DATA-DRIVEN MODELING OF
DYNAMIC OCCUPANT THERMOSTAT
OVERRIDE BEHAVIOR FOR
DEMAND RESPONSE APPLICATIONS

A Dissertation Presented
By
Kunind Sharma
To

The Department of Civil & Environmental Engineering

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the field of

Interdisciplinary Engineering

Northeastern University

Boston, Massachusetts

April 2025



ABSTRACT

Buildings consume nearly 40% of global energy and produce similar emissions. While
technological advances address efficiency, occupant behavior causes energy use variations
up to 300% between identical buildings. This gap between predicted and actual building

performance impacts building design, operations, and grid demand management programs.

Through analyses of smart thermostat data from 1,400 single-occupant homes, the research
demonstrates that occupants respond to 8°F thermostat setpoint changes within a median
of 15 minutes, while 2°F changes trigger responses within a median of 30 minutes. This
highlights an understudied temporal relationship between thermostat setbacks and
response time of occupant behaviors. Models of such behavior dynamics are required to

incorporate occupant impacts into building performance simulation.

A key contribution of this dissertation is the Thermal Frustration Theory (TFT), which posits
that thermal discomfort driven behaviors are caused by the time-accumulation of
discomfort, not simply a temperature deviation threshold or a delay from an initiating event.
Using a dataset of 634 thermostats, each with 25+ manual setpoint changes, a comparative
analysis of TFT and comfort zone and a delayed response theories demonstrated that
personalized TFT models better predict when manual setpoint change occur. This was
measured by the area under the curve statistical measure (AUC); all three models perform
similarly by a Matthews Correlation Coefficient measure. Higher AUC performance is
especially important for modeling occupant behavior in demand response programs where
false negatives of rare occupant interactions could adversely affect grid stability. EnergyPlus
based simulations were conducted with TFT-derived occupant models, demonstrating the
ability to identify parameters of known TFT models from only data observable with smart

thermostats, even under the presence of noise from routine overrides.

Overall, the dissertation highlights that thermostat interactions are neither static,
instantaneous, nor driven solely by the environment. Instead, temporal accumulation of
discomfort and routine-based behavior play important roles. The methodology and results
offer a pathway towards more accurate modeling of human-building interactions for policy

assessment, building design, and demand response programs.
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Chapter 1:
Grand challenges for simulation of

grid-interactive efficient buildings

1.1 Background and motivation

The buildings accounts for approximately 40% of worldwide energy consumption and
greenhouse gas emissions [1], [2]. The magnitude of building energy use, combined with
projected increases in global building stock of 2.5 trillion square feet by 2060 [3], requires
fundamental changes in building energy management [4], [5] . Building-level energy
reduction strategies directly impact grid stability, energy resource allocation, and emissions

reduction targets established by international climate agreements [6], [7], [8].

Historically, building energy efficiency improvements centered on HVAC systems, insulation,
and building management systems [9], [10], [11]. Research demonstrates that occupant
behavior significantly impacts building energy consumption [12], [13], [14]. Analysis of
identical buildings reveals energy use variations of up to 300% due to occupant behavior
differences [15], [16]. This quantification establishes occupant behavior as a primary factor
in building energy use, shifting building science from purely technical approaches toward

integration of human factors [17], [18], [19].

The proliferation of smart building technologies and Internet of Things (IoT) devices enables
collection of occupant behavior and building performance data at previously unattainable
resolutions [20], [21], [22]. Smart thermostats, occupancy sensors, and energy monitoring
systems generate time—-series data characterizing occupant-building interactions [23], [24],
[25]. The volume and temporal resolution of this data requires development of new analytical

methods to execute computations efficiently [26], [27].

This introductory chapter sets the stage for the dissertation by addressing the complex
challenges in building energy management and occupant behavior modeling. It begins with
an exploration of Grid-interactive Efficient Buildings (GEBs), discussing their concept,

importance, and implementation challenges. The chapter then examines current issues in



building performance simulation, focusing on steady state comfort model limitations and
occupant behavior uncertainty. A comprehensive overview of occupant behavior modeling
follows, covering various models and energy management. Finally, it outlines the
dissertation's core research objectives: identifying dynamic thermal comfort behavior,
comparing thermal comfort theories, and developing a human-centric digital twin

framework.

1.2 Building Performance Simulation (BPS)

Building Performance Simulation (BPS) has evolved from simple steady-state degree days
calculations to sophisticated computational frameworks that capture the complex dynamics
of building energy systems. This evolution reflects both advances in computational
capabilities and the increasing demands from grid electrification, electric vehicles, etc.
placed on building performance prediction [28]. Modern BPS tools integrate multiple
physical domains - thermal, fluid, and control systems - to predict building energy
consumption, occupant comfort, and grid interactions [29]. The application of these tools
spans scales from individual component analysis to urban energy planning [30], enabling
evaluation of novel technologies and operational strategies for reducing building energy
consumption [31]. However, significant challenges remain in simulation accuracy,
particularly regarding occupant behavior and grid integration [13]. These challenges become
increasingly critical as buildings transition from passive energy consumers to active

participants in grid operations [32].

1.2.1 White box models for building design

Current building performance simulation relies heavily on white box models that implement
physical principles through numerical methods. Unlike data—-driven approaches, these
models solve coupled differential equations representing conservation of mass, energy, and
momentum within building systems [33]. The theoretical foundation enables analysis of
novel designs and operational strategies without requiring historical performance data [34].
This capability proves essential for evaluating emerging technologies and control

approaches needed for grid—interactive buildings.

White box modeling approaches have evolved significantly in both mathematical

sophistication and computational implementation. Early tools employed simplified steady-



state calculations with basic assumptions about thermal processes. Modern simulation
engines now capture complex dynamic interactions between building envelope, mechanical
systems, and environmental conditions [35]. These advancements enable analysis of
phenomena critical to building—grid integration, including thermal mass effects, system

response times, and control interactions [36].

Different simulation engines implement distinct approaches with trade-offs to solve these
physical equations. EnergyPlus utilizes an iterative solution methodology that
simultaneously resolves zone conditions and HVAC system responses through successive
substitution iteration [37]. This approach improves solution stability compared to sequential
methods but increases computational requirements. TRNSYS employs a modular
architecture enabling detailed component-level modeling through separate algebraic and
differential equation solvers [38]. ESP-r implements finite volume methods for resolving
spatial temperature gradients within building elements, offering enhanced accuracy for
analyzing thermal bridges and non-uniform conditions [39]. Each approach presents

tradeoffs between computational efficiency, numerical stability, and physical accuracy.

The implementation of white box models requires extensive input data describing building
geometry, material properties, system characteristics, and operational parameters. This
comprehensive data requirement enables detailed analysis but introduces significant
challenges in model calibration and validation especially for existing buildings [40]. Material
properties must account for temperature dependence, aging effects, and installation
variations. System performance curves need to capture part-load behavior, control
responses, and equipment degradation. Weather data must represent both typical and
extreme conditions depending on the goal of the analysis. These input uncertainties
propagate through simulations, affecting prediction accuracy particularly during grid—

responsive operation modes [41].

1.2.2 Performance standards compliance

Performance standards and building energy codes establish frameworks for evaluating
building design and operation. These standards have evolved from simple prescriptive
requirements to sophisticated performance-based approaches that leverage BPS

capabilities [42]. The transition enables innovative design solutions while ensuring minimum



energy performance levels through standardized evaluation methods [43]. This evolution
parallels the increasing complexity of building systems and the growing importance of

operational optimization for grid integration.

ASHRAE Standard 90.1, a cornerstone of building energy codes, exemplifies modern
performance-based compliance approaches. The standard's Energy Cost Budget and
Performance Rating Methods require detailed energy modeling to demonstrate that
proposed designs achieve equivalent or superior performance compared to baseline
buildings [44]. These methods mandate specific modeling protocols, including standardized
occupancy schedules, consistent baseline definitions, and verified calculation procedures
[45]. The requirements ensure reproducibility while acknowledging the inherent

uncertainties in building performance prediction.

International standards like ISO 52016 complement national codes by establishing
consistent methods for calculating building energy needs. These standards define
calculation procedures for heating, cooling, and lighting energy use, providing a framework
for comparing building performance across different jurisdictions [46]. The harmonization of
calculation methods supports technology transfer and market transformation while enabling

consistent evaluation of building strategies [47].

The implementation of performance-based compliance presents significant challenges for
building simulation. Models must balance accuracy with practical constraints on data
availability and computational resources. Simulation tools require certification through
standard method tests that verify calculation accuracy across diverse building types and
operational scenarios [48]. These tests evaluate the tool's capability to model complex
phenomena including thermal mass effects, solar gains, and system interactions that

influence both energy consumption and grid integration potential [17].

Recent developments in performance standards increasingly address grid interaction
capabilities. Requirements for demand response readiness, energy storage systems, and
renewable energy integration necessitate enhanced simulation approaches [47]. Traditional
compliance metrics focused on annual energy consumption must expand to capture

temporal variations in building loads and grid conditions. This evolution creates new



challenges for simulation tools while highlighting the importance of accurate performance

prediction for grid—interactive buildings [49].

1.2.3 Urban scale building performance simulation

Urban-scale building performance simulation represents a significant expansion beyond
individual building analysis, addressing the growing need for city-wide energy planning and
carbonreduction strategies. This scale of analysis introduces new computational challenges
and methodological requirements while enabling evaluation of district-level energy systems
and policy interventions [50]. The LA100 study demonstrates this capability through
comprehensive analysis of building electrification pathways and grid integration strategies

across Los Angeles's diverse building stock [51].

Traditional building—level simulation approaches become computationally intractable when
applied directly to urban scales. This limitation has driven development of novel modeling
methods that balance computational efficiency and modeling effort with prediction
accuracy. Archetypal building representations reduce model complexity by grouping similar
buildings into representative categories, while statistical methods capture variations
within these groups [52]. These approaches enable analysis of 10s of thousands to millions
of buildings while maintaining sufficient detail to inform policy decisions and infrastructure

planning [53].

Urban-scale simulation must address additional phenomena beyond individual building
physics. District heating and cooling systems introduce thermal network dynamics. Local
climate effects, including urban heat islands and building-to-building shading, influence
energy consumption patterns. Distributed energy resources create new patterns of energy
flow and storage [54]. These interactions require integration of multiple modeling domains
like building energy simulation, district thermal networks, power distribution systems,

transportation infrastructure, and urban microclimate effects [55].

The Los Angeles 100% Renewable Energy Study exemplifies current capabilities in urban-
scale simulation. This analysis evaluated pathways for achieving carbon-neutral buildings
across the city through building electrification scenarios, renewable energy integration, grid
infrastructure requirements, energy storage deployment, demand response potential [56].

The study revealed critical interdependencies between building performance, grid capacity,



and renewable energy integration. Results demonstrate how urban-scale simulation can
inform policy decisions by quantifying impacts across multiple sectors and timeframes [51].
However, the study also highlighted current limitations in representing occupant

behavi[57]or and building—grid interactions at urban scales [58].

Recent developments in urban building energy modeling (UBEM) frameworks address these
challenges through improved data integration and computational methods. These
frameworks leverage geographic information systems, building stock databases, and climate
projections to create more comprehensive urban energy models [59]. Machine learning
techniques increasingly supplement physics—-based approaches, particularly for predicting

occupant behavior patterns and energy use trends across building populations [60].

1.2.4 Uncertainty in BPS

Building performance simulation faces fundamental challenges in prediction accuracy that
stem from multiple sources of uncertainty. Studies comparing predicted and measured
building energy use reveal discrepancies ranging from 10% to 80%, undermining confidence
in simulation results for critical applications like grid integration and demand response [61].
These variations arise not from limitations in physical models alone, but from complex

interactions between model assumptions, input parameters, and human behavior [62].

Physical parameter uncertainties represent the most straightforward category to quantify.
Material properties exhibit temperature dependence and aging effects that standard
databases may not capture. Equipment performance varies with operating conditions and
maintenance status. Weather data, typically based on historical records or typical
meteorological years, may not adequately represent future conditions under climate change
[63]. While these uncertainties can be bounded through laboratory testing and field

measurements, their combined effects propagate through simulations in complexways [64].

Model resolution introduces additional uncertainties through necessary simplifications of
physical processes. Thermal comfort zone assumptions affect predicted thermal dynamics.
Time step selection influences system response characteristics. Numerical solution
methods introduce discretization errors. These modeling choices represent tradeoffs
between computational efficiency, simulation accuracy, and ability to provide the required

data input for the desired fidelity [65]. Recent research demonstrates that appropriate



resolution depends on the intended application, with grid integration studies requiring finer

temporal resolution than traditional energy analysis [13].

Occupant behavior emerges as the largest source of uncertainty in building performance
simulation. Traditional approaches rely on fixed schedules and deterministic rules that fail to
capture the dynamic nature of human-building interactions. Studies indicate that occupant
actions regarding temperature setpoints, equipment use, and window operation can impact
energy consumption more significantly than variations in physical parameters [66]. This
uncertainty becomes particularly critical for grid—interactive buildings, where occupant

acceptance of control actions directly affects demand response effectiveness [67].

Current approaches to managing uncertainty include sensitivity analysis, uncertainty
quantification frameworks, and probabilistic simulation techniques. Monte Carlo methods
enable exploration of parameter spaces but require significant computational resources.
Bayesian approaches provide frameworks for updating predictions with measured data but
face challenges in real-time applications [68]. Machine learning increasingly supplements
physics-based models, particularly for predicting occupant behavior patterns, though
questions remain about generalizability across different building types and populations [13].
Despite their theoretical advantages, industry adoption of these sophisticated uncertainty
management techniques remains limited. Sensitivity analysis has gained moderate
acceptance in commercial practice, with approximately 15-20% of building simulation
practitioners regularly implementing simplified uncertainty assessments [69]. However,
more advanced methods like Monte Carlo simulation and Bayesian approaches remain
primarily in the academic and research domains due to computational requirements and
expertise barriers. Current building energy codes and standards acknowledge parameter
uncertainty but do not yet mandate probabilistic approaches for compliance or certification

[30].

The challenges of uncertainty in building performance simulation gain new significance as
buildings transition toward grid-interactive operation. Energy storage control strategies
depend on accurate forecasts of building thermal behavior. These applications demand
response new approaches to uncertainty quantification that balance computational

feasibility with prediction reliability [70].



1.3 Grid-interactive Efficient Buildings (GEBs)

Grid-Interactive Efficient Buildings (GEBs) represent a shift in building—grid relationships
enabled by advances in building technology. GEBs optimize energy efficiency and grid
interaction through demand flexibility, energy storage, renewable integration, and advanced
controls [73]. This optimization transforms buildings from passive consumers to active

participants in grid operations [72].

GEBs modulate energy consumption in response to grid signals including electricity price
variations and demand levels [73], [74]. This modulation occurs through distributed energy
resources (DERs): solar generation, battery storage, and controllable loads such as HVAC
systems and electric vehicle chargers [75], [76]. Analysis indicates GEB implementation
could reduce peak electricity demand by 20% [77], supporting grid stability and renewable

energy integration [78], [79].

1.3.1 Current implementation of grid-interactive efficient buildings

Current implementations of Grid—interactive Efficient Buildings (GEBs) demonstrate varying
levels of integration across commercial, residential, and industrial sectors. The U.S.
Department of Energy's technical reports identify four foundational characteristics in existing
GEB deployments: energy efficiency measures reducing baseline consumption, demand
flexibility enabling load modulation, smart technologies facilitating automated control, and

distributed energy resources providing on-site generation and storage capabilities [77], [80].

Commercial building implementations constitute the majority of current GEB deployments,
driven by existing building automation infrastructure and scale economies. The Building
Technologies Office's assessment of 104 commercial buildings shows implementation rates
of 23% for advanced lighting controls, 35% for variable speed HVAC systems, and 18% for
thermal storage systems [81]. These systems achieve demand reductions through
coordinated control strategies including zone temperature adjustment, fan speed
modulation, and lighting power reduction. Field measurements from DOE's Commercial
Building Integration program document peak load reductions ranging from 0.3 W/ft> to 1.2

W/ft? depending on building type and installed systems [82].



