝛼 of the 

user as discussed in section 4.4.2.4. It 

is important to note that these initial 

predictions are expected to be not 

ideal as the training and testing data is 

composed of routine, discomfort and 

other reason based MSCs. This initial 

grid search should still yield a 

suboptimal 𝛼 value with a 

corresponding MCC score. The entire 

dataset can now be used as a test data set to predict probability of discomfort 

based MSC i.e., 𝑃𝑀𝑆𝐶𝐷
 

2. Second run of 𝛼 grid search: Improving the discomfort model identification 

accuracy. With the probability of routine and discomfort overrides computed for 

each instance of the dataset, the corresponding probabilities can now be compared 

and the LR based discomfort classifier can be retrained on the data where the 

discomfort based MSC probability is higher than the routine based MSC probability. 

Therefore, the training of LR model to grid search for optimal 𝛼 is done again (as 

discussed in section 4.4.2.4) but only for MSC instances where the 𝑃(𝑀𝑆𝐶𝐷) >

𝑃(𝑀𝑆𝐶𝑅).  

3. Since now, the discomfort model is trained only on high discomfort probability 

MSCs, the optimal 𝛼 prediction and the MCC score is expected to improve. 

4.4.3 Validation of model training in simulation 

Mostly, the real–world data does not provide contextual data such as type of MSC i.e., routine, 

discomfort, etc. Therefore, a simulation environment was developed to use models 

discussed in section 4.4.2 and simulate occupant thermostat interaction behavior in a year 

 

 

Figure 25: Schematic of the two–step training 
process to improve alpha estimation 
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with 1–minute timesteps to see how well the key parameters of the occupant discomfort 

model be identified, specifically the 𝛼 value used to initialize the discomfort model of the 

occupant with the noise of the routine model. 

4.4.3.1 Environment  

4.4.3.1.1 Building model 

The Greenbuilt house in Fair Oaks, Sacramento, originally built in the 1980s, was retrofitted 

through the Sacramento Municipal Utility District’s (SMUD) Energy Efficient Remodel 

Demonstration program in collaboration with Greenbuilt Construction and the National 

Renewable Energy Laboratory (NREL). The retrofit aimed to showcase cost–effective, energy–

efficient measures, including enhanced insulation, motorized shading, and advanced home 

control systems like Control4 for remote monitoring. NREL extensively monitored the house’s 

performance to validate energy savings and system effectiveness, positioning it as an ideal 

case study for testing and simulating energy–efficient technologies without occupant 

interference, supported by a team of experts. 

4.4.3.1.2 Thermostat model 

To mimic a smart thermostat, ecobee’s default schedules are used to initialize the 

thermostat model. The model outputs the setpoint temperature for both cooling and heating 

setpoints and changes only with the input of occupant MSC or time of day–based schedule 

change. Two schedules were added i.e., sleep and home, both of which are based on time of 

day from ecobee [276]. 

4.4.3.1.3 Occupant activity model 

To simulate the occupant activity schedule of an occupant, a pre–trained state transition 

matrix of 1st order Markov chain model was used [260]. As the authors of the study validated 

the model’s ability to produce occupant activity schedule that represent the population of 

TUS dataset, this model is a good candidate to generate occupant occupant activity 

schedules. During the simulation, these transition probability matrices predict the likelihood 

of occupant activity at different times of the day. These probabilities are then transformed 

into occupant activity events by comparison with a random number drawn from a uniform 

distribution. The only deviation from the study was that instead of generating schedules for 

multiple occupants in a home, only one occupant’s schedule would be generated. 



 88 

4.4.3.1.4 Routine model 

To simulate the routine model of occupant thermostat MSC, ecobee’s DyD dataset was used 

to compute the PMFs discussed in section 4.4.2.2. After performing the required 

computations, the PMFs for various parts of routine based MSCs are shown in Figure 26 and  

 
Figure 26: Two parts of many conditional probabilities of the routine model (part a) 
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Figure 27 reveal important temporal and behavioral patterns in thermostat overrides by 

occupants. 

• The left figure highlights that occupants often make their second thermostat 

adjustment (MSC) at a similar time to their first, suggesting a routine behavior 

linked to daily activities such as transitions between home and work. Deviations 

from uniform behavior are particularly noticeable in the late afternoon or evening, 

 
Figure 27: Two parts of many conditional probabilities of the routine model (part b) 

All parts of the routine model start from number of manual setpoint changes (MSCs) per day which is realized 
from the probability distribution. Ranging from 0 to 15 NMSCPD with its corresponding probability ranging 
from 0.0 to 1.0, most days have 1 to 2 MSCPDs, with the probability decreasing sharply as the number of 

MSCs increases.  Figure on the left: Relative conditional probability (Difference of each cell’s prob. – uniform 
dist. prob.) of 2nd MSCs time of the day given 1st MSCs time of the day and NMSCPD is 2. Figure on the right: 

Probabilities of 2nd Degree of override given 1st Degree of override and NMSCPD is 2. 
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indicating increased override actions during these times, likely due to changing 

comfort needs after returning home or preparing for sleep. 

• The right figure shows that occupants tend to make corrective adjustments, with 

the subsequent setpoint change often being of similar magnitude but in the 

opposite direction of the initial adjustment. This pattern reflects a habit of fine–

tuning rather than setting a single temperature. The strong correlation between the 

timing and magnitude of adjustments points to routine–driven behavior as a 

significant factor in override actions. Leveraging these insights can help predict and 

preempt overrides during demand response (DR) events, enabling more effective 

energy management without compromising comfort, especially during sensitive 

times like evening hours. 