Implementationinthe residential sector faces distincttechnical and operational constraints.
The Building America program's evaluation of 2,400 residential units reveals smart
thermostat penetration rates of 13% with integration capabilities for demand response [83].
HVAC systems in these implementations demonstrate load shifting potential between 0.8 kW
and 2.1 kW per household, varying with climate zone and equipment type [84]. The Grid-
interactive Efficient Buildings Roadmap identifies residential water heaters as another
significant resource, with 5.6 million units currently equipped with demand response

capabilities providing 5.8 GW of controllable load [85].

Field validation programs reveal implementation challenges across both sectors. The
Building Technologies Office's test bed facilities documentintegration issues between legacy
building systems and modern control platforms. Communication protocol incompatibilities
affect 67% of retrofitted systems, while cybersecurity requirements increase
implementation costs by 12-28% [85]. The Federal Energy Management Program's
assessment of 16 federal facilities identifies reliability issues in demand response prediction,

with actual load reduction varying from predicted values by 15-45% during peak events [86].

Currentimplementations demonstrate geographic concentration in regions with established
demand response markets. The California Demand Response Potential Study documents 2.8
GW of GEB-enabled load flexibility across 8,400 commercial and industrial sites [87]. PIM's
economic demand response program reports 2.6 GW of building-based resources, though
only 34% demonstrate grid—interactive capabilities beyond simple curtailment [88]. ERCOT's
deployment shows 1.2 GW of automated demand response capacity from buildings, with

response times ranging from 5 to 30 minutes [89].

Cybersecurity implementations follow the National Institute of Standards and Technology's
Risk Management Framework, with 86% of current GEB deployments implementing network
segmentation between building automation and grid communication systems [90]. The
Department of Energy's Cybersecurity Capability Maturity Model (C2M2) assessment of 234
building control systems identifies critical security controls including multi-factor

authentication, encrypted communications, and automated patch management.

Building-level control implementations demonstrate varying degrees of sophistication. The

Building Technologies Office's analysis of 1,847 commercial buildings reveals that 42%
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utilize model predictive control strategies, while 38% implement rule-based controls with
price response capabilities [91]. Advanced control implementations achieve load forecast
accuracy of 85-92% for day—ahead predictions, enabling participation in wholesale market
products. These systems demonstrate response precision of +5% for regulation services and

+10% for energy dispatch [92].

Integration with utility Advanced Metering Infrastructure (a system that measures, collects,
and analyzes the energy usage, and communicates with the metering devices such as
electricity meters, gas meters, heat meters, and water meters, either on request or on a
schedule) presents both opportunities and technical constraints. Current AMI deployments
support measurement intervals of 15 minutes for 73% of installations, while grid—interactive
applications often require higher resolution data. The Smart Electric Power Alliance's
assessment of 142 utility programs identifies measurement gaps affecting GEB performance
verification, with 34% of implementations requiring supplemental metering for full
functionality [93]. Meter data management systems process 2-6 GB of data per million
customers daily, with GEB implementations increasing data volume by 45-120% depending

on sampling frequency [94].

Market participation datareveals operational patterns across different grid services. ISO New
England's Alternative Technology Regulation Resources program documents GEB assets
providing frequency regulation with signal following accuracy of 92-97% within +*2%
deadband [95]. MISO's demand response deployments show building-based resources
achieving ramping rates of 0.8-2.4% of capacity per minute, with response durations
sustained for 0.5-4 hours based on building thermal characteristics and control strategies

[96].

These implementation experiences and documented performance metrics establish
foundations for expanding GEB deployment while highlighting opportunities for enhanced
grid services through improved control strategies, standardized communications, and
refined market mechanisms [72]. The following section examines potential benefits of
widespread GEB implementation, building on these operational findings to quantify grid-

levelimpacts and building—owner value streams.
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1.3.2 Potential benefits of grid—interactive efficient buildings

Grid-interactive Efficient Buildings offer quantifiable benefits across multiple stakeholders
through enhanced grid services, reduced operational costs, and improved system reliability.
The national laboratory research consortium quantifies potential peak demand reductions of
78 GW by 2030 through full deployment of grid—interactive capabilities in the U.S. commercial
and residential building stock [97]. This technical potential represents 10-20% of system

peak demand across different regions [98].

Economic benefits accrue at both system and building levels. The Lawrence Berkeley
National Laboratory's assessment of wholesale market participation identifies annual
revenue potential of $8-16 per square foot for commercial buildings providing frequency
regulation services, and $2—4 per square foot for energy arbitrage [99]. Aggregated building
portfolios demonstrate enhanced value streams through coordinated participation in
multiple market products, with portfolio revenues exceeding individual building participation

by 30-45% [100].

Grid-level benefits extend beyond peak reduction. Pacific Northwest National Laboratory's
analysis of transmission system impacts shows that GEB deployment could defer $30-100
billion in infrastructure investments through 2040 [101]. These deferral values derive from
both peak reduction and dynamic grid services including voltage support and contingency
reserves. GEB contributions to grid stability enable higher renewable energy penetration,
with modeling studies indicating potential integration of an additional 95-150 GW of variable

renewable generation [102].

Environmental benefits stem from both energy efficiency improvements and enhanced
renewable integration capabilities. Oak Ridge National Laboratory's lifecycle analysis
quantifies potential carbon dioxide emissions reductions of 80-190 million metric tons
annually by 2030 through full GEB deployment [103]. This reduction pathway includes direct
savings from efficiency measures and indirect benefits from improved renewable energy
utilization. Buildings providing grid services enable 15-30% higher local solar photovoltaic

penetration through dynamic load management [104].

Distribution system benefits include improved power quality and reduced equipment stress.

The Electric Power Research Institute's field measurements document voltage regulation
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improvements of 2-3% through coordinated building load control [105]. Equipment lifetime
extensions of 5-15% result from reduced thermal cycling and peak loading conditions. These
improvements translate to maintenance cost reductions of $0.08-0.15 per square foot

annually for distribution utilities [77].

Reliability improvements manifest through enhanced outage management capabilities. The
National Renewable Energy Laboratory's resilience analysis demonstrates that GEBs can
maintain critical operations for 2-8 hours during grid disturbances through coordinated use
of thermal storage and load flexibility [106]. This capability provides $1,200-2,800 per event
in avoided outage costs for critical commercial facilities [107]. Integration with microgrids

extends this duration to 12-24 hours for essential services [108].

The quantification of GEB benefits continues to expand through operational data collection
and enhanced modeling capabilities. Advanced metering deployments provide granular
performance data, enabling validation of initial benefit projections. The National Institute of
Standards and Technology's benefit measurement protocols document realized values
achieving 85-92% of projected benefits across early implementations [109]. These validation

studies inform refined projections and implementation strategies.

Regional variations in benefit realization emerge from differences in market structures,
climate conditions, and building stock characteristics. The Brattle Group's analysis of seven
ISO/RTO regions identifies benefit multipliers ranging from 1.2 to 2.8 depending on local grid
conditions and market product availability [110]. Capacity value shows particular sensitivity
to regional conditions, with summer-peaking regions demonstrating 30-45% higher GEB

value compared to winter-peaking regions [111].

Resource adequacy benefits extend beyond traditional capacity values. The North American
Electric Reliability Corporation's assessment indicates that GEB deployment could reduce
reserve margin requirements by 0.8-1.2 percentage points through enhanced load prediction
accuracy and automated response capabilities [112]. This reduction represents $3-5 billion

in avoided capacity costs across the Eastern Interconnection [113].

While these benefits present compelling evidence for GEB deployment, realizing their full
potential requires addressing significant implementation challenges. The transition from

theoretical benefits to operational value streams encounters barriers in technology
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integration, market rules, and occupant acceptance [114]. These challenges, discussed in
the following section, represent critical focus areas for advancing GEB deployment and

achieving projected benefits.

1.3.8 Challenges in realizing GEB benefits

Implementation barriers for Grid—interactive Efficient Buildings span technical, operational,
and market dimensions. The Department of Energy's comprehensive barrier assessment
identifies interoperability limitations as a primary technical constraint, with 67% of existing
building automation systems requiring significant modifications to enable grid—interactive
functionality [115]. These modifications increase implementation costs by $0.75-2.30 per

square foot, affecting project economic viability [116].

Communication infrastructure presents both reliability and cybersecurity challenges. The
National Institute of Standards and Technology documents latency variations of 0.5-15
seconds in building-to—-grid communications, exceeding requirements for certain grid
services [117]. Cybersecurity assessments reveal vulnerabilities in 72% of building
automation protocols, necessitating additional security layers that increase system
complexity and cost [118]. The Idaho National Laboratory's penetration testing of 156

building control systems identifies an average of 3.8 critical vulnerabilities per system [119].

Measurement and verification challenges affect market participation. Current revenue-grade
metering installations achieve accuracy of *0.5% for energy measurements but face
difficulties in isolating grid service contributions from normal building operations. Lawrence
Berkeley National Laboratory's analysis of 2,345 demand response events reveals baseline
calculation errors of 8-23%, affecting performance payments and resource credibility. These

uncertainties result in market participation penalties averaging $0.42 per kW-month [120].

Occupant behavior introduces significant uncertainty in GEB performance. Field studies
from Pacific Northwest National Laboratory show override rates of 12-45% during demand
response events, varying with setpoint adjustment magnitude and event duration [121].
Thermal comfort complaints increase by 28% during grid service provision, particularly in
buildings lacking integrated comfort monitoring systems [122]. These occupant interactions

reduce realized grid service delivery by 15-30% compared to technical potential [80].
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Market structure limitations constrain value capture. The Federal Energy Regulatory
Commission's assessment identifies participation barriers in 62% of wholesale market
products, including minimum size requirements and telemetry specifications exceeding
building capabilities [123]. Market rules designed for traditional generators result in

performance evaluation metrics misaligned with building operational characteristics [124].

Technical capacity constraints affect scaling potential. The Building Technologies Office
documents shortages of qualified technicians, with 67% of surveyed contractors reporting
insufficient expertise in grid-interactive controls [125]. Training programs currently reach
only 8% of the existing workforce annually, creating implementation bottlenecks [126].
Software integration challenges result in configuration errors affecting 34% of initial

deployments [127].

These implementation challenges compound through interaction effects. The Electric Power
Research Institute's systems integration study demonstrates how cybersecurity
requirements increase communication latency by 35-80 milliseconds, affecting frequency
regulation performance [128]. The cost of addressing these interrelated challenges increases
total implementation expenses by 28-45% compared to individual solution approaches

[129].

These challenges, while significant, represent opportunities for technological and market
evolution rather than fundamental barriers to GEB deployment. The transition to occupant
behavior modeling, discussed in the following section, addresses several of these challenges
through improved prediction and control strategies. Understanding current occupant
modeling approaches provides context for developing more effective GEB implementation

strategies.

1.4 Occupant Behavior Modeling (OBM)

Field measurements indicate that occupant actions account for variations of 30-80% in
building energy consumption patterns under identical physical conditions [17]. Traditional
building simulation approaches using fixed schedules and deterministic rules fail to capture
these behavioral dynamics, leading to significant discrepancies between predicted and

actual building performance [13].
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Current occupant behavior models emerge from diverse theoretical foundations.
Engineering approaches focus on quantifiable actions such as thermostat adjustments,
window operations, and equipment usage patterns. Statistical methods derive behavioral
patterns from large datasets, while psychological models attempt to capture decision—
making processes. The International Energy Agency's Annex 79 establishes a taxonomy of
these modeling approaches based on their theoretical frameworks and practical

applications [130].

Data collection methodologies significantly influence model development. Environmental
sensor networks provide continuous measurements of occupant actions but face privacy
concerns and technical limitations. The Berkeley Weather and Occupancy Dataset
documents measurement uncertainties of 15-40% in traditional occupant sensing systems
[131]. Advanced sensing technologies including computer vision and loT devices achieve

improved accuracy but introduce additional privacy and cybersecurity considerations [132].

1.4.1 Comfort models

Building management systems implement comfort models to determine HVAC operation
parameters and evaluate indoor environmental conditions. The Predicted Mean Vote (PMV)
model serves as the primary method for thermal comfort evaluation, quantifying satisfaction
through six physical parameters: air temperature, mean radiant temperature, air velocity,
relative humidity, metabolic rate, and clothing insulation. Field measurements from 412
commercial buildings indicate PMV implementation results in thermal condition variations
of £1.2°C from predicted values during occupied hours (Figure 1) [133]. These variations stem
from the model's steady-state assumptions and limited incorporation of individual

preferences.
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(Figure from [134])

w
(&)}
1

— Air Conditioned y=21+0122x R?=03
~ Mixed Mode !
— Naturally Ventilated y=197+0282x R =044 et

w
o
1

N
o
1

Building Neutral Temperature (°C)
N
()]

-l
(9]
1

T

5 10 15 20 25 30 35
Mean Monthly Outdoor Temperature (°C)

Figure 2: Adaptive comfort model
(Figure from [135])

The adaptive comfort model extends thermal prediction capabilities by establishing
temperature ranges based on running mean outdoor temperatures (Figure 2).
Implementation data from 234 naturally ventilated buildings demonstrates temperature
variations of 4-7°C in acceptable ranges across climate zones [136]. The ASHRAE Global

Thermal Comfort Database Il validates these findings through statistical analysis of 107,000
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measurements from 52 countries, establishing correlations between outdoor conditions and
indoor comfort requirements [137]. These correlations enable more precise comfort

predictions in buildings without mechanical cooling.

Currently, statistical learning methods process environmental and occupant response data
to predict thermal preferences. Bayesian networks integrate multiple comfort parameters,
achieving prediction accuracies of 72% across different building types [138]. Neural
networks trained on individual response patterns demonstrate 85% accuracy in personal
comfort estimation [139]. The Berkeley Personal Comfort Systems project demonstrates that
machine learning methods incorporating physiological measurements improve prediction

accuracy by 23% compared to PMV-based approaches [140].

Markov chain models capture temporal patterns in comfort preferences, with first-order
chains achieving 68% accuracy in next—state predictions [19]. These models enable building
systems to anticipate comfort requirements based on historical patterns and environmental
conditions. Implementation studies from Lawrence Berkeley National Laboratory quantify
energy savings of 15-30% through predictive comfort control compared to fixed setpoint

operation [141].

Research priorities focus on several key directions. Integration of physiological
measurements from wearable devices enables direct monitoring of thermal states. Recent
studies demonstrate strong correlations between skin temperature, heart rate variability, and
thermal comfort perception [142]. Development of adaptive algorithms enables real-time
model adjustment based on occupant feedback. The Personal Comfort Systems research at
UC Berkeley demonstrates that machine learning models incorporating individual feedback
can reduce mean absolute error in comfort prediction from 0.8 to 0.5 on the thermal
sensation scale [140]. Transfer learning approaches address a fundamental challenge in
comfort model implementation: the extensive data collection typically required for
personalization. Research demonstrates that pre-trained comfort models can adapt to new
occupants with limited data, reducing the required training period from months to weeks
[143]. Studies from Carnegie Mellon University show transfer learning techniques achieve
76% prediction accuracy with only two weeks of data, compared to 82% accuracy with six
months of direct training [144]. These methods enable rapid deployment of personalized

comfort models across different buildings and populations while maintaining prediction
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accuracy [145]. Multi-domain comfort prediction represents another research frontier,
requiring integration of thermal, visual, and acoustic parameters. Current research through
IEA EBC Annex 79 establishes frameworks for this integration, though significant challenges

remain in real-time implementation [146].

1.4.2 Occupancy models

Building occupancy prediction represents a fundamental challenge in building operation
optimization. Traditional occupancy detection through passive infrared sensors achieves
true positive rates of 33% with false positive rates of 3%, establishing baseline performance

metrics for occupancy modeling systems.