4.4.3.1.5 Discomfort model 

The following parameters were used to initialize the discomfort model discussed in 4.4.1.3: 

1. 𝛼 =  0.9: For this preliminary run, the goal was to use an alpha that would build up 

frustration gradually as 𝛼 < 0.7 can lead to slower build up/fast leakage of 

frustration which would rarely trigger MSCs. As compared to 𝛼 = 1 would build up 

frustration quickly, leading to discomfort based MSCs frequently. This is a key 

parameter that can vary across occupants. 

2. 𝛽 = 1: Since no data is available to model the clothing/metabolic rate of an 

occupant, the worst–case scenario was assumed i.e., occupant feels all the 

frustration. 

3. 𝑇𝐶  was computed as a mean of temperature values where the occupant was in 

space and comfortable as discussed in section 4.4.2.3. 

4.4.3.2 Validation 

Given the discomfort model parameters used to initialize the occupant discussed in section 

4.4.3.1.5 and with the noise of routine MSCs discussed in the section 4.4.3.1.4, the goal is to 

validate the proposed learning of the integrated model discussed in the section 0 help 

identify the initialized model parameters of the discomfort model of the occupant. 
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4.4.3.3 Approach 

Following the iterative approach outlined in the section 0, the output of the simulation data 

that contains Date Time (𝑑𝑡), indoor temperature (𝑇𝑖𝑛), setpoint temperature (𝑇𝑠𝑡𝑝ℎ𝑒𝑎𝑡/𝑐𝑜𝑜𝑙
), 

𝑚𝑜𝑡𝑖𝑜𝑛, manual setpoint change due to routine model (𝑀𝑆𝐶𝑅 ), and manual setpoint change 

due to the discomfort model (𝑀𝑆𝐶𝐷) were used. 

Accuracy cannot be used as an LR model performance assessment metric as it only 

considers correctly classified labels and does not penalize False negative or False Positive. 

Accuracy is also prone to incorrect assessment of model performance especially in the case 

of imbalanced datasets such as that of the MSC classification where MSC occurs far less 

than non–MSC instances. 

Matthew’s Correlation Coefficient (MCC) serves as the evaluation metric for optimization, 

chosen for its balanced, symmetric representation of both positive and negative 

classification outcomes. MCC values range from –1 to 1, signifying perfect negative and 

positive correlation, respectively, with a value of 0 indicating no better performance than 

random classification.  

4.4.4 Model training on real data 

If the discomfort model parameters can be identified from the simulated dataset, therefore 

our next goal is to confirm if the methodology in section 0 can also be used on real–world 

data such as ecobee’s smart thermostat DyD dataset to identify 𝛼 and 𝑇𝐶  parameters.  

4.4.4.1 Occupant activity  

Smart thermostat allows one to interact with their thermostat using a smartphone and hence 

to train the discomfort model, it is crucial that the occupant experiences the thermal 

conditions in a home to interact with their device as compared to remote interaction without 

experiencing any thermal discomfort. While the DyD dataset offers PIR sensor–based 

occupant activity data to determine occupant’s occupant activity in a space, but due to the 

limitations of a PIR sensor, occupant activity data filtering becomes important. Authors have 

previously discussed the occupant activity data filtering in detail and aim to use similar “gap 

– filling” methodology to process occupant activity data [256]. In the study, various occupant 

activity data filtering minutes were considered i.e., 15, 20, 30, and 120– minutes, where each 

of filters aim to fill the gap if occupant activity was detected between in the filter minutes. As 
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concluded from the study, the 30–minute filter served as the middle ground for false positives 

and false negatives, therefore the same methodology will be used in this study to process 

occupant activity data. 

4.4.4.2 Routine model 

The routine model training is intended to weed out MSC datapoints that create noise for the 

discomfort model. Here the goal of the model is to compute probabilities of an occupant 

interacting with the thermostat given the time of day. As discussed in section 0, a PMF is 

trained to estimate probability of routine MSC given time of day. 

4.4.4.3 Discomfort model 

Before using the discomfort model, a static comfort temperature value (section 4.4.2.3) is 

required to be identified to ensure that the TF computed during the fitting process in the 

discomfort is as accurate as possible. As discussed in the section 4.4.2.4, the discomfort 

model follows a two–step training approach, where the first training step is to use the LR 

model to estimate discomfort–based MSCs and identify an occupant’s 𝛼 and thermal 

frustration threshold values and the second training step is to retrain the LR model after 

removing the instances of MSCs where the routine MSC probability is higher than the 

discomfort MSC probability (achieved from the first training step). 

It is important to note here that additional flags were used to filter MSC datapoints used to 

train the LR model. For this paper, only routine and discomfort models were considered but 

there can be instances where other aspects of an occupant can motivate them to implement 

a MSC. If an occupant has been home for 20 minutes, and previous setpoint was within 2 

hours, only then an MSC is qualified to be considered for training the LR model. These flags 

ensured that model can capture occupant’s thermal frustration that led them to interact with 

their thermostat and remove the noise of MSCs caused by other aspects of an occupant’s life 

such as social, environmental, financial, etc. 

4.5 Results 

The proposed integrated model was tested with alflalfa’s co–simulation framework. As 

shown in Figure 28, the occupant’s occupant activity is key in implementing MSCs as the 

thermal frustration exceeds the assigned thresholds. 
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Figure 28: A snapshot of simulation run of integrated occupant and building model 

 

4.5.1 Validation of model training in simulation 

Section 4.4.3.1.5 discussed the parameters used to initialize the occupant discomfort model 

in the simulation. As the simulation outputs the reason for an MSC, an initial test was run to 

check if the fitting process can learn to classify MCC perfectly and exactly identify the 𝛼 

value, therefore the model was tested on 0.6 of train/test ratio where for MSCs (label 1) only 

discomfort based MSCs were provided with Non MSCs (label 0). As shown in Figure 30, the 

model is able to capture all MSCs evidenced by MCC of 1 for 𝛼 = 0.9 (same as the 

simulation’s initialized 𝛼 parameter). 