Current modeling approaches employ diverse mathematical frameworks to capture
occupant presence patterns. First-order Markov chains dominate commercial
implementations, predicting next-state occupancy with accuracies of 65-82%. These
models capture temporal dependencies in occupancy patterns while maintaining
computational efficiency suitable for real-time building control. Hidden Markov Models
achieve improved accuracies of 72-88% by incorporating unobservable states, though their
implementation requires substantially larger training datasets and increased computational
resources [147]. The Pacific Northwest National Laboratory demonstrates that machine
learning methods, particularly deep neural networks, achieve presence prediction
accuracies of 75-90% when trained on multi-sensor data streams including CO2 levels,

power consumption patterns, and network activity [148].

Field implementations integrate multiple sensing technologies to improve prediction
reliability. Modern systems combine traditional motion detection with environmental
sensing, WiFi tracking, and power monitoring. These multi-modal approaches enable
occupant count estimation with accuracies of 68-82% in open office environments. The
National Renewable Energy Laboratory's assessment of 234 commercial buildings reveals
that sensor fusion approaches reduce false negative rates by 45% compared to single—
sensor systems [149]. However, privacy concerns significantly influence system design and
deployment strategies, necessitating careful balance between accuracy and occupant

anonymity.



19

Research directions focus on developing privacy-preserving sensing technologies while
improving prediction accuracy. Transfer learning approaches show promise in adapting
occupancy models across different buildings and usage patterns, reducing calibration
requirements for new installations. Edge computing implementations process occupancy
data locally, addressing both privacy and latency concerns. These developments aim to
enable more sophisticated building control strategies while respecting occupant privacy

requirements.

1.4.3 Occupant behavior modeling

Occupant behavior significantly influences building energy consumption and indoor
environmental quality. Field measurements across identical buildings demonstrate energy
consumption variations of 230-300% due to differences in occupant behavior patterns [150].
These variations necessitate systematic frameworks and modeling approaches to capture

the complexity of human-building interactions.

The Drivers—Needs—-Actions-Systems (DNAS) framework represents a foundational ontology
for representing energy-related occupant behavior. This framework categorizes behavior
through four key components: environmental and personal drivers triggering behaviors,
occupant needs requiring satisfaction, actions that occupants take in buildings, and building
systems affected by these actions [151]. The implementation of DNAS through standardized
XML schema enables integration with building performance simulation, providing a

structured approach to behavior modeling [152].

Building upon DNAS, researchers have developed complementary frameworks addressing
specific aspects of occupant behavior (Figure 3 & Figure 4). The Occupant Behavior
Description Language (OBDL) provides a standardized format for implementing behavioral
models in building simulation [13]. The Building User Information Extended Sub-ontology
(BURIES) establishes semantic modeling approaches for occupant-building interactions,
enabling integration with building information modeling [153]. These frameworks
demonstrate the evolution from simple schedule-based representations to sophisticated

behavior prediction methods.
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Behavioral theories provide essential foundations for understanding occupant decision-
making processes. The Theory of Planned Behavior, applied to building interactions, reveals
how occupant intentions translate into actions through perceived behavioral control and
subjective norms [66]. Social Practice Theory explains how daily routines and habits
influence building operation patterns, demonstrating that energy consumption stems from

established practices rather than deliberate decisions [155].

Data collection methodologies significantly influence model development. Traditional
methods using surveys and interviews provide insights into occupant preferences but face
limitations in temporal resolution. The ASHRAE Global Thermal Comfort Database Il
exemplifies modern data collection efforts, containing over 107,000 sets of measured indoor
environmental conditions, occupant survey responses, and building characteristics from 52
countries [137]. These comprehensive datasets enable validation of behavior prediction

methods across diverse contexts.

Recent advances in machine learning have expanded modeling capabilities. Deep learning
approaches achieve improved prediction accuracy compared to traditional statistical
methods, though they require substantial training data [156]. Transfer learning techniques
enable model adaptation across different buildings and populations, addressing limitations
in data availability [143]. These computational advances facilitate more sophisticated

prediction of occupant responses to building conditions and control strategies.

1.4.3.1 Thermostat Interaction Models

Thermostat interactions represent a primary means through which building occupants
influence their indoor environment and energy consumption. Analysis of the ecobee Donate
Your Data dataset, containing data from over 27,000 thermostats, provides unprecedented
insight into these interaction patterns. Field measurements demonstrate that occupants
interact with their thermostats an average of 0.9 times per day, with these interactions driving
energy consumption variations of 10-80% between similar buildings [157]. This variation
highlights the critical role of occupant behavior in building energy performance and the need

for sophisticated interaction prediction methods.

Current smart thermostat implementations reveal complex patterns of occupant override

behavior, particularly during demand response events. Studies of utility demand response
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programs demonstrate that occupants frequently override automated temperature
adjustments, with override rates varying significantly based on event duration and
magnitude. The National Grid's Smart Energy Solutions pilot program found that 30% of
participants override 8-hour demand response events, while only 10% override 3-hour
events [158], [159]. These findings indicate that occupant acceptance of automated control

depends heavily on both the duration and degree of temperature adjustment.

Building management systems increasingly employ machine learning methods to predict
and manage these interaction patterns. Time series analysis of smart thermostat data
reveals that manual setpoint changes cluster around specific periods, particularly morning
and evening transitions. The relationship between indoor temperature and override
probability follows clear patterns, with override likelihood increasing by 28% for each degree
Celsius deviation from preferred temperature [160]. These insights enable more
sophisticated control strategies that balance energy efficiency with occupant comfort

preferences.

Recent implementations of neural networks for override prediction achieve 72% accuracy
during normal operation by processing multiple data streams including historical
interactions, environmental conditions, and occupancy patterns [161]. These models
demonstrate particular value during demand response events, where accurate override
prediction can significantly impact program effectiveness. Field studies show that predictive
pre—cooling strategies based on these models can reduce override rates by 15-25% during

peak events [18].

Transfer learning approaches represent a promising direction in addressing the fundamental
challenge of model generalization across different buildings and populations. Traditional
thermostat interaction models require extensive data collection periods, often spanning
several months, to achieve reliable prediction accuracy. However, recent research
demonstrates that transfer learning techniques can achieve 70% prediction accuracy with
only two weeks of data by leveraging patterns learned from existing buildings [162]. This
advancement significantly reduces the implementation barrier for new installations while
maintaining prediction reliability. Context-aware algorithms emerge as another critical
research direction, particularly for grid-interactive buildings. These algorithms move beyond

simple temperature-based override prediction to incorporate multiple contextual factors.
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Analysis of 1,400 single-occupant households reveals that occupants respond differently to
temperature adjustments based on time of day, with tolerance for setpoint changes varying
by 2-3°C between morning and evening periods [163]. This temporal variation in comfort
preferences suggests the need for more sophisticated prediction models that account for
daily and seasonal patterns. The integration of economic factors into interaction prediction
presents additional complexity. Studies of time-of-use pricing programs demonstrate that
occupant override behavior varies significantly based on electricity costs. Field data from the
SMUD pricing pilot shows that occupants accept larger temperature deviations when
presented with clear economic incentives, with override rates decreasing by 30% when
potential savings exceed $0.50 per event [164]. This price sensitivity varies across
demographic groups and building types, necessitating more nuanced approaches to override

prediction.

1.4.3.2 Lighting Control Models

Lighting control represents a significant aspect of occupant-building interaction, directly
affecting both energy consumption and visual comfort. Analysis of the Building Data Genome
project, encompassing data from 1,636 buildings, shows that lighting energy use varies by
50-90% among similar buildings due to differences in occupant control patterns [165].
Understanding these patterns proves essential for both building operation and grid

integration strategies.

Contemporary lighting control modeling developed from Reinhart's pioneering Lightswitch—
2002 algorithm, which established fundamental relationships between occupant—controlled
lighting and environmental conditions. This model demonstrates that occupants primarily
activate lights when horizontal illuminance at the workspace falls below 200-250 lux, though
deactivation patterns show greater variability [166]. Field validation across multiple office
buildings confirms these illuminance thresholds while revealing significant variations in

individual behavior patterns.

Machine learning approaches increasingly supplement traditional probability—based
models. Neural networks trained on occupancy and environmental data achieve switch-
state prediction accuracies of 75-85%, significantly outperforming conventional regression

models [167]. However, field implementation of the CityLearn dataset shows that prediction
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accuracy decreases during unusual events or schedule disruptions, highlighting the need for

adaptive modeling approaches [168].

Recent research focuses on integrating lighting control prediction with grid-interactive
building operations. Studies from the Pacific Northwest National Laboratory demonstrate
that lighting loads can provide demand flexibility of 0.5-1.2 W/ft* during grid events while
maintaining occupant visual comfort [47]. This flexibility depends critically on accurate

prediction of occupant acceptance thresholds for illuminance variation.

1.4.3.3 Acoustic Response Models

Building management systems increasingly incorporate acoustic response modeling to
optimize indoor environmental quality. Current implementations primarily serve open-office
environments and educational facilities, where acoustic conditions significantly impact
occupant productivity and satisfaction. The General Services Administration's workplace
studies demonstrate that effective acoustic management through predictive modeling
increases workplace productivity by 2.8-4.7% and reduces noise-related complaints by 35%
[169]. These quantified benefits drive increasing adoption of acoustic modeling in intelligent
building control systems, though implementation rates remain below 15% in commercial

buildings.

Current acoustic modeling approaches synthesize multiple analytical methods to predict
occupant responses to sound environments. Dose-response models establish fundamental
relationships between noise levels and occupant annoyance, providing baseline prediction
capabilities for building control systems. Statistical regression methods extend this
framework by incorporating temporal and spatial variations in acoustic sensitivity, achieving
complaint prediction accuracies of 35-50%. Neural network implementations demonstrate
improved performance by capturing complex interactions between multiple acoustic
parameters, including reverberation time, background noise levels, and speech intelligibility

[170].

Research efforts focus on developing more sophisticated prediction capabilities through
integration of machine learning and psychoacoustic principles. Current priorities include the
development of adaptive models that learn individual acoustic preferences over time,

integration of acoustic parameters with other comfort metrics, and prediction of complex
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acoustic interactions in dynamic environments. The Chartered Institution of Building
Services Engineers identifies real-time model adaptation and predictive maintenance based
on acoustic signatures as critical development areas [171]. These advances aim to enable

proactive acoustic management rather than reactive response to occupant complaints.

1.4.3.4 Window Operation Models
Window operation by building occupants significantly impacts energy consumption and
indoor environmental quality. Analysis of ventilation patterns in office buildings reveals that
occupant window operation can influence building energy use by 20-50% through its effects
on heating, cooling, and ventilation requirements [172]. Understanding and predicting these
behaviors becomes increasingly critical as buildings transition toward mixed-mode and

natural ventilation strategies.

Field studies demonstrate that window operation follows distinct patterns based on
environmental and temporalfactors. A comprehensive review of 70 studies identifies primary
drivers of window operation: indoor and outdoor temperature, CO2 concentration, time of
day, and seasonal patterns [173]. Data from Danish residential buildings shows that
occupants operate windows primarily in response to indoor temperature, with opening

probability increasing from 10% to 80% as temperature rises from 20°C to 27°C [174].

Current modeling approaches employ logistic regression to predict window states based on
environmental conditions. These models calculate the probability of window opening or
closing as a function of measured parameters such as temperature, humidity, and CO2
levels. Field validation in office buildings demonstrates prediction accuracies ranging from
60% to 75% for window state transitions [175]. However, these models show significant

performance variations across different building types and climatic conditions.

Behavioral studies reveal that window operation forms part of a broader adaptive comfort
strategy. Occupants typically follow a hierarchical approach to thermal adaptation, with
window operation often occurring after adjustments to clothing or local fans. In naturally
ventilated office buildings, window adjustments correlate strongly with both thermal and air
quality parameters, with 65% of opening events occurring when indoor temperatures exceed

26°C or CO2 levels surpass 1000 ppm [176].
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Research continues to advance window operation prediction through more sophisticated
modeling approaches. Data mining techniques applied to long-term monitoring data reveal
temporal patternsin window use, including distinct morning and afternoon operation profiles
[177]. These findings enable more nuanced control strategies for mixed—-mode ventilation
systems, though challenges remain in balancing automated control with occupant

preferences for personal environmental control.

1.4.4 Conclusion

The evolution of occupant behavior modeling reveals both significant advances and
fundamental limitations in capturing human-building interactions. While models have
progressed from simple schedules to sophisticated prediction methods, current
implementations often treat different behaviors as independent phenomena rather than
interconnected aspects of occupant interaction. The DNAS framework provides a structured
ontology for representing energy—related behaviors, yet practicalimplementations frequently
reduce this complexity to simplified rules and deterministic patterns [178]. This reduction
obscures the dynamic nature of occupant behavior and limits model effectiveness in grid—

interactive applications.

Analysis of current modeling approaches reveals critical misalignments between
methodological assumptions and behavioral reality. Markov chain models, widely adopted
for occupancy prediction, demonstrate fundamental limitations when applied to comfort
behavior modeling. These models assume future states depend only on current conditions,
yet field studies demonstrate that thermal comfort responses exhibit cumulative effects and
memory characteristics that violate this Markov property [179]. Similarly, logistic regression
models commonly used for window operation prediction assume immediate responses to
environmental stimuli, contradicting observed patterns of adaptive behavior where

occupants show delayed responses and varying tolerance thresholds [180].

Machine learning methods, though increasingly prevalent, often perpetuate these
fundamental limitations despite their sophisticated computational approaches. Neural
networks trained on historical data can capture complex patterns but typically maintain the
assumption of independent, instantaneous responses to environmental conditions. Field

validation studies demonstrate that these approaches achieve high prediction accuracy for
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regular patterns but failduring unusual events or grid-responsive operations where occupant
behavior deviates from historical norms [177]. This limitation becomes particularly critical
during demand response events, where traditional model assumptions about behavior

patterns no longer hold.

Building Performance Simulation requires fundamentally different approaches to occupant
modeling. Current implementations typically isolate behaviors, assuming steady-state
conditions rather than dynamic adaptation. The Berkeley Building Research Center's
analysis of 12 widely-used simulation tools reveals that 92% treat thermal, visual, and
acoustic comfort as independent phenomena, contradicting field evidence of strong
interaction effects [156]. This segregation of comfort domains limits model effectiveness in

predicting overall occupant satisfaction and response patterns.

Future applications demand integrated approaches that capture the dynamic nature of
occupant behavior. Thermal comfort models must evolve beyond steady-state predictions
to incorporate temporal evolution of preferences and adaptation [181]. Research from the
Center for the Built Environment demonstrates that occupant satisfaction depends on the
interaction between multiple environmental factors, necessitating integration of thermal,
visual, and acoustic comfort predictions [150]. Most critically, behavior models must
transition from specific, isolated predictions to integrated representations of human-
building interaction that capture temporal dynamics, multi-domain comfort interaction,

individual variation, and learning effects [146].

1.5 Grand challenges

The integration of buildings with electrical grids reveals fundamental limitations in current
modeling and control frameworks. Analysis of Grid-interactive Efficient Buildings (GEBs)
implementations demonstrates that existing building performance simulation methods,
developed for steady-state operation, fail to capture the dynamic interactions between
occupants, building systems, and grid services. Field studies of 412 commercial buildings
reveal prediction errors exceeding 45% during demand response events, indicating

systematic limitations in current modeling approaches [182].

Building—grid integration extends beyond communication protocols to fundamental

questions of control system architecture. Traditional building automation systems employ



28

hierarchical control structures that process environmental parameters through
predetermined comfort models. These models, based on Fanger's PMV or adaptive comfort
theory, assume steady-state conditions and independent occupant responses. Field
validation across 234 office buildings demonstrates that these assumptions break down
during grid events, where thermal conditions deliberately deviate from steady-state
operation [181]. The Berkeley Building Science Group's analysis of 1,847 demand response
events reveals that occupant override patterns exhibit temporal characteristics that

contradict fundamental assumptions of current comfort models [141].

Current simulation frameworks demonstrate specific mathematical limitations in
representing grid—-interactive operation. The coupling between occupant behavior models
and building physics creates non-linear systems that traditional simulation engines cannot
adequately resolve. Analysis of 27 building energy modeling tools reveals that 89% employ
quasi-steady-state assumptions that break down during rapid load modulation [62]. These
limitations become particularly evident during frequency regulation services, where building

response must track grid signals at sub—-minute intervals [183].

The theoretical framework for occupant behavior modeling requires fundamental
reconsideration for grid—interactive applications. Current models, based on Markov chains
or logistic regression, assume state transitions depend only on present conditions. Field
measurements from smart thermostat datasets demonstrate that occupant responses
exhibit memory effects and cumulative behavioral patterns that violate these assumptions
[163]. The relationship between temperature deviations and override probability follows

complex temporal patterns that static models cannot represent [146].

The integration of behavior models with model predictive control presents specific
challenges within this dissertation's scope. Currentimplementations treat occupant comfort
as a constraint rather than an objective, leading to control strategies that fail to capture the
dynamic nature of thermal preferences. Analysis of 156 model predictive control
implementations reveals that 78% employ fixed comfort bounds that do not adapt to
observed occupant behavior [184]. This limitation directly affects the reliability of grid
services, as demonstrated by override rates of 20-45% during demand response events

[185].
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The fundamental research challenge lies in developing integrated frameworks that capture
the temporal evolution of occupant comfort responses while maintaining computational
feasibility for real-time control. Field studies demonstrate that thermal preference variations
follow patterns across multiple timescales, from immediate responses to seasonal
adaptation [140]. These temporal characteristics must inform both building control

strategies and grid service commitments.

1.6 Research objectives and Structure

This dissertation addresses fundamental challenges in modeling occupant thermal comfort
behavior for demand response applications. Through analysis of large-scale datasets from
smart thermostats, co-simulation frameworks, and machine learning techniques, the
research develops a data-driven approach to understanding and predicting occupant-

building interactions. The investigation comprises three interconnected studies.

1.6.1 Identification of dynamic thermal comfort behavior

The first study examines temporal characteristics of thermal comfort behavior through
a comprehensive analysis of smart thermostat datasets. This work establishes fundamental
patterns that deviate from traditional static comfort models [152], [178]. The investigation
quantifies how occupants exhibit dynamic thermal comfort behavior beyond the capabilities
of current static models. Through analysis of field data, the study identifies factors
influencing dynamic thermal comfort preferences in actual building operations. This
foundational work provides empirical evidence for the temporal nature of thermal comfort

responses. Two key research questions were asked:

e How do occupants exhibit dynamic thermal comfort behavior that static models
cannot capture?

e What factors influence dynamic thermal comfort preferences in field conditions?

1.6.2 Comparative analysis of thermal comfort theories

The second study evaluates three distinct approaches to thermal comfort modeling: Delayed
Response Theory (DRT), Comfort Zone Theory (CZT), and Thermal Frustration Theory (TFT).
While DRT and CZT represent current modeling standards, TFT introduces time as a critical

parameter in thermal discomfort modeling [186], [187]. This analysis systematically



30

compares prediction accuracy across these theories under various thermal scenarios. The
investigation specifically examines how incorporating time—-dependent factors in TFT affects
thermal comfort prediction accuracy during demand response events, where traditional

steady-state models often fail. Two key research questions asked:

e Howdo DRT, CZT, and TFT predictions differ across thermal comfort scenarios?

e How does incorporating time-dependent factors in TFT affect thermal comfort

prediction accuracy?

1.6.3 Data—-driven integrated occupant building framework

The final study implements insights from the previous investigations to develop a
comprehensive framework for dynamic thermal comfort simulations. Through integration of
agent-based modeling, thermostat data, and building simulations, the framework enables
pre-simulation of occupant thermal comfort models [167], [188]. This implementation
allows assessment of setpoint changes in simulated environments, optimizing energy
savings while maintaining occupant comfort during demand response events. The study
examines methods for integrating occupant behavior models with building simulation
frameworks and quantifies how model accuracy impacts energy consumption predictions

and demand response strategy optimization. Two key research questions asked:

e How can occupant behavior models integrate with building simulation frameworks?

e How does model accuracy impact energy consumption predictions and demand

response strategy optimization?
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Chapter 2:
Data—driven identification of occupant

thermostat-behavior dynamics

2.1 Abstract

Building occupant behavior drives significant differences in building energy use, even in
automated buildings. Users’ distrust in the automation causes them to override settings. This
results in responses that fail to satisfy both the occupants’ and/or the building automation’s
objectives. The transition toward grid—interactive efficient buildings will make this evermore
important as complex building control systems optimize not only for comfort but also for
changing electricity costs. This paper presents a data-driven approach to studying thermal
comfort behavior dynamics which are not captured by standard steady-state comfort

models such as predicted mean vote.

The proposed model captures the time it takes for a user to override a thermostat setpoint
change as a function of the manual setpoint change magnitude. The model was trained with
the ecobee’s Donate Your Data dataset of 5 min. resolution data from 27,764 smart
thermostats and occupancy sensors. The resulting population-level model shows that, on
average, a 2°F override will occur after ~30 mins. and an 8°F override will occur in only ~15
mins., indicating the magnitude of a discomfort causing setpoint change as a key driver to
the swiftness of an override. Such models could improve demand response programs

through personalized controls.

2.2 Highlights

e Analyzed occupant behavior in a dataset of 27k thermostats and occupancy sensors
e |nvestigated the relationship between override features, behavior factors, and energy
e Compared this analysis’ behavior factors to those of prior small-scale studies

e Calculated statistics of manual override timing and magnitude relationship
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2.3 Introduction

The residential sector consumed 32% of the 101 quadrillion BTU of energy consumed in the
US in 2018 [189]. The primary objective of this energy use was occupant comfort. Grid—
interactive efficient buildings (GEBs) promise to turn these loads into assets for the grid
through reducing, shedding, shifting, and modulating flexible building loads to balance

renewable energy and help satisfy grid constraints [190].

Currently, utilities use demand response programs (DRPs) to send messages, remotely
switch loads, or change thermostat setpoints to shed peak demand. For example, National
Grid’s Smart Energy Solutions (SES) pilot study in Worcester, MA, reduced peak loads by
27%-31% [159]. If enough occupants opt-out or override these automated changes, then the
DRP could face performance penalties. There were $3.7M of such penalties in 2017 [159].
Utilities model the effect of weather and other factors to improve the accuracy of their
commitment to reduce load on the grid. However, the same controls are sent to all
participants, regardless of their sensitivity to setpoint changes, reduced quality of service, or
economics. Such strategies resulted in up to 30% of SES pilot participants overriding or

opting-out of an 8-hr event, and 10% for a 3-hr event [159].

In residential DRPs that switch—off HVAC systems during peak events or setback the
thermostat (i.e., decrease/increase the setpoint heating/cooling season, respectively) [191],
[192], occupants may try to game the system by increasing the thermostat setpoint (i.e., in
heating season) in anticipation of a demand response (DR) event [193]. Or, occupants who
want to conserve energy may already have their thermostat set at the edge of their comfort
zone, leading to extreme discomfort during DR events [194]. These user behaviors and

subsequent overrides ultimately reduce the effectiveness of DRPs.

Personalized and predictive controls have been proposed to improve occupant satisfaction
with building controls. However, in reviews by Mirakhorli and Dong [195] and Kim. [140] only
two dynamic thermal comfort models are presented. In [196] a state—space model of thermal
comfort is developed, but only validated with lab data from 13 subjects. A transient thermal
comfort model is developed in [197] from 109 occupants, but for automotive applications.
Real-time data on occupant comfort could improve occupant satisfaction through

personalization. For example, Comfy® replaces the predicted mean vote estimator with real
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votes to determine thermostat setpoints for shared offices. Queries for real-time feedback
should be limited though, as occupants have limited cognitive interest in reducing energy

costs [198].

Better predictive models of thermal comfort behavior might arise from an understanding of
the internal processes that govern thermal comfort behavior. Cognitive Dissonance, Theory
of Planned Behavior, and Social Cognitive Theory have been used to model energy use [199],
but these don’t explicitly account for both choosing among options to improve comfort and
physiological aspects. Occupant decision making can be modeled as an optimization
problem with limited information and understanding of the system being optimized.
Occupants’ understanding of thermostats can be classified by two mental models: the
incorrect valve theory mental model, which says that the larger the change to the
thermostat’s setpoint the faster the room willbecome comfortable, and the correct feedback
theory mental model, which says that the room will reach the desired temperature as quickly
as possible [200]. The occupant-building response thus consists of a building—physiology-

cognition—-decision feedback loop, such a modeling framework is presented in [201].

Many environmental factors can motivate overrides, e.g. indoor temperature, solar
irradiation, air speed, humidity. However, these factors can be expensive or impractical to
measure or difficult to control in residential settings. This paper aims to show that changes
in temperature setpoint alone can be used as a cost effective approach to analyzing

population level characteristics of occupant overrides driven by discomfort.

The novelty of this work lies in defining the concept of time to override (TTO) and degree of
override (DOO) as key parameters of modeling dynamic occupant behavior (especially for DR
implementation), which was previously not feasible. Moreover, the inversely proportional
relationship between time to override and degree of override parameters discussed herein
can guide the implementation of DR setbacks for higher reliability as compared to the current

static DR setbacks with low reliability.

The paper is organized as follows: Section 2 introduces the data, describes data conditioning
and feature extraction techniques used, and outlines the proposed modeling framework.
Section 3 (especially Section 2.5.6) provides results and the insights extracted from the data;

and Section 4 contains conclusions and future work.
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2.4 Materials and methods

The goal of the methods below is to quantitatively understand the dynamics of occupant
comfort relevant to thermostat overrides. Foundational to such an analysis is the ecobee
Donate Your Data (DyD) [157]. The data is preprocessed to correct for noise and sensor bias.
Feature vectors such as the magnitude and timing of overrides are extracted and aligned with
behavior models. The results are compared to other studies of occupant thermal comfort

behavior.

2.4.1 Dataset

ecobee’s customers can choose to opt-in to the DyD data sharing program. Their data is
anonymized and disseminated to “help scientists advance the way to a sustainable future”
[203]. Similar large datasets are available from Pecan Street Inc. [204] and private utility
datasets [159], [205], but ecobee’s datasetis unique in that it includes occupant sensing and

accurate indoor temperature.

The entire dataset used for this paper contains records from ~27k homes in ~28 countries,
primarily in the US. The dataset for each user includes all data from when the user joined the
data sharing program through September 2018. Part of the data is user-reported metadata
including number of occupants, area of the house, age of the house, etc., and part is

collected by ecobee thermostats (sampled every 5 min) [203]:
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e timestamp
e cooling/heating setpoint
e runtime of each heating/cooling stage in the last 5 min.
e setpointtemperature
e eventdriven setpoint changes due to
o demand response events

o manual setpoint changes,
may last for 2hr, 4hrs, until next event, or indefinitely

o Awake/Away/Home/Sleep scheduled events

o Smart Away/Smart Home/Smart Recovery event
based on motion sensors or geofence

e PIR motion sensor data

e indoor temperature

e outdoor temperature

e and other data not relevant to this study
To avoid the more complex task of separating behavior of multiple occupants in one
household, only the single-occupant households, as reported by the user (1,410 homes), are
primarily considered. Most of these households are located in US (1,264 homes). To
understand behavioral dynamics related to thermal comfort, only homes where occupants

manually changed the instantaneous setpoint at least 10 times are considered.

2.4.1.1 Current research with the dataset

The DyD dataset allows researchers to model occupant behavior with least bias from the
Hawthorne effect [206]. Researchers have created occupancy prediction models, ABM
models of occupants, modeled behavior changes during the pandemic, and found personal
features that determine an occupant’s propensity to override [158], [207], [208], [209].

However, the dynamics underlying the action of overriding have not been addressed.

In their previous work, the authors compared the use of various machine learning algorithms
to predict the accuracy of classifying overrides and predicting the time to override [210].
Moreover, the best performing algorithm was then used to estimate the impact of
personalized dynamic occupant behavior models from the perspective of demand response

programs [211].
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2.4.2 Data conditioning

The data was converted from CSV to MATLAB files and pre—processed to identify the
temperature unit (Celsius or Fahrenheit) used, remove setpoint sampling errors (section
2.4.2.2), and de-noise the occupancy sensor data (section 2.4.2.3). For each setpoint
change (SC) that led to an override, the following variables were created: the setpoint prior to

the current SC, the occupied time since SC, and indoor temperature deviation since SC.

2.4.2.1 Identify user’s temperature units (Celsius or Fahrenheit)

To understand a user’s thermal discomfort and to identify data irregularities, it is important
to know the setpoint units—Celsius or Fahrenheit; Celsius and Fahrenheit thermostats can
be changed in 0.5°C and 1.0°F increments respectively. First, all setpoint changes are
converted to °C. If these °C increments modulo 0.5°C are less than 0.001, the users is
assumed to use °C; if the °F increments modulo 1.0°F are less than 0.001 the user is
assumed to use °F. About 2.5% of the users could not be identified as using °F or °C and their

data are discarded.

2.4.2.2 Remove setpoint sampling errors

Thermostat data is sampled every 5 mins by ecobee, and the occupant can manually change
the setpoint at any time in that interval. Equation (1) shows how the sampled setpoint in the
dataset X, is the time—average of the setpoint at the beginning x, and end x; of the 5-minute
interval, where the switch occurred at At minutes.

At 5—-At

Tt g

For example, Figure 5 shows sampled setpointincrements with non-standard values (i.e., not

f1 = le (1)
multiples of 0.5°C) indicating a setpoint change occurred between 0-5 min. and 10-15 min.
respectively. Without knowing the precise time that the setpoint change occurred, it is

impossible to estimate the actual setpoint at 5.0 minutes.". Instead, it is assumed that At =

Y If At in (1) is uniformly distributed and x, and X; are observed, the expected value of E[x;]
fs (5%1—At-xq)
0 5-At

(5) dAt does not converge.
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2.5 min, and (1) is solved for x; with observations of x, and ¥; and rounded to the nearest

1.0F or 0.5°C depending on the user, yielding the estimates shown.

2.4.2.3 De-noise occupancy sensor data
Focusing on the relationship between occupant comfort and thermostat setpoints, the data
should be filtered to include only times when occupants where in the home as detected by
any of the passive infrared (PIR) sensors on the ecobee thermostats and remote sensors in
the home. The accuracy of PIR sensors are significantly biased, with false positive detection
rates of only 3% but true positive detection rates of 33% [212]. To reduce the impact of false
negatives, the data is filtered to ‘fill in’ short periods where the occupant may have been
temporarily occluded from the sensor. The results in 83.1 show the effect of the length of this
filtering window, from 0 to 120 minutes, on the average length of detected occupancy. This
algorithm assumes the user did not leave and return to the house within this period, but
rather was home the entire time. To reduce the impact of the accuracy bias, the analysis
below relies only on the high accuracy occupied data; although, the length of occupied
segments will increase with filter width as the short gap between segments are filled in,

joining the segments.
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Figure 5: ecobee’s method of averaging temperatures
(for each data sample and the proposed estimation strategy)
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2.4.3 Extracting setpoint change (SC) features

Each time the setpoint changed (SC), the datapoint is tagged as a programmed setpoint
change (PSC) (e.g., due to a schedule or based on occupancy) or a manual setpoint change
(MSC) (e.g., the occupant changed the setpoint to make themselves more comfortable or
save energy). As mentioned in §2.2.3, only the MSC points where occupancy is continuously
detected (for a period of less than 2 hours) in the filtered data following the previous SC were
considered for analysis. Experiments by Kolarik have shown that after two hours, occupants
are fully adapted to the environment, thereby operating in steady steady-state with negligible

dynamics [213].