TABLE 4: CONFUSION MATRIX OF ROUTINE MSC CLASSIFICATION 

 
 Predicted Labels 

 0 1 

True Labels 
0 5255229 2 

1 599 170 

Having confirmed the fitting performance, routine and discomfort MSCs were mixed. The first 

fitting of logistic regression model with routine MSCs identified 𝛼 of 0.4 with MCC score of 

0.09. Next step of training a simple routine model as discussed in section 4.4.2.4, yielded 

accuracy of 0.99, precision of 0.98, recall of 0.22, F1 score of 0.36, and MCC of 0.46 (Figure 

30). Lastly, upon removing the routine overrides, the fitting of logistic regression model 

identified 𝛼 of 0.75 and 0.85 with the similar MCC scores of 0.14. 
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Figure 29: Performance scores of the LR model for alpha parameters 
 (with only discomfort overrides) 

 
Figure 30: MCC scores of the LR model for various alpha parameter 

 (with and without estimated routine overrides) 

4.5.2 Model training on real data 

Using the methodology discussed in this section 4.4.2.4, the DyD dataset was used to 

compute the thermal frustration parameter for various 𝛼 and logistic regression model was 

trained to classify an MSC.  

4.5.2.1 Model performance on aggregate data 

Initially, the TF model was applied to the entire dataset without accounting for individual 

differences among homes. This approach resulted in a Matthew's Correlation Coefficient 

(MCC) of 0.002 (Figure 33), indicating a negligible improvement over random chance.  
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4.5.2.2 Distribution of thermal recollection coefficient (α) 

The thermal recollection coefficient (α) is a crucial parameter in our model, representing the 

degree to which previous thermal experiences influence current comfort levels. Our analysis 

across a broad spectrum of individual homes highlights a notable trend: there is a 

predominant clustering of α values at the upper end of the scale, specifically around 0.9 to 

1.0 (Figure 34).  

 
Figure 31: Distribution of identified alpha parameter 

 
Figure 32: Distribution of percent of routine MSCs found across homes  

(50% of overrides are likely to be routine based overrides) 
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The histogram depicting the distribution of percentage of routine MSCs found in homes 

(Figure 32) shows the majority of homes exhibit routine MSC behavior even when using a 

programmable thermostat. 

4.5.2.3 Enhanced performance through personalization 

Training on individual home data yielded various MCC scores for all the homes. Comparing 

multiple MCC scores of various homes vs one population level model MCC score would be 

inconsistent. Therefore, each home’s model fitting metrics such as true positives, false 

positives, true negatives, and false negatives were summed and the MCC score was 

computed. The model training that included routine overrides achieved an MCC of 0.23 and 

model training without routine MSCs yielded an MCC of 49.40, indicating a substantial 

enhancement in the model's predictive accuracy. 

 
Figure 33: LR fitting performance on aggregate data 

 
Figure 34: LR fitting performance for an individual home 

 (w–r: with routine; wo–r: without routine overrides) 
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4.6 Discussion 

4.6.1 Model training in simulation 

The results derived from our model, as corroborated by the alfalfa co–simulation framework, 

highlight the critical role of thermal frustration in dictating discomfort based Manual Setpoint 

Changes (MSCs). The occurrence of MSCs is closely tied to the levels of thermal frustration 

experienced by the occupants, which, when exceeding a certain threshold, prompts an 

interaction with the thermostat system. Figure 5 provides a snapshot of this dynamic, 

illustrating the direct correlation between occupant thermal frustration and the triggering of 

MSCs. 

4.6.2 Model training on real data 

The validation process of our model training within the simulation environment brings to light 

the nuanced dynamics of the α parameter, which represents the occupants' thermal 

memory. As shown in Figure 6, the logistic regression (LR) model's ability to improve the 

estimation of α from an initial 0.9 to a more precise range of 0.75 to 0.85 through iterative 

training, particularly when factoring out non–routine MSCs, not only improved the α 

estimation but also enhanced the Matthew's Correlation Coefficient (MCC) from 0.08 to 0.14. 

This improvement highlights the model's increased precision in capturing the occupants' 

thermal comfort responses. 

4.6.2.1 Model performance on aggregate data 

Now focusing on the real–world DyD data, the application of the Thermal Frustration (TF) 

model across a comprehensive dataset reveals the substantial impact of personalization. 

The broad application of the model, without adjusting for individual household differences, 

yielded an MCC of a mere 0.002 (Figure 7), hereby showing the limitations of a non–

personalized approach. This minimal MCC signifies an almost random predictive capability, 

highlighting the complexity of human behavior which is not effectively captured by a one–

size–fits–all model. 

4.6.2.2 Enhanced performance through personalization 

In contrast, the personalized model, tailoring to the specific thermal histories and behavior 

patterns of the occupants, we see a major improvement. The personalized TF model's 



 98 

predictive strength, as noticed by an MCC of 0.23, increases further with the exclusion of 

routine overrides, reaching an MCC of 49.40 (Figure 8). Such an increase in predictive 

accuracy clearly demonstrates the value of personalization in the modeling process. 

4.6.2.3 Distribution of thermal recollection coefficient (α) 

The distribution of the thermal recollection coefficient (α) indicates a strong preference 

among households for higher α values, predominantly between 0.9 and 1.0, as depicted in 

Figure 9. This convergence towards higher α values implies a shared threshold for thermal 

frustration behavioral pattern that can be interpreted as a delayed yet noticeable response 

to thermal discomfort. 

Furthermore, the distribution of MSCs removed due to routine overrides provides additional 

layers of insight (Figure 10). While the majority of homes show few MSC removals, a 

significant tail–end of the distribution indicates a group of homes with numerous routine–

based MSCs. This distinction is crucial as it highlights the variability within the population 

and underscores the importance of differentiating routine–driven behavior from comfort–

driven interactions with the thermostat. 

The implications of these findings are manifold. Firstly, they validate the need for 

personalized thermal comfort models that can adjust to the diverse preferences and 

experiences of individual occupants. Secondly, they emphasize the importance of 

distinguishing between routine and non–routine MSCs to ensure the accuracy of comfort 

models. Lastly, they illustrate the potential for predictive interventions that can preemptively 

address occupant discomfort before it prompts a manual override. 

The evidence points to a clear direction for future efforts in thermal comfort simulations: a 

personalized approach that not only captures the unique behavioral patterns of each 

household but also provides a more accurate reflection of true thermal comfort responses. 

Such models are pivotal for devising effective energy management and thermal comfort 

strategies that cater to the nuanced needs of residential occupants. 

4.6.2.4 Implications of personalization 

These findings demonstrate the importance of personalization in modeling occupant–

thermostat interactions for thermal comfort. The tailored approach, which accounts for the 

unique characteristics of each household, exhibits a distinct improvement in the model’s 
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performance, as supported by the higher MCC scores. It also highlights the nature of thermal 

comfort behavior, which is influenced by individual and household–specific factors. 

The differences in model performance between the generalized and personalized models 

suggests that future efforts in thermal comfort simulations should focus on personalized 

model that capture the intricacies of occupant behavior, leading to better predictions and, 

consequently, more effective energy management and thermal comfort strategies in 

residential settings. 

It is worth noting that the MCC score upon removing the routine MSCs was not improved for 

all homes. While this strategy was helpful in improving the MCC score for majority of homes 

but it also showed no change or rather decrease in MCC after removing the routine MSCs. 

This is an important note as it shows that not all homes follow routine behavior, but instead 

other models could be used to identify the correct alpha parameter. Also, while this 

framework is helpful in estimating the discomfort model of an occupant, one should explore 

other models to build a robust framework for discomfort override identification and 

forecasting. 

4.7 Conclusion 

In this study, the development of a dynamic data–driven integrated occupant–building model 

was discussed with a focus on dynamic thermal discomfort behaviors of building occupants. 

This model, integrating agent–based modeling with ecobee's Donate Your Dataset (DyD), the 

alfalfa co–simulation framework, a green–built home environment, and filtering out routine 

MSCs to improve classification accuracy of novel thermal frustration–based discomfort 

MSCs is a novel methodology in thermal comfort simulations. 

The approach is based on the use of machine learning models, trained and tested on the DyD 

dataset, to identify critical occupant–specific parameters that enhance the accuracy of 

manual setpoint change (MSC) classifications. This personalized approach has led to a 

marked improvement in model performance, as evidenced by the Matthews Correlation 

Coefficient (MCC) scores. Specifically, the logistic regression model, incorporating the novel 

Thermal Frustration Theory (TFT), identified α values of 0.75 and 0.85 with MCC scores of 

0.14, indicating an enhanced precision in capturing occupants' thermal comfort responses.  
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However, the study also revealed variability in the model's performance across different 

homes. While the removal of routine MSCs improved the MCC score for most homes, for 

some, the score remained the same or even decreased. These findings highlight that not all 

homes exhibit routine behavior, suggesting the need for other models to better identify the 

correct alpha parameter for these homes. 

The broad application of our model, without adjusting for individual household differences, 

resulted in an MCC of only 0.002, showcasing the limitations of a non–personalized 

approach. In contrast, the personalized models, tailored to specific thermal histories and 

behavior patterns of the occupants, showed a major improvement. The MCC score increased 

to 0.23 when routine overrides were included and further to 49.40 upon their exclusion. This 

substantial enhancement in the model's predictive accuracy emphasizes the importance of 

personalization in thermal comfort models. 

In conclusion, our research represents advancement in the field of building energy efficiency 

and occupant thermal comfort. By integrating dynamic occupant behavior model, new 

avenues for enhancing building energy efficiency and occupant comfort can be explored. Our 

findings highlight the importance of personalized models in capturing the complex and varied 

nature of human–thermostat interactions and lay the groundwork for future research in 

developing smarter, more responsive building environments. 
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Chapter 5:  

Conclusion 

This dissertation developed and validated data‑driven models to predict occupant 

thermostat override behavior during demand response events using 5 minute‑resolution data 

from 1,400 single‑occupant homes in the ecobee Donate Your Data (DyD) program. The 

analysis quantified temporal patterns of manual setpoint adjustments—specifically 

response latencies and magnitudes—and integrated these findings for the first time into 

predictive algorithms for occupant‑building interaction. By focusing on the timing and 

probability of override events rather than static comfort setpoints, this work provides 

empirically grounded inputs for demand response control strategies.  
The remainder of this chapter discusses the dissertation’s findings, implications, limitations, 

and pathways for future research. Section 5.1 (“Key Findings and Contributions”) 

summarizes the core results from Chapters 2–4, quantifying temporal override behaviors, 

evaluating predictive model performance, and describing the integrated occupant–building 

behavior framework. Section 5.2 (“Implications”) examines the impacts of these findings on 

grid operations, building controls, and policy frameworks. Section 5.3 (“Research Limitations 

and Implementation Barriers”) identifies constraints in data representativeness, model 

generalizability, and computational scalability. Finally, Section 5.4 (“Future Research 

Directions”) proposes specific studies to address identified gaps in occupant behavior 

modeling, control system design, and market integration. 

5.1 Key findings and contributions 

The main results from Chapters 2–4 are reviewed in this subsection: Chapter 2 quantified 

occupant thermostat‑override timing, frequency, and energy impacts; Chapter 3 

hypothesized the Thermal Frustration Theory (TFT) and demonstrated its superior predictive 

performance (AUC) compared to static comfort models; and Chapter 4 developed a scalable 

simulation framework that separates routine from discomfort‑driven overrides and integrates 

these behaviors into building performance modeling. 
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Chapter 2's analysis of occupant thermostat–behavior dynamics, using data from 1,400 

single–occupant homes from the DyD dataset, revealed fundamental patterns (occupant 

thermostat interactions mainly setpoint magnitude changes are inversely proportional to 

time to override override) in override behavior that previously undocumented at this scale. 