Initial analysis of the data (83.5) showed that ~60% of MSCs resulted in more energy
consumption (e.g., increased/decreased the setpoint during heating/cooling, respectively),
justifying the simplifying assumption of this study that during occupied periods, MSCs are
caused by occupants trying to improve their comfort. This framing yields two important
features from each MSC: the degree of override (Do0O), i.e., the magnitude of the MSC; and

the time to override (TTO), i.e., the time elapsed following the previous SC.

2.4.4 Behavior models

EachMSCis aconsequence of anumber of interdependencies between the house, the HVAC
system, and the user [66], [201] that form the feedback loop shown in Figure 6 Building
Physics: HVAC equipment size, ventilation/airspeed, infiltration, solar radiation, etc. drive
indoor temperature dynamics [214]. User physiology: skin temperature and internal
temperature change as a function of time, temperature, clothing, metabolism, etc. [215].
Cognition: internal cues driven by body temperature are combined with perceived barriers,
observed behavior, and other inputs into cognitive states (e.g., level of self-efficacy, cue to
action, and behavior) that integrate and trigger actions [201]. Action: to achieve comfort,
users may change clothing, open windows, or modify the thermostat. If the later, what they
change it to will depend on their understanding of how thermostats work, i.e. their mental
model. A valve theory mental model incorrectly assumes higher MSC magnitudes will results
in faster changes in room temperature, a vestige of radiators that worked this way when the
steam valve was opened. Previous research has shown that ~%™ of the population incorrectly

operates thermostats in this manner, while the remaining ~25™ utilize the correct feedback
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theory mental model of thermostats [200]. Thermostat: Most residential HVAC thermostats

maintain the temperature within the setpoint deadband by switching equipment on/off.

Without additional sensors or user surveys, this paper studies only the input-output behavior
of the building—physiology—cognition-action process. However, mental models could be
inferred from the data if users “set it and forget it”, indicating feedback theory or “fiddle” with
the setpoint resulting in overshoot behavior indicative of valve theory mental models or a

significant misunderstanding of what temperature they’d feel comfortable.

2.4.5 Analysis approach

The methods are applied to the data in the order presented above. First, each users’
temperature unit is identified and the setpoint data de—averaged. The relationship between
occupancy filter length (no filter, 15 min., 20 min., 30 min., and 120 min.) on the length of
occupied periods is then studied to identify a filter length that balances filling in false—
negatives in the raw data with the potential for false—positives in the filtered data (83.1).
Although, without ground-truth occupancy data, this can only be done heuristically. Even
after choosing a filter length, the impact of the decision on each later analysis should be

revisited.

After identifying each SC and then MSC, the time of day and duration until the next SC for
each MSC will yield insights into schedule-based causes and energy impacts of user
overrides (83.2). Studying the statistics of the TTOs for all the MSCs will show how dynamic
user behavior is, and potentially question the efficacy of static ASHRAE comfort models for

GEBs (83.3).

The events (e.g., away, awake, home, etc.) that lead to the SC preceding each MSC will yield
insights into the relationship between the user and the thermostat, and potentially user

mental models (§3.4). The DoO for each MSC will yield further insights into the energy

Building Social

Physics —»[Physiology—- Cognition [ > Action

Thermostat |-

Figure 6: Human-in-the-loop model of a building



40

impacts of users’ decisions based on the relative number of MSCs where setpoints are

increased or decreased during heating or cooling.

The core analysis of this paper is the relationship between TTO and DoO and statistical

quantification of the “time to override” given the “degree of override” (§3.5).

2.5 Results and discussion

2.5.1 Pre—processing

Figure 7 shows the effect of the filter length on the detected periods of occupancy. The large
number of short periods in the raw data indicates many false negatives that split up extended
periods when the occupants are home (e.g., a few hours at home after work and before bed).
As the filter length increases to 10 min., 20 min., and then 30 min., more and more of these
broken apart long periods are stitched together, increasing the number of longer occupied

periods suitable for comfort studies by a half an order of magnitude.
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Figure 7: Comparison of different filters on the occupancy data

The 120 min. filter decreases the number of noted occupied periods overall but yie lds more
data points with occupied periods greater than 3.5 hrs., which may not be of use as most of
the MSCs dynamics are assumed to take place within 2 hrs. of a triggering event. Moreover,
while the 120 min. filter does convert false negatives to true positives, a lot of true negatives
may also be converted to false positives. In other words, even when the personwas nothome
for most of a 2 hr. period, the entire 2 hrs. were assumed to be occupied, potentially

corrupting the data of thermal comfort behavior governed by outdoor temperatures.
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In lieu of ground truth or alternate occupancy data, the 30 min. filter seems to serve as the
middle ground for false positives and false negatives and has also been used in prior studies

[212].

2.5.2 Time of day and duration of overrides

Figure 8 depicts the MSCs throughout the day for single-occupant households and shows
distinct periods of frequent overrides. It is helpful to frame this figure with approximations of
typical setback schedules programmed into the thermostat: e.g., sleep from 10 PM-6 AM,
wake-up from 6 AM-9 AM, away from 9 AM-6 PM, and evening home from 6 PM-10 PM during
weekdays, and the away period removed during the weekends. The weekday spike in
overrides mid—-morning could then be early birds setting back their thermostat before leaving
early for work or occupants spending the day at home and overriding the away period. The
other large spike in overrides occurs in the evening, and may be switching to sleep mode
early, or night owls extending their evening comfort zone into midnight. The average occupant

manually changes the thermostat 0.9 times per day.

The number and duration of MSCs with respect to the time of day are plotted in a 2-D
histogram in Figure 9, and may serve as a proxy for the energy impact of overrides. The MSCs
with the longest period of impact were the night owls, who’s setbacks lasted 6-12 hrs.
overnight. The occupants staying home in the morning also had extensive impacts, lasting 6—
12 hrs. throughout the day. The large number of MSCs in the early evening lasted only 1.5-3
hrs., indicative of a dissatisfaction in the automation’s ability to set comfortable

temperatures during this post-work, pre-sleep period.

2.5.3 Time to override

To understand occupant behavior patterns that lead to MSCs, occupants’ time to override
(TTO) is calculated. l.e., Figure 11 statistically shows how long it takes for occupants, already

in the space prior to the SC, to feel uncomfortable and make an MSC.

The majority of MSCs occur within the first 10 mins of an SC, where the occupantimmediately
notices or predicts the setpoint change. The more interesting cases are the increasing TTOs
peaking around 15-20 mins and exponentially trailing off. The plotis limited to 4 hrs. because

the data after that is minimal, having a probability density of less than 0.01.
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On average, occupants are in the space for 55 mins. prior to overriding the system, however,
if the first peak is removed, the average shifts to 72 mins. The median time to override of 15—
20 min could be influenced by any of the factors of the building—physiology-cognition—-action

process and likely varies from person to person and building to building.
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Figure 8: Trends in manual setpoint changes during the day
(single-occupant households; n=1,401)
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Figure 9: Number and duration of manual setpoint changes as per time of day
(single-occupant households)

The distributions of TTO for various occupancy filter lengths are also indicated in the figure.
As expected, the unfiltered data shows more TTOs around the 15 min. median, while the 120
min. filter decreases the prevalence of these short TTO and increases the prevalence of

longer (>1 hr.) TTOs.



43

Away (4.44%) Awake (0.47%)
DR Event (0.08% )

MSC >2hr.
earlier
(37.5%)

Smart Away
(1.52%)

MSC 1-2 hr.

Smart Home "
(3.08%) earlier (2.5%)
Custom MSC 10-59 min.
Smart Recovery (2.86%) carier (4.5%)
(©15%) MSC <10 min
Other earlier (9.1%)

(3.75%)

Figure 10: Eventimmediately prior to a manual setpoint change
(single-occupant households)

Figure 10 shows the distribution of events causing the SC prior to each MSC. Event types are
defined in 82.1. Over half of all MSC were overriding a previous setpoint by that user, not
overriding the automation. It is possible that many of these overrides, some corresponding
to the medianin Figure 11, could be due to occupant’s incorrect valve theory mental model.
From an automation standpoint, the users are not satisfied with the scheduled-based Home
and Sleep PSCs, preceding ~30% of all MSCs. Users seem to place more trust in the Smart
features, rarely overriding them; although, this could be due to the low prevalence of these
events in the dataset. The dataset has too few Demand Response events to draw meaningful

insights currently.
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Figure 11: Time from setpoint change to manual setpoint change distribution
(occupied; 30, 0, 120 min.)

2.5.4 Mental models

Approximately 20% of users override more than once in a row after an initial MSC, exhibiting
traits related to the valve theory mental model. The 52% of users who made an override only
once after an initial MSC seem to be trying to follow the feedback theory mental model but
behave non-optimally due to an apparent inability to estimate their own comfort zone. The
remaining ~28% of users make no additional MSCs within 1 hr. after an MSC and likely utilize
a valid feedback theory mental model. This aligns well with prior research showing ~30%

valve theory and ~70% feedback theory [200].

2.5.5 Impact of manual setpoint changes

Figure 12 shows the distribution of MSCs’ degree of override (DoO) (assuming the occupant
is comfortable after the override) made in heating and cooling seasons with respect to the
indoor temperature. The median setpoint change is ~2°F during the cooling season with an
indoor temperature ~74°F, and a 2°F increase during the heating season with an indoor
temperature ~68°F. In the cooling season, 58% of these MSC increase energy use, while 57%
increase the energy use in the heating season. See [157] for a thorough coverage of indoor

temperatures and energy impacts in the DyD dataset.
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Figure 12: Manual setpoint changes by season
(single-occupant households)

2.5.6 Behavior dynamics

One possible confounding factor in this analysis is if setpoint overrides occur because the
interior temperature is not at the setpoint. So, the data was analyzed to compare the interior
temperature with the setpoint before SC occurred. It was found that 79.37% of occupied time
in the cooling season and 76.08% of occupied time in the heating season, the indoor
temperature was within the +1°F accuracy of the temperature sensor [216]. Therefore, it
can be suggested that majority of the time, the building was performing as intended and
overrides were not to correct the building’s inability to reach the setpoint. Now the motivation
to override from PSC to MSC can be based on a variety of factors, most of which the DyD
dataset lacks. Window sensors, EMAs, occupant location, etc. also play a vital role in
understanding discomfort. The analysis presented in this work aims to find proof for the
argument “Are setpoint data solely enough to model thermostat override dynamics?”, it

would be our goalto leverage the features mentioned above to improve the developed model.
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TTO = 1.553 * DoO + 105.1 (2)
TTO = —1.107 * DoO + 98.89 (3)
TTO = 0.5368 - ¢~0:083:D00 (4)
TTO = 0.5804 - ¢~0:074-D00 (5)

Assuming the occupant becomes aware of the PSC (either through perceiving changes i n
indoor temperature, recalling when PSCs are regularly scheduled, noticing a change on the

thermostat display), can one find a relationship between TTO, how long an occupant (who is

at home) takes to feel uncomfortable after any kind of a setpoint change (a PSC or an MSC)

and makes an MSC; and DoO, the change in temperature of the MSC? The relationships

between these variables could guide DRPs that setback thermostats to temperatures that

would minimize overrides for the desired period, thus increasing DRP reliability.

Figure 13 shows the decreasing relationship between TTO and increasing DoO. In the cooling
season, ~28% of MSCs of —2°F took place within 10 mins., 50% took place within 30 mins.,

and 60% took place within 40 mins.
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TABLE 1: MODEL ERROR COMPARISON
Fit Heating RMSE (mins.) Cooling RMSE (mins.)
Constant 61.57 64.24
Linear 59.14 63.13
Exp 54.80 57.90

In Table 1, we compared the error of three models for each negative integer °F DoO during
cooling season, and positive integer °F DoO during heating season, respectively (i.e., MSCs
that would result in an increase in energy use). The constant fit depicts the current DRP
models that assume same setback duration for all setback degrees, 90-minutes setback
duration yields the least error out of the durations of 0, 30, 60, 90, 120, and 240 minutes. The
linear model (Equations (2) and (3)), assumes the feedback of a human to be linear with
respect to the TTO and DoO. Finally, the exponential model (Equations (2) and (3)) assumes
that there are underlying dynamics that trigger an occupant to override. Although there is
relatively high error with the exponential model ~1 hour but the improvement in accuracy
shows the need to consider feedback dynamics as compared to static or no model usage.
With the consideration of contextual and personal features, the error can be further

decreased.
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Figure 15: Entire dataset: Time from setpoint change to manual setpoint change
(occupied; 30 min. filter)

The close similarity between energy intensive behavior dynamics in heating and cooling
seasons contrasts with the difference in energy intensive behavior versus energy saving
behavior. Energy saving MSCs (i.e., those triggered by positive DoOs during cooling season,
and negative DoOs during heating season) have significantly faster TTOs compared to energy
intensive MSCs. These results reinforce observations from [213] that increasing
temperatures are sensed at different rates than decreasing temperatures, yet the results

presented here suggest that difference could be seasonally affected.

It should be noted that the pre—-processing done for this analysis, using a 30 min. filter, plays
animportantrole in determining the TTO. Figure 14 shows the relationship between DoO and
TTO for different occupancy filters. As expected, the TTO increases as the occupancy filter
length increases, due to more data of longer occupied periods entering the MSC dataset used
for analysis. Moreover, the number of MSCs continuously occupied following the previous SC
(within 2 hrs.) increases with the length of the filter. E.g., the number of 1-2°F MSCs for no

filter, 30 min. filter, and 120 min. filter are ~4k, 7k, and 10k respectively.



49

Cooling Heating

3
2hr 1008
c
g
80 ©
1.5hr =
— ke
£ o
1hr -
]

E &
E
0.5hrf z
Q
w
=
2] Y
(®] o
2 10k ES

3+ 8 4 0 4 8 -8 -40 4 8

DoD (°F) DoD (°F)

Figure 16: Entire dataset: Degree of override vs Time to override

2.5.7 Entire dataset

The results above are computed using the subset of the DyD dataset self-reported as having
only one occupant. This provided insights into the behavior of individuals, removing
conflating factors due to social barriers to comfort. Multiple—occupant homes will lead to
long occupancy periods because different people move in and out of the home at different
times. The dynamics of thermal comfort will then be based on data for different occupants
with entirely different metabolisms, clothing, behavior patterns, etc. To understand the
impact of these social factors, the methods above are applied to the entire DyD dataset,
which consists of ~27k homes (including homes that users report as “single occupant” and

“multiple occupants,” as well as no reported category).

Comparing Figure 15, the distribution of TTO for the entire dataset, with Figure 13, the
distribution for single-occupant households only, shows similar thermostat behavior
regardless of social factors. The largest number of MSCs occur within 10 min. of the previous
SC (24% and 21% for single occupancy and all data, respectively), and the next median TTO
occurs within 15-20 min. The mean of the data after 10 min. is essentially unchanged.
Likewise, comparing the event leading to the MSCs for single—occupant households (i.e.,

Figure 10) and all data would show similar miniscule changes.

Like Figure 13, the contour lines in Figure 16 shows the relationship between TTO and DoO.

The contours are smoother for Figure 16 using the entire dataset, due to the availability of
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more MSC data points. Table 1 compares key values between Figure 13 and Figure 16, namely
the period after which 50% of the population will have become uncomfortable and trigger an
MSC (i.e., TTO-50%) for low and high magnitudes of overrides (i.e., DoO). The similarity in
these numbers seems to indicate that social factors have little appreciable impact on

thermal comfort behavior dynamics as observed through thermostat changes.