The data demonstrated that occupants respond to thermal changes within a median time of 

20 minutes, with the magnitude of setpoint change directly impacting response time. 

Specifically, 8°F occupant–initiated thermostat setpoint change responses in 15 minutes, 

while 2°F setpoint changes require 30 minutes. It is important to note that a relationship was 

discovered for the first time. This relationship being exponential in nature between setpoint 

change and response time challenges the conventional assumption of immediate occupant 

response to discomfort.  

Chapter 2 also revealed that approximately 60% of manual setpoint changes in both heating 

and cooling modes resulted in increased energy consumption, with a median setpoint 

change of 2°F during cooling seasons at indoor temperatures around 74°F, and 2°F increases 

during heating seasons at indoor temperatures near 68°F. Analysis of override timing showed 

distinct patterns, with peaks in the morning and evening hours, averaging 0.9 manual 

changes per day per occupant. The duration of these overrides varied significantly, with 

nighttime adjustments lasting 6–12 hours and evening modifications typically spanning 1.5–

3 hours, indicating time–of–day dependence in override persistence. 

Chapter 3 hypothesized the Thermal Frustration Theory (TFT) to fill a gap in existing comfort 

models by explicitly incorporating time as a variable; TFT was then evaluated against the 

Comfort Zone Theory and Delayed Response Theory using AUC to assess override prediction 

accuracy. Since no comfort model to this date uses time as a parameter to model comfort, 

the novelty of this theory lies in the introduction of time as a critical parameter in thermal 

comfort modeling, contrasting with traditional static approaches. The theory's central 

parameter, the thermal recollection coefficient (α), concentrated between 0.9–1.0 across the 

studied single–occupant households. While initial evaluations used the Matthews 

Correlation Coefficient (MCC), this metric proved problematic for demand response 

applications. The MCC score is suboptimal for predicting rare thermostat‑override events 

because it equally penalizes false positives and false negatives, despite false negatives 

(missed overrides) posing greater risk to demand response reliability. Instead, the Area Under 
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the Receiver Operating Characteristic Curve (AUC) was selected as the primary evaluation 

metric because it measures a model’s ability to distinguish override events from non‑events 

irrespective of class imbalance, aligning directly with the operational goal of accurately 

identifying override occurrences during demand response events. The TFT model achieved 

higher AUC scores (49.40) compared to both the Comfort Zone Theory (47.09) and Delayed 

Response Theory (38.95), particularly after excluding routine behaviors. AUC analysis shows 

TFT’s enhanced predictive capability to predict the rare but costly override events that 

directly impact grid reliability and demand response program effectiveness. The difference 

becomes especially important during demand response events, where false negatives 

(failing to predict an override) can lead to program failures and financial penalties for utilities, 

while false positives (predicting an override that doesn't occur) primarily result in 

conservative but stable grid operations. 

Chapter 4's implementation of the integrated dynamic occupant–building behavior model 

(multiple occupant–behavior sub–models i.e. active occupancy (i.e. occupant is awake and 

moving – detected by PIR sensors), routine–based changes (occupant’s habitual setpoint 

adjustments), discomfort–driven changes (occupant’s quick overrides driven by thermal 

frustration) were combined into a single simulation framework) transformed theoretical 

understanding into practical application through several key innovations. The integration of 

three distinct behavioral models – active occupancy, routine–based changes, and 

discomfort–driven adjustments – provided a broader representation of occupant–building 

interaction. The active occupancy model, implemented through a first–order Markov chain, 

captured temporal characteristics of space utilization. The routine model estimated time–

of–day–based patterns in setpoint adjustments, with conditional probabilities revealing 

correlations between consecutive manual setpoint changes. The Thermal comfort 

Frustration Theory (TFT) model parameters were methodically identified through a two–step 

training process that separated routine from discomfort–driven behaviors, improving 

model accuracy. Through containerization and optimization, simulation time reduced from 

50 to 19 hours for 10 homes that were simulated for 1 year time frame, demonstrating 

scalability (quick testing of DR simulation scenarios) for practical applications. The 

framework's demonstration using the Greenbuilt house in Sacramento provided a real–world 

test case, with the Alfalfa co–simulation framework enabling integration of building physics 

with occupant behavior models. The implementation demonstrated that even with the 
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complexity of multiple interacting models, the framework could capture the nuanced 

dynamics of occupant–building interactions. 

5.2 Broader impacts and future work 

The findings of this research extend beyond individual buildings, influencing grid operations, 

policy frameworks, and technology development. These findings fundamentally alter how we 

approach demand response program design and implementation (do occupant–time 

dynamics significantly change DR scheduling windows, or baseline assumptions?), while 

raising important questions about market structures and regulatory frameworks. 

5.2.1 Grid–scale implications of occupant behavior 

The identification of occupant response time being inversely related to the magnitude of 

setpoint change impacts grid operations and planning. ISO/RTO dispatch systems operate 

on 5–15 minute intervals [277], creating a mismatch between grid control periods and 

measured occupant behavior. If the predicted occupant override time falls before the signal 

dispatch, occupant can override controls before the signal gets executed, hereby leading to 

loss of energy savings or more energy use than savings in that event. The measured response 

times establish operational constraints for automatic generation control systems, 

addressing specific gaps identified in FERC assessments of demand response performance. 

FERC Order No. 719 (issued in 2008) established reforms to eliminate barriers to demand 

response participation in organized energy markets, requiring Regional Transmission 

Organizations and Independent System Operators to accept bids from demand response 

resources [278]. Additionally, FERC conducts annual assessments of demand response 

potential, identifying challenges with demand response forecasting precision during grid 

events including unpredictable occupant behavior and timing mismatches between grid 

needs and customer responses. These assessments highlight that timing accuracy for 

residential demand response remains a critical challenge for integrating these resources into 

grid operations [279]. This research provides the occupant behavior parameters needed to 

develop more accurate grid resource forecasting during demand response events. 

The findings require modifications to day–ahead market structures. Because occupant 

overrides vary with the magnitude and duration of setbacks, the probability of DR capacity 

also varies accordingly. These distributions support NERC's transition toward probabilistic 
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resource adequacy assessment, which can be supported by a probabilistic occupant model 

that can help NERC better forecast resource adequacy [280].  

TFT's AUC performance (49.40) provides a method for calculating capacity requirements 

based on override probability distributions. AUC being a summary metric cannot be sufficient 

for all scenarios; various probability thresholds can be used to balance precision and recall. 

The probabilistic outputs of occupant override model allow one to improve capacity planning 

informing. Current performance metrics result in demand response reliability overestimation 

[281]. The 49.40 AUC score represents a 27% improvement over DRT (38.95) in override 

prediction accuracy. The improved prediction capability could inform the development of 

performance–based demand response programs [77], where participants receive 

compensation proportional to their actual delivered load reduction rather than fixed 

payments based on enrollment capacity. These programs utilize verified performance 

metrics to calculate payments, potentially benefiting from more accurate forecasting 

methodologies that account for occupant behavior patterns. 

5.2.2 Building–level implementation constraints 

The analysis of 1,410 single–occupant homes conducted withing this dissertation revealed 

that 60% of overrides increase energy consumption, and 50% of changes stem from routine 

behavior. These percentages necessitate more adaptive controls or occupant–centered 

feedback loops in building control systems [282]. Current residential systems typically only 

accept user input for temperature setpoints [17]. The separation of routine from comfort–

driven behavior, demonstrated through the two–step classification process (novel 

contribution of this dissertation), enables targeted optimization of setpoint trajectories [13]. 

The integrated dynamic occupant–building behavior model processes data at 1–minute 

resolution, enabling prediction of occupant actions. This processing capability differs from 

traditional control systems that respond to overrides after occurrence [14]. The framework's 

implementation with the Greenbuilt house established the capability to simulate multiple 

behavioral drivers: active occupancy, routine changes, and discomfort–driven adjustments 

[139], [270]. 

Current demand response programs apply uniform setpoint adjustments across building 

portfolios [120]. The research demonstrates this approach's limitations through measured 
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variations in occupant response times: 15 minutes for 8°F changes versus 30 minutes for 2°F 

changes. These temporal patterns, combined with the 50% routine behavior finding, indicate 

the need for building–specific setpoint trajectories [159]. Implementation requires 

incorporating measured override probabilities to maximize grid services while reducing 

participant opt–outs [77]. 

5.2.3 Policy and economic framework 

The quantification of occupant response times has implications for residential building code 

requirements. Unlike commercial building standards such as ASHRAE 90.1, residential 

codes including the International Energy Conservation Code (IECC) and state–adopted 

residential provisions typically specify only steady–state efficiency metrics with minimal 

smart control requirements [283]. The finding that 60% of overrides increase energy 

consumption demonstrates how occupant behavior significantly impacts residential 

building performance, suggesting potential residential code updates that could incorporate 

occupant–system interaction patterns. Such updates might include specifications for 

control system response capabilities that align with measured occupant behavior in 

residential settings. 

The identified relationship between setpoint magnitude and override timing provides a 

quantitative basis for developing performance standards that balance energy savings with 

occupant comfort. For example, certification standards could incorporate maximum 

recommended setpoint adjustment rates based on the documented 15–minute and 30–

minute override thresholds, potentially using modified comfort maintenance scores that 

account for the thermal frustration accumulation identified in this research [284]. Such 

standards would provide both manufacturers and utilities with evidence–based parameters 

for demand response algorithm design. 

The economic implications extend beyond current cost–benefit calculations. Traditional 

frameworks assume fixed resource availability during demand response events [285]. The 

measured exponential relationship between setpoint changes and response times (15 

minutes for 8°F vs 30 minutes for 2°F) found for the first time in this dissertation affects 

resource valuation. 
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5.2.4 Research and technology development pathways 

Occupancy sensors must evolve to meet the requirements suggested by this research’s 

findings. Poor true positive rate (33%) from PIR–based occupancy detection limits model 

implementation [212]. While integration of temperature, CO2, and power consumption data 

offers potential detection improvements [23], technical challenges remain in data fusion, 

signal processing, and edge computing capabilities. Recent advances in millimeter–wave 

radar technology demonstrate promising capabilities for non–intrusive occupancy detection 

with higher spatial resolution and lower false negative rates [286]. The ARPA–E SENSOR 

program has accelerated development of occupant–sensing technologies that could support 

the occupancy detection needs identified in this research, particularly their focus on 

multimodal sensing networks that maintain accuracy while addressing both privacy 

requirements and practical deployment constraints including power consumption, 

installation complexity, and long–term reliability [287]. These emerging technologies align 

well with the research findings regarding occupancy detection needs for effective thermal 

comfort prediction. 

PID control systems demonstrate limitations in capturing occupant–building interaction 

dynamics as that typical HVAC controllers (often described generically as PID) do not 

account for time–accumulative occupant discomfort (“thermal frustration”). The BOPTEST 

framework implementation can demonstrate feasibility of thermal frustration tracking in 

control systems [288], establishing a foundation for behavior–aware control development. 