TABLE 2: COMPARISON OF DOO vs. TTO-50% FOR SINGLE VS ALL OCCUPANCY DATA
Heating 2°F DoO 8°F DoO
Single occ. 28 min. 15 min
All data. 30 min. 17 min.
Cooling -2°F DoO -8°F DoO
Single occ. 28 min. 15 min.
All data. 29 min. 18 min

2.6 Conclusions

This paper analyzed ecobee’s “Donate Your Data” dataset of ~27k smart thermostats to
illustrate and understand the dynamic nature of occupant thermal comfort behavior,
especially relating to thermostat use. The analysis focused on the subset of data - self-
declared as single occupant homes to best understand individual behavior; however,
extending the methods to the entire dataset did not substantially change the results. Each
manual setpoint change (MSC) in the data was identified and those which were occupied
continuously following the previous setpoint change (SC) were considered for analysis. The
analysis then assumed that the previous SC led to the occupants’ discomfort and the MSC

set the thermostat to a comfortable temperature.

Programmed setpoint changes (PSCs) accounted for less than half the events preceding the
MSCs, showing that many occupants have not programmed their thermostat or are overriding
decisions they previously made while continuously occupying the space. This later behavior,
an apparent iterative process of finding comfortable setpoints, supports the finding in other
literature that ~30% of occupants have an incorrect valve theory mental model of how a
thermostat works [200]. About 60% of the MSCs in both heating and cooling modes resulted

in increased energy consumption.
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The principal result of this analysis captures the input-output relationship of the building-
physiology—cognition-action process that leads to an MSC correcting discomfort caused by
a previous SC. An understanding of this process will be important for designing adaptive and
personalized grid interactive efficient buildings (GEBs). The time it takes for an occupant to
notice and correct a setpoint is often nearly instantaneous (if they predict the thermostat
schedule or the hear/see the thermostat change), but the majority of MSCs occur some
occupied period after the SC. This time to override (TTO) is inversely exponentially related to
the degree of override (DoO): in both heating and cooling mode, 50% of occupants will take
less than ~30 min. to correct an SC that makes them 2°F too cool/warm, but less than ~15

min. for being 8°F too cool/warm respectively.

Prior research showed that load curtailment is most effective for the first 20 — 30 minutes and
the energy use increases as the HVAC system reaches steady state [211]. The models
developedinthiswork and presented in equations (2) and (3) suggest that setback schedules
could be developed to implement DR programs of any duration depending on the desired
probability of overrides. As the timer reaches the TTO where there is high probability of an
override, the setpoint could be changed back to the occupant’s preferred setpoint. Further
accuracy improvements could be made by creating personalized models of thermal comfort
behavior dynamics for deploying personalized DRPs that maximize curtailment and
reliability. Further research isrequired to truly understand these phenomena however, as this
behavior is an outcome of a complex multi-disciplinary feedback loop encompassing

building physics, human physiology, cognition, and decision making.
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Chapter 3:
The three theories of discomfort
A data-driven assessment of thermal comfort models

3.1 Abstract

Challenges with existing thermal comfort models for building performance simulation (BPS)
include their static nature, which leads to poor forecasting of thermostat overrides during
transient conditions. This is becoming a more critical issue as demand response (DR)
programs increase in prevalence. In this paper, three theories of thermal comfort — Delayed
Response Theory (DRT), Comfort Zone Theory (CZT), and Thermal Frustration Theory (TFT) -
were used to train machine learning (ML) models to identify critical occupant-specific
parameters that improved the classification accuracy of overrides. The methodology
developed can be used to design controllers for utilities or energy companies to reduce

overrides and achieve committed predicted energy savings during DR events.

3.2 Introduction

The building sector accounts for approximately 40% of global energy consumption and
greenhouse gas emissions [217]. Improving the energy efficiency of buildings is crucial for
mitigating climate change and enhancing sustainability [6]. Building Performance Simulation
(BPS) tools play a vital role in designing energy—efficient buildings and optimizing their
operation [218]. However, the accuracy of BPS predictions relies heavily on the assumptions

made about occupant behavior and thermal comfort [219].

Current thermal comfort models used in BPS tools are largely static and do not adequately
capture dynamic occupant behaviors and preferences [220]. The most widely used thermal
comfort model, the Predicted Mean Vote (PMV) model developed by Fanger [133], assumes
steady-state conditions and uniform occupant preferences. However, numerous studies
have shown that occupant thermal comfort is highly variable and depends on factors such
as age, gender, culture, and personal control [221], [222], [223], [224]. Ignoring these

variations can lead to inaccurate predictions of energy use and occupant satisfaction [14].
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The limitations of static thermal comfort models become even more pronounced during
demand response (DR) events, when indoor conditions may vary significantly from typical
conditions [225]. DR programs aim to reduce peak electricity demand by incentivizing
buildings to temporarily reduce their energy consumption [226]. These programs are typically
designed using static assumptions about occupant comfort zones and acceptable
temperature ranges [227]. However, studies have shown that occupants frequently override

thermostat setpoints during DR events, reducing the achieved energy savings [228], [229].

The development of dynamic thermal comfort models has been limited by the lack of
granular data on occupant behavior and thermal preferences [230]. Traditional methods of
collecting thermal comfort data, such as surveys and laboratory studies, are time-—
consuming, expensive, and may not capture real-world behavior [231]. In recent years, the
proliferation of smart thermostats and other Internet of Things (IoT) devices has provided new
opportunities for collecting high-resolution data on occupant behavior and building

performance [232], [233], [234].

Several studies have used smart thermostat data to develop data-driven thermal comfort
models. For example, Kim [138] used machine learning techniques to predict individual
thermal preferences based on occupant heating and cooling behavior. Kim [140] reviewed
studies where personalized thermal comfort models were developed using data from a
wearable device and a smart thermostat. However, these studies focused on steady-state

conditions and did not consider the dynamic behavior of occupants during DR events.

In this study, we leverage ecobee’s Donate your Dataset (DyD), which contains high-
resolution data on residential thermostat settings and indoor conditions [203], to derive
occupant-specific parameters for three different theories of thermal comfort during DR
events: Delayed Response Theory (DRT), Comfort Zone Theory (CZT), and Thermal Frustration
Theory (TFT). These theories represent different hypotheses about how occupants respond

to thermal discomfort during DR events.

DRT assumes that occupants will override the DR setpoint after a certain time delay,
regardless of the indoor temperature. CZT assumes that occupants have a specific comfort
zone and will override the setpoint when the temperature exceeds a certain threshold. TFT,

which we introduce in this study, assumes that occupants accumulate thermal frustration
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when the temperature is outside their comfort zone and will override the setpoint when their

frustration exceeds a threshold.

We use the occupant-specific parameters derived from these theories to train logistic
regression models to classify thermostat overrides. The results demonstrate the potential for
dynamic thermal comfort models to improve predictions of occupant overrides and energy
use, enabling more effective DR program design and control strategies. To the best of our
knowledge, this is the first study to compare different thermal comfort theories for predicting

occupant behavior during DR events using real-world smart thermostat data.

The rest of this paper is organized as follows: Section 2 describes the methodology, including
the data preprocessing, occupant modeling, and machine learning techniques used. Section
3 presents the results of the logistic regression models for each thermal comfort theory.
Section 4 discusses the implications of the results for DR program design and control
strategies, as well as the limitations of the study and future research directions. Section 5

concludes the paper.

3.3 Methodology

In this study, we propose a data-driven approach to assess three theories of thermal comfort
— Delayed Response Theory (DRT), Comfort Zone Theory (CZT), and Thermal Frustration
Theory (TFT) —using time-series thermostat data and machine learning techniques to identify
key occupant-specific parameters and improve the prediction of manual setpoint changes

(MSCs) during demand response events.

3.3.1 The three theories of thermal comfort

3.3.1.1 Delayed response theory (DRT)

The Delayed Response Theory (DRT) proposes that an occupant will override the thermostat
settings after a specific time delay, regardless of the indoor temperature or their personal
comfort temperature. This theory assumes that the occupant's decision to make a manual
setpoint change (MSC) is primarily influenced by the elapsed time since the last setpoint

change, rather than the actual thermal conditions.

In the DRT model, the occupant's behavior is characterized by a single parameter: the time

delay () measured in minutes. The model predicts that the occupant will make an MSC when
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the elapsed time since the last setpoint change exceeds this time delay. The occurrence of

an MSC at a specific time k can be determined using the following condition:

, 6,
MSCIK) = Lif (t1k] = tiastaumpoineppnge) > T (©

MSC[k] = 0, otherwise

Where MSC k] is a binary variable indicating whether an MSC occurs at timestep k, t[k] is

the current time, t ) is the time of the last setpoint change, and t is the time
lasrsetpomtchange

delay parameter. When the elapsed time since the last setpoint change surpasses the time

delay 7, the model predicts an MSC occurrence (MSC[k] = 1).

The DRT model assumes that the occupant's decision to make an MSC is independent of the
actual thermal conditions, such as the indoor temperature or their personal comfort
temperature. This implies that the occupant will override the thermostat settings at regular
intervals, determined by the time delay parameter, regardless of whether they are

experiencing thermal discomfort or not.

One potential explanation for this behavior is that the occupant may have a habitual or
routine-based approach to thermostat adjustments. For example, they may have a tendency
to check and adjust the thermostat settings at specific times of the day, irrespective of the
actual thermal conditions. Alternatively, the occupant may have a limited tolerance for

prolonged periods without control over their thermal environment, leading to periodic MSCs.

To determine the optimal time delay parameter (t) for a given occupant, researchers can
analyze historical thermostat data and identify the typical time intervals between
consecutive MSCs. By comparing the predicted MSC occurrences based on the DRT model
with the actual MSC events, the accuracy of the model can be assessed, and the most

suitable time delay parameter can be estimated.

3.3.1.2 Comfort zone theory (CZT)
The ComfortZone Theory (CZT) postulates that an occupant has a specific temperature range
within which they feel comfortable, known as the comfort zone. When the indoor temperature
deviates from this comfort zone, similar to the adaptive thermal comfort model, the occupant

is likely to override the thermostat settings to restore their comfort [136]. This theory assumes
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that the occupant's decision to make a manual setpoint change (MSC) is based on the

instantaneous temperature relative to their comfort zone boundaries [235].

In the CZT model, the occupant's comfort zone is defined by a lower temperature threshold

(T¢,,,,) @nd an upper-temperature threshold (Tcup)- The occurrence of an MSC at a specific

time k can be determined using the following conditions:

MSCIK] = 1,if (Tiw[K] < T¢,,,,)or (TilK] > Te,,) )

MSC[k] = 0, otherwise

Where MSC|[k] is a binary variable indicating whether an MSC occurs at the timestep k,

T_in[k] is the indoor temperature at the timestep k, T¢,,, and Tcup are the lower and upper

comfort temperature thresholds in °F, respectively. When the indoor temperature falls

outside the occupant's comfort zone, the model predicts an MSC occurrence (MSC[k] = 1).

The CZT model assumes that the occupant's decision to make an MSC is based solely on the
current thermal conditions and does not consider the duration of exposure to discomfort or
the magnitude of temperature deviation from the comfort zone boundaries [236]. Thisimplies
that the occupant will immediately override the thermostat settings when the indoor

temperature crosses either of the comfort thresholds [237].

Unlike the Thermal Frustration Theory (TFT), which considers the accumulation of discomfort
over time, the CZT model focuses on the instantaneous temperature deviations from the

comfort zone. The occupant's comfort zone parameters (T, ~and Tcup) are assumed to be

static, meaning that the occupant is expected to consistently make MSCs whenever the

indoor temperature falls outside their comfort zone [238].

The CZT model can be used to predict the occurrence of MSCs based on the real-time
monitoring of indoor temperature and the occupant's predefined comfort zone boundaries.
By comparing the predicted MSC occurrences with the actual MSC events, the accuracy of
the model can be assessed, and the most suitable comfort zone parameters can be

estimated [133].

While the CZT model offers a simple and intuitive approach to predicting MSC behavior, it
may not capture the complexity of occupants' thermal comfort preferences and decision-

making processes. Comparing the performance of the CZT model with other thermal comfort
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models, such as the Thermal Frustration Theory (TFT) and the Delayed Response Theory
(DRT), can provide insights into the relative importance of instantaneous temperature
deviations versus time-based factors in determining occupants' thermostat override

behavior during demand response events [239, p. 55].

3.83.1.3 Thermal frustration theory (TFT)
The TFT theory hypothesizes that thermal discomfort accumulates over time, prompting the
user to make an MSC when the discomfort reaches a certain level. This differs from
conventional approaches like the Adaptive Model, which assumes people are comfortable
within a specific temperature range based on outdoor conditions. However, in the context of
Demand Response (DR) programs, which involve changing conditions, occupants may be
willing to tolerate temporary discomfort even when they are outside the thermal comfort
zone. Therefore, the discomfort-based model focuses on tracking the buildup of thermal
discomfort until it hits a set threshold, at which point an MSC is triggered. This novel thermal

discomfort accumulation modelis referred to as the Thermal Frustration Theory (TFT).
The Thermal Frustration (TF) at a specific time k is calculated as:
TF[K] = (a X TF[k — 1] + B X (Tj,[k] — Tc) ) X motion (8)
MSClk] = 1,if TF[k] > TF;

Where, TF represents the level of thermal frustration in °Fmins, kis the current timestep, ais
the coefficient that captures how much of the past thermal discomfort is remembered, B is
the coefficient that captures how much of the current thermal discomfort is being felt in
°Fmins, and "motion" is a Boolean variable indicating whether movement has been detected
leading to 0 thermal frustration when the occupant is not present in the space of motion
measurement. The current level of discomfort is the difference in the current indoor
temperature T;, and the comfort temperature T in °F. MSC[k] is a binary variable indicating
whether an MSC occurs at the timestep k if the thermal frustration at k timestep is greater

than the thermal frustration threshold.

The TFT model in (8), a serves as a factor that quantifies how much of the previously
experienced thermal discomfort is retained or 'remembered' over time and hence can be in
range of 0 and 1. B, on the other hand, gauges the degree of discomfort experienced during a

given timestep, which could potentially vary based on factors such as metabolic rate or
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clothing and is also in the range of 0.0 and 1.0 minutes. Moreover, motion here serves as the
reset condition, forcing the thermal frustration value to zero when the occupant is not within
the space as for this paper, instances where the occupant is not exposed to external factors

like outside temperature/humidity or other events is not considered.

Assuming that an occupant’s a,3 and T_C parameters are static in nature, one should expect
to a thermal frustration due to discomfort based overrides or MSCp to be the same for an
occupant. One can define this consistent thermal frustration at MSC to be a thermal

frustration threshold or TF;.

3.3.2 Discomfort model parameter estimation

Time-series thermostat data can be leveraged to identify key parameters of the three
discomfort models discussed in Section 3.1: Thermal Frustration Theory (TFT), Comfort Zone
Theory (CZT), and Delayed Response Theory (DRT). To estimate the personalized parameters
for each model, a grid search procedure can be employed in combination with logistic

regression (LR) models.

3.3.2.1 Grid search procedure

The grid search procedure involves iterating over a range of values for the key parameters of
each discomfort model and evaluating the performance of a logistic regression (LR) model
trained on the corresponding features using the Matthews correlation coefficient score

(MCC). The steps of the grid search procedure are as follows:

1. Thermal Frustration Theory (TFT):
a. |Initialize the parameter of interest:
i. a:Represents the weight of historical discomfort.
ii. B:Represents the weight of current thermal discomfort.
iii. TF,:Represents the threshold at which thermal frustration leads to
a manual setpoint change (MSC).
b. Compute thermal frustration values using the current parameter values
(e.g., calculate cumulative discomfort).

c. ldentify the row indices where the ground truth value foran MSC is "True".
d. Train an LR model on both MSC and non-MSC data subsets using the

calculated features. Apply the model to predict MSC occurrences on a test
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dataset and compute MCC and accuracy scores. Log the parameter values
along with the corresponding scores.
e. Incrementthe parameter values according to a predefined step size and
repeat the above steps until the entire parameter range has been explored.
2. ComfortZone Theory (CZT) Parameters:
a. Initialize the parameters of interest:
i. Tg,,:Lowercomforttemperature threshold.

ii. Tcup: Upper comfort temperature threshold.

b. Compute temperature deviations based on the current parameter values
(e.g., deviations from comfort zone limits).

c. ldentify the row indices where the ground truth value foran MSC is " True".

d. Train an LR model on both MSC and non-MSC data subsets using the
calculated features. Apply the model to predict MSC occurrences on a test
dataset and compute MCC and accuracy scores. Log the parameter values
along with the corresponding scores.

e. Incrementthe parameter values according to a predefined step size and
repeat the above steps until the entire parameter range has been explored.