The temporal resolution requirements for simulation differ significantly from those needed 

for practical control systems. While the research utilized 1–minute resolution data for 

simulation accuracy [23], commercial building automation systems typically operate on 15–

minute control cycles for most applications [22]. The measured occupant response times of 

15 minutes for 8°F changes suggest that current control frequencies may be adequate for 

many scenarios, though some applications may benefit from the increasing adoption of 5–

minute control intervals now available in advanced residential thermostats. The principal 

computational challenge lies not in control speed but in the data processing capacity needed 

to analyze historical behavioral patterns across multiple timescales, from immediate 

thermal responses to seasonal adaptation trends [140]. Future research should focus on 

developing streamlined machine learning approaches that can identify occupant behavior 
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patterns while operating within the practical constraints of existing control system 

infrastructure. 

5.3 Research limitations and implementation barriers 

The implications discussed above highlight significant opportunities for transforming 

building–grid integration, yet several limitations in the current research must be addressed 

before realizing these possibilities. 

5.3.1 Grid integration limitations 

The data from 1,400 single–occupant homes represents 14% of typical utility–scale demand 

response portfolios, which exceed 10,000 participants [120]. The data was limited to 1,400 

homes to conduct this research on single–occupant homes which helps avoid 

conflating behaviors. This limitation in sample diversity, particularly the focus on single–

occupant residential buildings, restricts immediate application in markets where 

commercial and multi–family buildings dominate demand response portfolios [289]. Ecobee 

has also released a bigger subset of the data (100k+ homes) which can be used in future 

research. 

5.3.2 Building–level implementation constraints 

The low accuracy i.e. 33% true positive rate from PIR–based occupancy detection introduces 

measurement uncertainty [212]. To mitigate this limitation, the research implemented a gap–

filling algorithm that filtered occupancy data to include only high–confidence occupied 

periods while "filling in" short absences likely caused by sensor occlusion rather than actual 

departures. Multiple filter windows (0, 15, 20, 30, and 120 minutes) were systematically 

evaluated, with the 30–minute filter selected as the optimal balance between reducing false 

negatives and minimizing false positives [290]. This approach was validated by measuring 

average occupied period lengths across different filter settings, demonstrating that short–

duration filtering successfully joined fragmented occupancy periods without artificially 

extending total occupancy time. Cross–verification with manual setpoint changes further 

confirmed that the filtered occupancy data aligned with actual user presence patterns, 

though the filtering approach did necessarily increase measured occupancy duration 

compared to raw sensor readings. Future work should expand these sensing methodologies 
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to multi–occupancy residential and commercial spaces, which would require additional 

calibration to account for occupant interaction effects, competing thermal preferences, and 

more complex zone control requirements not captured in the single–occupant model [18]. 

5.3.3 Computational and data processing challenges 

The computational requirements of the integrated dynamic occupant–building behavior 

model present significant implementation barriers. The framework requires 19 hours to 

simulate 10 homes for a full annual cycle at 1–minute resolution, making real–time 

applications in large–scale deployments impractical [288]. This computational burden 

impacts both building performance simulation research and demand response 

implementation. While containerization improved efficiency compared to initial runs (50 

hours), the co–simulation overhead through the Alfalfa framework still restricts widespread 

adoption [291]. The stochastic nature of occupant behavior further compounds this 

challenge, as multiple simulation runs are necessary to capture the range of possible 

outcomes, exponentially increasing computational requirements. Model reduction 

techniques offer one potential solution path, sacrificing some granularity for computational 

efficiency. Alternatively, high–performance computing resources could enable city–scale 

simulations through massively parallel processing approaches, though this would limit 

access to specialized research facilities [77]. For practical implementation by demand 

response aggregators or utilities, simplified versions of the occupant behavior models that 

preserve key temporal dynamics while reducing computational complexity will be necessary 

to bridge the gap between research findings and operational deployment. 

Data storage and processing requirements pose additional challenges in practical 

implementation. The 1–minute resolution data necessary for accurate behavior prediction 

generates substantial volumes—approximately 525,600 data points per home annually for 

each measured variable—exceeding typical building automation system capabilities [22]. 

While modern cloud infrastructure could theoretically handle these requirements, the 

associated costs and bandwidth limitations create practical barriers for building operators 

[346]. The need for multi–year data storage to capture seasonal behavior patterns further 

strains system resources [140]. Advanced data compression techniques and selective 

sampling approaches offer partial solutions, potentially reducing storage requirements by 

60–80% while preserving critical behavioral information [293]. Building automation systems 
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could implement tiered storage architectures that maintain high–resolution data for recent 

periods while automatically aggregating historical data to coarser resolutions, balancing 

prediction accuracy with practical storage constraints. These approaches would enable the 

capture of essential occupant behavior patterns without requiring impractical investments 

in data infrastructure. 

5.3.4 Model validation and parameter estimation 

The validation of both Thermal Frustration Theory and Comfort Zone Theory models revealed 

several limitations affecting generalizability. While TFT demonstrated marginally higher 

predictive performance (AUC of 49.4) compared to CZT (AUC of 47.0), both scores indicate 

substantial room for improvement in parameter estimation methods [156]. Two critical 

limitations constrained model validation. First, the comfort temperature calculation method 

used simple averaging of temperatures during non–override periods, failing to capture daily 

or seasonal variations in thermal preferences that have been documented in field studies 

[135]. Second, validation was restricted to a single building (the Greenbuilt house), limiting 

generalization across different construction types, climate zones, and HVAC system 

configurations that might significantly influence occupant thermal perception [165]. These 

constraints highlight the need for multi–building validation studies across diverse building 

stock to establish broader applicability of the thermal frustration model before widespread 

implementation. 

The fixed comfort parameter implementation does not address seasonal adaptation patterns 

in thermal preferences. Field studies demonstrate that outdoor temperatures influence 

indoor comfort expectations, with occupant thermal neutrality shifting by approximately 

0.31°C per 1°C change in outdoor temperature [135]. The model also excludes occupant 

learning behaviors observed through repeated system interactions, where preferences 

evolve based on system responsiveness and historical comfort experiences [294]. These 

limitations extend to non–thermal factors affecting override decisions, including 

environmental drivers (e.g., solar radiation, spatial temperature variation), financial 

considerations (e.g., energy costs, time–of–use pricing awareness), and social influences 

(e.g., household dynamics, cultural norms) [66]. Recent research on spatial temperature 

variations within residential buildings indicates that room–to–room temperature differences 

averaging 2–4°F significantly impact occupant comfort perception and thermostat 
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interaction patterns [295], yet the current model treats buildings as thermally homogeneous. 

Future implementation of TFT in demand response applications will require integration of 

these multi–dimensional factors to accurately predict override behaviors across diverse 

occupant populations. 

5.3.5 Policy and market structure limitations 

A fundamental mismatch exists between the probabilistic nature of occupant behavior 

models and the deterministic structure of electricity markets. Current regulatory frameworks 

require fixed capacity commitments for demand response resources, with penalties for non–

delivery [296]. However, this research demonstrates that occupant override probabilities vary 

based on setpoint magnitude, duration, and other factors, creating inherent uncertainty in 

resource availability [78]. This uncertainty cannot be adequately represented within market 

structures that demand firm capacity values. Bridging approaches could include threshold–

based participation, where only capacity with override probabilities below certain thresholds 

are bid into markets, or confidence band bidding that incorporates statistical reliability 

metrics [74]. Without standardized methods for translating behavior prediction into resource 

valuation, utilities and aggregators must either bid conservatively, reducing the economic 

value of demand response, or risk non–performance penalties that threaten program viability 

[79]. Addressing this regulatory–technical gap requires evolution in both market rules and 

occupant modeling approaches to establish a common framework for probabilistic resource 

assessment. 

The regulatory landscape presents multiple distinct barriers to implementing behavior–

aware demand response programs. Privacy and data security frameworks remain inadequate 

for the granular data collection required by occupant behavior models [297]. Current 

regulations typically focus on aggregate load profiles rather than individual residential data, 

leaving uncertainty about what level of monitoring is permissible [47]. Simultaneously, 

program evaluation mechanisms operate largely on resource–centric metrics that fail to 

incorporate occupant behavior impacts [298], creating fundamental misalignment between 

how programs are assessed and how they actually perform. For example, PJM's capacity 

performance standards evaluate resources based on delivered capacity without accounting 

for occupant comfort impacts or override rates [120]. This measurement gap is compounded 

by the absence of standardized protocols for risk allocation in behavior–prediction programs, 
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leaving unclear who bears financial responsibility when occupant behavior deviates from 

forecasts . Without regulatory structures that explicitly recognize, and value occupant–

centric approaches, utilities and aggregators have limited incentive to implement the more 

sophisticated models developed in this research. 

5.3.6 Technical standards and protocols 

The technical standards landscape creates integration challenges for implementing behavior 

prediction in residential settings. While commercial buildings utilize established protocols 

like BACnet and Modbus, residential automation systems typically rely on proprietary or 

consumer–oriented technologies with limited interoperability [299]. Existing smart home 

standards focus primarily on device connectivity and basic scheduling rather than behavior 

prediction capabilities [22]. Even in emerging standards like Matter and Thread, 

specifications lack requirements for sensor accuracy needed for reliable occupant 

detection, data collection protocols for override prediction, or computational provisions for 

processing behavioral models processing [300]. While APIs exist for individual smart 

thermostats and home automation systems, they remain fragmented across manufacturers 

and lack standardized methods for integrating third–party behavior prediction algorithms 

[22]. These standardization gaps create practical barriers for implementing the residential 

behavior prediction models developed in this research, requiring custom integration 

approaches for each deployment context. 

5.4 Concluding remarks 

This dissertation addressed fundamental gaps in modeling occupant thermal comfort 

behavior for demand response applications. The research established the temporal 

characteristics of override behavior, introduced the Thermal Frustration Theory for modeling 

dynamic comfort responses, and developed a framework for implementing these insights in 

building control systems. 

The findings highlight how we understand occupant–building interactions in three significant 

ways. First, the research revealed a consistent relationship between temperature change 

magnitude and occupant response timing—larger temperature deviations trigger faster 

responses, with specific quantifiable patterns that can inform system design. Second, the 

Thermal Frustration Theory outperformed both Delayed Response Theory and Comfort Zone 
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Theory in predictive accuracy, demonstrating that occupants accumulate discomfort over 

time rather than responding to fixed temperature thresholds. Third, the research 

developed a methodology to distinguish between routine–based thermostat adjustments 

and those driven by actual thermal discomfort, revealing that approximately half of all 

thermostat interactions stem from habitual patterns rather than temperature–driven 

discomfort. 

The implementation framework developed through this research enables integration of these 

findings into building control systems and grid operations. At the urban scale, the model's 

ability to predict occupant override behavior supports more accurate energy use forecasting 

across building populations, potentially improving grid–level demand projections by 15–30% 

compared to static approaches [301]. The research specifically enables demand response 

programs that align event durations with measured occupant tolerance thresholds—8°F 

setbacks maintained for 15–minute periods or 2°F setbacks for 30–minute periods—creating 

opportunities for semi–personalized setpoint trajectories based on occupant behavior 

clusters rather than uniform adjustments [279]. By tailoring demand response events to 

these occupant–specific temporal thresholds, utilities can fulfill grid requirements while 

simultaneously reducing override rates, creating a positive synergy between occupant 

satisfaction and grid stability that strengthens the reliability and scalability of residential 

demand response resources. 

These advances in understanding and predicting occupant behavior provide a foundation for 

the next generation of building–grid integration. The methods and frameworks developed 

here enable more effective use of building loads for grid services while respecting the 

complexity of human responses to thermal conditions. 
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