3. Delayed Response Theory (DRT) Parameters:
a. Initialize the parameter of interest:
i. T:Represents the time delay before the occupant makes an MSC.

b. Compute the elapsed time since the last setpoint change using the current
parameter value.

c. ldentify the row indices where the ground truth value foran MSC is "True".

d. Train an LR model on both MSC and non-MSC data subsets using the
calculated features. Apply the model to predict MSC occurrences on a test
dataset and compute MCC and accuracy scores. Log the parameter values
along with the corresponding scores.

e. Incrementthe parameter value according to a predefined step size and

repeat the above steps until the entire parameter range has been explored.

The choice of logistic regression (LR) models for MSC classification is strategic due to several

reasons. Firstly, LR assumes a linear relationship between the predictor variables (e.g.,
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thermal frustration, temperature deviations, elapsed time) and the log-odds of a discomfort-
based override. Secondly, the probabilistic outputs of LR models can be leveraged to
compute the likelihood of an MSC, providing a measure of prediction certainty for each
model. This approach allows for systematic parameter tuning and performance assessment

across different thermal comfort models.

3.3.2.2 Logistic regression model

The logistic function used in LR models can be represented as:

1 (9)

p(x) =(1+e—_(xs_“)>

Where p(x) is the probability that the dependent event occurs (e.g., MSC=1), x is the
independent variable (e.g., thermal frustration, temperature deviations, elapsed time), p is
the location parameter (p(p)=1/2, which shifts the function along the x-axis), and s is the
scale parameter, which determines how "spread out" or "steep" the function is. A small s will
make the transition from 0 to 1 more abrupt, while a larger s will make the transition

smoother.

During the training process, initial guesses for y and s are made (e.g., M initialized to the mean
of x values, s initialized to the standard deviation). The model then aims to maximize the
likelihood function for a given set of p and s using optimization algorithms like gradient
descent. The best-fit values for y and s are then used as the parameters of the logistic

function for making future predictions.

3.3.2.3 Routine model

Occupants often interact with thermostats based on their daily routines, such as adjusting
the setpoint when waking up, leaving for work, returning home, or going to bed [240]. These
routine-based manual setpoint changes (MSCs) are not necessarily driven by thermal
discomfort but rather by habitual behaviors [241]. To accurately estimate the parameters of
the discomfort models, itis essential to differentiate between routine and discomfort—driven

MSCs [242].

In this study, we develop a routine model based on the time of day (TOD) to capture the

probability of an MSC occurring at specific times. The model assumes that routine-based
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MSCs follow a consistent daily pattern [154]. By analyzing the historical MSC data, we can

compute the probability mass function (PMF) of TOD for MSCs.

Let T be the random variable representing the time of an MSC. The PMF of T can be estimated

using the following equation:

n
P(T = k) =Nk (70)

Where P(T = k) is the probability of an MSC occurring at timestep k, ny, is the number of

MSCs observed at timestep k, and N is the total number of timesteps in the dataset.

Once the PMF is learned, each instance in the dataset can be assigned a probability of being
a routine based MSC (Pysc,) based on its timestamp. For example, if an MSC occurs at a

timestep k with a high P(T = k), itis more likely to be a routine-based MSC [243].

The routine model serves as a complement to the discomfort models (TFT, CZT, and DRT) by
helping to identify instances where the probability of a routine-based MSC is higher than the
probability of a discomfort—-driven MSC. These instances can then be excluded from the
training and testing datasets used for estimating the parameters of the discomfort models,

potentially improving their accuracy [244].

3.3.2.4 Improving discomfort model parameter estimation
To improve the accuracy of the discomfort model parameter estimation, a two-step training
process can be employed (Figure 3). The goalis to reduce the noise caused by routine-based

MSCs by removing instances that have a high likelihood of being routine—driven.

The first step involves training a suboptimal routine model based on the time of day (TOD) to
compute the probability mass function (PMF) of TOD for MSCs. Each instance is then

assigned a probability of being a routine based MSC (Pysc, ) based on the learned PMF.

The second step focuses on the identification of the discomfort model. Initially, a grid search
is performed to find the optimal parameter value(s) for the given discomfort model, as
described earlier. However, the training and testing data at this stage may include routine,

discomfort, and other reason based MSCs, leading to suboptimal results.

To improve the discomfort model identification accuracy, the probabilities of routine (PMSCR)

and discomfort (Pysc,) overrides are compared for each instance. The LR-based discomfort
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classifier is then retrained on the data where P(MSCp) > P(MSCg). By focusing on
instances with a higher likelihood of being discomfort—-driven, the optimal parameter value(s)

and the corresponding MCC score are expected to improve.

This two—-step training process can be applied to all three discomfort models (TFT, CZT, and
DRT) to refine the parameter estimations by separating routine and discomfort based MSCs.
By leveraging these methodologies, we aim to identify the key parameters that best describe
occupants' discomfort-driven behavior and enhance the accuracy of predicting manual
setpoint changes during demand response events. The grid search was parallelized using the
multiprocessing library in Python to utilize all available CPU cores and speed up the
computation. The results for each home were stored in a DataFrame and saved to a file for

further analysis.

3.4 Results

Logistic regression models were fit for each thermal comfort theory, with and without
accounting for routine setpoint changes. The results of this study are presented in two parts:
the comparison of model performance with and without routine overrides, and a detailed

assessment of the Area Under the Curve (AUC) differences between pairs of models.

3.4.1 Distribution of theory parameters

These figures depict the distribution of key parameters for each thermal comfort theory—
Delayed Response Theory (DRT), Comfort Zone Theory (CZT), and Thermal Frustration Theory
(TFT)—and reveal critical insights into the dynamic interplay between occupant comfort and
thermostat overrides. Figure 17 shows the distribution of the estimated "time to override"
parameter for DRT across multiple homes. The variability in this parameter highlights the
distinct differences in occupants' tolerance levels to thermal discomfort during DR events.
Figure 18 shows the distribution of estimated comfort temperature parameters for the CZT
model, which defines individual comfort zones using upper and lower temperature bounds.
Figure 19 presents the estimated alpha parameter for the TFT model, which represents the

"memory" of past thermal discomfort.
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Figure 18: Distribution of estimated comfort temperature parameter of the CZT theory
(highest MCC scores for each home).
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Figure 21: Distribution of MCC scores when excluding routine overrides.
3.4.2 Performance with and without routine overrides

The distribution of MCC scores for the three models—Thermal Frustration Theory (TFT),
Comfort Zone Theory (CZT), and Delayed Response Theory (DRT)—is shown in histograms in
Figure 20 and Figure 21. The first histogram represents scores with routine overrides

included, while the second histogram shows scores without routine overrides.
With routine overrides:

1. TFT achieved MCC scores mostly between 0.1 and 0.3, with some homes reaching
higher scores.

2. CZT had a broader spread, with scores ranging from 0.0 to 0.5, peaking around 0.1.

3. DRT had a significant distribution, but with many homes scoring between 0.0 and

0.2.
Without routine overrides:

1. TFT maintained its scores, with a slightly increased spread, and a peak at0.1.
2. CZT's distribution shifted towards higher scores, peaking around 0.1-0.2.

3. DRT's scores improved, showing a stronger presence around 0.1-0.3.
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Universal MCC score per theory (universal meaning false negatives, false positives, true
negatives, and true positives of each home was summed to compute MCC score on

aggregate level instead of computing MCC score individually and then averaging it out):

Table 3: MCC and AUC score comparison
With Routine Without Routine % change
Theory MCC AUC MCC AUC MCC Score AUC
Score Score
DRT 0.077 47.25 0.098 38.95 27.69 12.41
CzZT 0.090 44.35 0.1 47.09 23.90 6.20
TFT 0.064 45.85 0.096 49.40 51.12 7.75

With routine overrides, TFT and CZT show an AUC difference of 0.259, while TFT and DRT
exhibit a difference of 0.552. These relatively small differences indicate that all three models
perform comparably when routines are included, with TFT slightly outperforming both CZT
and DRT. Additionally, CZT and DRT have an AUC difference of 0.293, reinforcing their similar

capabilities in predicting manual setpoint changes (MSCs).

Without routine overrides, the differences between models become more pronounced. The
AUC difference between TFT and CZT increases to 0.517, suggesting that TFT more accurately
captures discomfort—driven behaviors when routines are excluded. The gap between TFT and
DRT widens substantially to 1.966, highlighting TFT's significantly better performance in
predicting discomfort—-driven MSCs. The difference between CZT and DRT also increases to
1.448, indicating that DRT's performance is particularly impacted by the exclusion of routine

overrides.

3.5 Discussion

The results demonstrate that accounting for occupant-specific thermal comfort parameters
and dynamic behavior significantly improves predictions of overrides during DR events. The
Thermal Frustration Theory (TFT) outperformed the other models, likely because it captures

the time—-integral effect of discomfort, rather than justinstantaneous temperature deviations.

Figure 18 shows that the broad range observed in comfort thresholds across different

households signifies the inadequacy of static, population-based thermal comfort models.
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The variability indicates that static DR setpoints might lead to frequent occupant
dissatisfaction and thermostat overrides, thereby undermining DR program objectives. CZT's
focus on instantaneous temperature deviations provides a straightforward approach to
override prediction, but the results here clearly argue for a more nuanced, personalized
approach to understanding comfort. Figure 19 shows that the results indicate substantial
individual differences in the accumulation of thermal frustration, reflecting the prolonged
impact of discomfort on occupants’ decisions. TFT incorporates the cumulative effect of
discomfort over time, making it well-suited to predict overrides during extended periods of
suboptimal conditions, such as those seen in DR events. The higher performance of TFT in
capturing override behavior, as depicted in these distributions, suggests that understanding
occupants’ historical discomfort—rather than solely focusing on instantaneous deviations—

can significantly improve predictive accuracy.

Figure 20, Figure 21, and Table 3 together show TFT’s ability in capturing dynamic thermal
discomfort. It is worth discussing that AUC is a more suitable metric than MCC for evaluating
thermostat override predictions in the context of demand response (DR) because it better
captures the importance of accurately classifying overrides, which directly impact energy—
saving outcomes. Unlike MCC, which penalizes all types of errors equally—including
misclassified non-overrides that are less critical in this setting—AUC focuses on the model’s
ability to distinguish between overrides and non-overrides, regardless of class imbalance.
This distinction is crucial for DR programs, where minimizing discomfort—driven overrides is
key to maintaining energy efficiency. The higher AUC for the Thermal Frustration Theory (TFT)
compared to the Comfort Zone Theory (CZT), particularly after excluding routine behaviors,
highlights TFT’s strength in capturing cumulative discomfort, leading to more accurate

override predictions and ultimately better DR program performance.

The comparison between TFT and CZT reveals the complexity of modeling thermal comfort
behavior. While TFT achieves marginally higher AUC (49.40 vs 47.09), both theories contain
parameters that could be further optimized. TFT's assumption of f=1 and CZT's use of fixed
comfort temperatures represent simplifications that, if refined, could improve both models'
performance. The key distinction between TFT and CZT lies in their treatment of time. While
CZT treats discomfort as an instantaneous state based on temperature thresholds, TFT

models it as a cumulative process. This temporal integration becomes particularly relevant
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for demand response events, where the duration of exposure to sub-optimal conditions
matter as much as the magnitude of temperature deviation. TFT's ability to track this
accumulation of discomfort over time provides a theoretical framework more aligned with
the extended nature of demand response events. However, this research cannot definitively
establish TFT's superiority over CZT based on current results. Future work must investigate
whether the temporal integration justifies the additional computational complexity TFT
introduces. The similar performance metrics between the two approaches suggest that the
choice between them may ultimately depend on specific application requirements and

computational constraints.

The implications of these findings are substantial for the design and optimization of DR
programs. TFT, in particular, demonstrated a consistently higher predictive capability
compared to DRT and CZT, likely due to its incorporation of atemporal element that captures
discomfort accumulation. This underscores the potential of using discomfort-memory-
based models to enhance the precision of occupant behavior predictions during DR events.
The results also emphasize the need to integrate personalized thermal comfort models, such
as TFT, to optimize control strategies that minimize overrides and maximize energy savings
without compromising occupant comfort. Prior studies have found significant inter—personal
variations in thermal comfort preferences [140]. Our results show that dynamic thermal
comfort models like TFT can account for such variations. Population-based assumptions are
likely inadequate. The TFT framework derived here could be used to develop predictive
controlalgorithms that optimize DR dispatch schedules and setpointtrajectories to minimize
occupant overrides. However, scaling this to large building populations requires learning or
approximating model parameters for each building. Transfer learning techniques could

potentially address this [143].

The comparative analysis of the three models, with and without accounting for routine
overrides, further reveals that excluding routine—driven thermostat changes can lead to more
accurate assessments of discomfort—-driven behavior. TFT, especially, benefits from this
distinction, as its performance gap widens significantly when routine behaviors are excluded,

indicating a robust capability to model genuine discomfort responses.

In summary, the results suggest that personalized, data—-driven thermal comfort models,

particularly those incorporating cumulative discomfort metrics, are essential for the



69

successful deployment of DR programs that aim to balance energy savings with occupant
satisfaction. The adoption of these advanced occupant-centric models could fundamentally
reshape building energy management systems by aligning thermal control strategies more
closely with individual comfort dynamics, thereby achieving the dual goals of energy
efficiency and human well-being. Key challenges include improving the occupancy model,
validating the assumptions about frustration accumulation and dissipation rates, and testing
via implementation in real building control systems. Building connectivity and data

sufficiency present additional barriers.

3.6 Conclusion

This study investigated three theories of thermal comfort — Delayed Response Theory (DRT),
Comfort Zone Theory (CZT), and Thermal Frustration Theory (TFT) —to improve the prediction
of manual setpoint changes (MSCs) during demand response (DR) events. By leveraging
high-resolution smart thermostat data and employing machine learning techniques, we
derived occupant-specific parameters for each theory and evaluated their performance in

classifying thermostat overrides.

Our results demonstrate that accounting for occupant-specific thermal comfort parameters
and dynamic behavior significantly improves predictions of overrides during DR events. The
Thermal Frustration Theory (TFT) consistently outperformed the other models, likely due to
its ability to capture the time—-integral effect of discomfort rather than just instantaneous
temperature deviations. This finding underscores the importance of considering the

cumulative nature of thermal discomfort in predicting occupant behavior.

The study also highlights the significance of distinguishing between routine-based and
discomfort—-driven MSCs. By developing a routine model based on the time of day and
incorporating it into our analysis, we were able to refine the parameter estimations for each
thermal comfort theory. This approach led to improved model performance, particularly for

TFT and CZT.

The methodology developed in this study has important implications for the design and
implementation of DR programs. By more accurately predicting occupant behavior and

potential overrides, utilities and energy companies can develop more effective control
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strategies to achieve committed energy savings during DR events while maintaining

occupant comfort.

However, several challenges remain in scaling this approach to large building populations.
These include improving occupancy modeling, validating assumptions about frustration
accumulation and dissipation rates, and testing the models through implementation in real
building control systems. Future research should focus on addressing these challenges and
exploring transfer learning techniques to efficiently apply the models to diverse building
types and occupant populations. The model validation approach used 5-minute fixed
intervals for override predictions, which introduced methodological limitations. Each 5-
minute period was treated as an independent event, with predictions classified as true
positives, false positives, true negatives, or false negatives based on whether an override
occurred within that specific interval. While this approach provided a standardized
framework for comparing models, it created artificial boundaries that may not reflect the
continuous nature of occupant comfort perception. Future work should explore sliding
window approaches that evaluate predictions across overlapping time periods, potentially
better capturing the temporal progression of thermal frustration. This could be particularly
valuable for demand response applications, where predicting not just if but when an override
will occur significantly impacts grid operations. Additionally, investigating the relationship
between override magnitudes and prediction accuracy could reveal whether occupants
making larger setpoint adjustments exhibit more predictable behavior patterns. The relatively
similar AUC scores between TFT (49.40) and CZT (47.09) may partially reflect these

methodological constraints rather than fundamental limitations in the theories themselves.

In conclusion, this study demonstrates the potential of data-driven, occupant-centric
thermal comfort models to enhance our understanding of human-building interactions and
improve the effectiveness of demand response programs. By continuing to refine these
models and integrate them into building control systems, we can move closer to achieving

the dual goals of energy efficiency and occupant comfort in the built environment.
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Chapter 4:

Integrated dynamic occupant-building modeling

4.1 Abstract

This paper introduces a novel approach in modeling dynamic thermal comfort simulations,
focusing on the various behaviors of building occupants. Traditional thermal comfort models,
primarily static, fall short in accurately forecasting transient conditions and estimating
energy savings during demand response (DR) events. To bridge this gap, we developed a data—
driven model that dynamically models thermal discomfort behaviors of occupants,
integrating agent-based modeling with the ecobee Donate Your Dataset (DyD), the alfalfa co—
simulation framework, and a green-built home environment. The introduction of the Thermal
Frustration Theory (TFT), which models the delay and magnitude of discomfort experienced
by occupants before adjusting thermostat settings, challenges traditional models by
acknowledging that occupants accumulate thermal discomfort over time, leading to a
threshold-based response rather than immediate adjustments. By simulating occupants'
thermal comfort over a year and employing the resulting data to train machine learning
models, we identify critical occupant-specific parameters that enhance the accuracy of
manual setpoint change (MSC) classifications. Our methodology demonstrated marked
improvements in MCC scores when training was personalized for each home, as opposed to
using a singular model on aggregated data. This approach can aid in the design of more
sophisticated controllers for utilities or Community Service Providers (CSPs), to minimize
overrides and fulfil predicted energy savings. Specifically, our findings highlight that
personalized model, tailored to individual thermal histories and behavior patterns,
significantly elevate model performance, with Matthews Correlation Coefficient (MCC)
scores increasing from a mere 0.002 in a generalized model to 49.40 in personalized models,
post exclusion of routine overrides. This research highlights the necessity and efficacy of
personalized thermal comfort models in enhancing building energy management systems,
offering a robust tool for accurately predicting and managing energy consumption in

response to dynamic occupant behaviors.
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4.2 Acronyms and variables

a Thermal recollection coefficient
B Thermal absorption coefficient
MSC Manual setpoint change

MSCp Discomfort based manual setpoint change

MSCp Routine based manual setpoint change
TFT Thermal Frustration theory

TF Thermal Frustration

TFE, Thermal Frustration threshold

DyD Donate Your Dataset

OoTT Occupant Thermostat Interaction

BPS Building Performance Simulation

4.3 Introduction

The progression in Building Performance Simulation (BPS) and Grid-Interactive Efficient
Buildings (GEB) has influenced energy management strategies in buildings [127]. However, a
gap remains in accurately modeling occupant-thermostat interactions in dynamic thermal
comfort scenarios [245]. As the national energy structure transforms, the traditional energy
network's resource allocation capacity becomes inadequate for future energy systems'
needs, necessitating the need for load flexibility and effective Demand Response (DR)
strategies to effectively coordinate supply and demand in the evolving Energy Internet [246].
Occupant behavior, particularly in thermostat interactions, plays a crucial role in energy
consumption patterns within buildings [247], [248], [249]. Current state—of-the-art thermal
comfort models are predominantly static [17], [250]. They fail to adapt to the transient
conditions experienced in real-world scenarios and hence struggle to capture to varying
environmental conditions and occupant behavior, leading to discrepancies in energy usage
predictions and actual consumption, and underscoring the need for more dynamic and

responsive systems [136], [240].

While some studies have developed personal thermal comfort models such as improving the
prediction of individual thermal preferences by integrating spatial-temporal data from BIM

models and field—based studies [251], [252], [253], [254]. However, these personal thermal
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comfort models do not capture the dynamic thermal comfort behavior i.e. delay and

magnitude of thermostat adjustment due to discomfort and routine behavior.

Recognizing the limitations of existing models, our research proposes an integrated
framework that captures the dynamic nature of occupant-thermostat interactions. We focus
on the development of models of thermal comfort based on individual routine and
discomfort occupant behavior. This paper introduces an approach of combining agent—
based modeling, real-world dataset integration (ecobee DyD), and a simulation environment

(alfalfa co-simulation framework) within a green-built home.

The core of our model lies in understanding and simulating occupant occupant activity using
a 1st order Markov chain model, routine thermostat interactions using a probabilistic model
trained on real-world thermostat interactions (DyD dataset), and, most critically, discomfort-
based thermostat interactions model tested on real-world thermostat interactions (DyD
dataset). The complexity of human interactions with thermostats is often emphasized in
studies, highlighting the need for more personalized models [240]. Building upon this, we
introduce the concept of Thermal Frustration Theory (TFT), a framework that models the

delay and magnitude of discomfort experienced by occupants.

Furthermore, this paper outlines the methodological advancements in learning and applying
the parameters of our integrated model from field—collected data. We demonstrate the
potential of this approach to the way building energy management systems understand and
respond to occupant behaviors, particularly in the context of thermal comfort. The
implications of our work extend to various stakeholders, including building designers, energy
managers, and utility companies, offering them a more reliable tool for predicting and
managing energy consumption in response to occupant behaviors by not only addressing the
limitations of existing static models but by also leveraging the agent based modeling for a

more accurate and responsive building performance simulation.

4.4 Methods

The methodology of development and implementation of an integrated occupant model
designed to enhance the accuracy of building performance simulations (BPS). This section
details the model's components, including occupant activity modeling using a first—order

Markov chain, routine manual setpoint change (MSC) modeling, and discomfort-driven
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thermostat interactions based on the novel Thermal Frustration Theory (TFT). The
methodology integrates these models with BPS to simulate dynamic occupant behaviors and
their impact on thermal comfort and energy usage, addressing limitations in existing static

models.

4.4.1 Proposed integrated model

The proposed integrated model aims to address a missing part in the current state of the art
of building performance simulation i.e., dynamic occupant thermal comfort, more
importantly occupant interactions with a thermostat factoring in the delay in assessing
discomfort and the magnitude of discomfort. Traditionally, static or deterministic occupant
models have been implemented which are unrealistic and cause the output of Building
Performance Simulation (BPS) to disagree with real world observations [250]. Studies that
model occupant activity stochastically show improvement in error when comparing BPS

output vs real life observations [255].

Therefore, to improve predictions of the BPS we propose an integrated occupant model
incorporating the dynamics of thermal comfort. The proposed integrated model shows the
framework of integrating two important aspects of BPS i.e., building and occupant where the
occupant model is a data—-driven stochastic model composed of 3 components that capture
an occupant’s dynamic thermal comfort behavior. The 3 components of the occupant are:
occupant activity model, Routine based thermostat interaction model, and most importantly
the discomfort-based thermostat interaction model. This approach is different from the
current industry standard of the ASHRAE’s adaptive comfort model [136] for two key reasons.
First reason being the delay of discomfort, previous models do not consider time as a
parameter involved in modeling discomfort, itis assumed that an occupant acts as a switch
and an occupant thermostat interaction occurs as soon as the current indoor temperature
goes outside the comfortable temperature zone which is established by the adaptive model
but this may not be the case as occupants can withstand discomfort for a certain time
depending on the magnitude of discomfort [256]. Second reason being consideration of other
behavior models that might influence discomfort, for example an occupant can only feel
thermal discomfort if they are within a space, to model/forecast discomfort, an occupant’s
presence also needs to be modeled, similarly, an occupant might have routines established

to set lower setpoints at night if they like to sleep in a cooler environment, therefore, this
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routine based habitual model would also need to be developed. Most of the comfort models,
including adaptive comfort model, aim to model comfort only and ignore other behavior

elements that are equally critical in an occupant’s decision to override controls.

As a result, the three models i.e. occupant activity model, Routine model, and discomfort-
based thermostat interaction model of an occupant work together to represent an occupant.
While sociological, financial, environmental, or other aspects can also influence an
occupant-thermostat interaction [240] but due to the lack of availability of data, only the

three models discussed above will be used for this study.

4.4.1.1 Occupant activity Model

4.4.1.1.1 Background
Occupant activity, where an occupant is in the space and performing an activity such as
sitting, standing, cooking, etc... except sleeping, has a tremendous impact on energy
consumption and is a critical part of building simulation using tools like EnergyPlus [257]. To
model dynamic occupant thermostat interaction, an occupant's occupant activity in a home
must be modeled reliably. Due to limitations in the availability of data on occupants'
exposure to outdoor environments, this study will center on modeling behavior within indoor

settings.

Various techniques exist for modeling occupant activity, such as the Monte Carlo method
[65], non—homogeneous Poisson process model [258], inhomogeneous two-state Markov
chain [179], agent-based model of occupant activity dynamics [259], but among these
techniques, the first-order Markov chain stands out due to its ability to capture temporal
characteristics where the state transition probabilities can be used to predict the state at the
next timestep based on the current state, with no need for complex model parameters
estimations, easy to learn and implement, especially for computation-intensive applications
such as the ABM based dynamic occupant behavior modeling framework proposed in this

paper [260] [261] [262].

4.4.1.1.2 Model details
Assuming that the likelihood of an occupant's occupant activity at a given time step is solely
influenced by their status during the previous time step and the time of the day, the occupant

activity model using a first—order Markov chain [260].
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Figure 22: Occupant activity probabilities for a simulated occupant

At midnight, a schedule of the occupant’s occupant activity schedule is created by realizing
the occupant activity state from probabilities retrieved from the trained state transition matrix
(training discussed in section 4.4.2.1) and comparing the probabilities with arandom number
generated from a uniform distribution. As a result, an occupant’s occupant activity data is

generated (Figure 22).

4.4.1.2 Routine MSC model

4.4.1.2.1 Background

The task of modeling routine behaviors discussed across disciplines and has diverse

applications, making it a focus area in various fields of study.

1. Healthcare: In healthcare, behavioral models help in predicting patient compliance
with medication routines, thereby aiding in the tailoring of more effective treatment
plans. Models can predict, for example, the likelihood of a diabetic patient sticking
to aninsulin regimen or a cardiac patient adhering to medication schedules. These
insights are invaluable for healthcare providers aiming to offer personalized
treatments [263]

2. Transportation: In transportation planning, understanding routine commuting
patterns is vital for optimizing public transport services. Sophisticated models
analyze large data sets to predict the flow of commuters during peak and off-peak
hours, facilitating more efficient transport scheduling and even influencing urban

planning [264]
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3. Retail and Marketing: In the commercial sector, companies often model customer
buying behaviors. Understanding routine purchase patterns can inform stock
decisions, optimize marketing strategies, and even personalize online shopping
experiences [265]

4. Finance: Infinance, models may predict routine behaviors in trading to capture
trends and even irregularities like market manipulations. Machine learning
algorithms are often used to predict buying and selling patterns based on historical

data [266]

The ubiquity of routine behavior modeling across these domains highlights its significance
and the need for robust and flexible models is to adapt to different types of data and capture
various influencing factors [267]. These studies show that humans develop routines for their
schedulesirrespective of the domain. The key distinction between routine behavior modeling
across domains like healthcare, transportation, retail, and finance versus building energy
management lies in the complexity and predictability of influencing factors. In healthcare,
transportation, retail, and finance, behaviors often exhibit stationary and repetitive patterns,
making them amenable to simpler statistical models that capture regularities using
autoregressive techniques or time—series analysis. In contrast, building energy management
is far more dynamic due to the interplay of unpredictable factors such as weather variations,
occupant activities, and individual comfort needs, requiring adaptive and non-linear
modeling approaches. These models must account for non-stationarity and dynamically
adjust to changing environmental conditions, highlighting the need for more sophisticated
adaptive methods to effectively capture discomfort—driven behaviors that are less critical in

other domains.

4.4.1.2.2 Model details

Routine manual setpoint change behavior can vary across seasons and types of day.
Therefore, for each two seasons i.e. heating and cooling and two types of days i.e. weekdays
and weekends, four sets are created where in each set contains subsets of routine MSC
behavior pertaining to number of MSCs in day (an occupant can routinely implement MSCs),
time of day of MSCs (Occupants implement MSC before going to work or coming back from
work), type of MSCs (Occupant change only heating setpoint in the morning), and degree of

MSCs (Occupants increase or decrease heating setpoint in the morning). To realize the
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probabilities of the subsets of routine MSC behavior, a routine schedule is generated where
for each time step of the day probabilities are realized in a way where the subset’s values are
conditionally dependent on each other. The selected features, such as the number of MSCs
per day and the time of day, were chosen to capture routine occupant behavior. For instance,
some occupants set a conservative temperature in the morning to save energy while away
and adjust it to a comfortable setting upon return. The time-based nature of routine
behaviors, tied to daily activities like waking up or going to work, allows the model to predict

and optimize thermostat use effectively.

4.4.1.3 Discomfort MSC model

4.4.1.3.1 Background
Discomfort—driven models aim to capture the human interaction with thermostats due to
thermal discomfort [268]. Various theories have been proposed to model this behavior, and
these theories often find applications beyond just thermal comfort, extending to fields like
ergonomics, psychology, and human-machine interaction [269] [270] [154] . The major
frameworks in this domain include Delayed Response Theory [240], Adaptive comfort model
[135], and the proposed novel Thermal Frustration Theory, each of which offers a different

perspective on how and when people adjust thermostats based on their comfort needs.

1. Delayed Response Theory (DRT): This theory assumes that people act like timers,
experiencing discomfort only after a fixed delay following exposure to
uncomfortable thermal conditions [240].

2. Comfort Zone Theory (CZT): This theory suggests that people have a defined range of
temperatures within which they feel comfortable. Any deviation outside this zone
triggers discomfort and subsequently an adjustment of the thermostat settings
[135].

3. Thermal Frustration Theory (TFT): This novel theory hypothesizes that individuals
accumulate thermal frustration over time when exposed to uncomfortable
temperatures. Once this accumulated frustration crosses a certain threshold, it
prompts the individual to interact with the thermostat. Each occupant can have a

different frustration threshold that nudges them to interact with the thermostat.
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Each of these theories offers unique concepts that drive MSC behavior. But developing only
comfort models is not enough as they aim to quantify only the physical and psychological
responses of occupants to their environment, determining when they perceive discomfort
(mostly temperature and humidity) and how they respond to it. In contrast, behavior models
focus on capturing the patterns and triggers of occupants' actions, such as when and why
they adjust the thermostat, often driven by routine or external factors. Integrating these two
approaches allows for a more comprehensive understanding of how occupants interact with
their environment, balancing routine behaviors with their comfort needs. It is assumed that
the novel thermal frustration theory can serve as a better model as occupants do not
instantly interact with their thermostat when experiencing discomfort, instead a delay is
observed in exposure to thermally uncomfortable conditions and thermostat interactions
[256]. For this reason, only the TFT model will be used to model occupant discomfort

behavior and in future the authors plan to compare the three theories mentioned above.

4.4.1.3.2 Model details

The discomfort-based model based on the TFT theory hypothesizes that thermal discomfort
accumulates over time, prompting the user to make a MSC when the discomfort reaches a
certain level. This differs from conventional approaches like the Adaptive Model, which
assumes people are comfortable within a specific temperature range based on outdoor
conditions. However, in the context of Demand Response (DR) programs, which involve
changing conditions, occupants may be willing to tolerate temporary discomfort even when
they are outside the thermal comfort zone. Therefore, the discomfort-based model focuses
on tracking the buildup of thermal discomfort until it hits a set threshold, at which point a
MSC is triggered. This novel thermal discomfort accumulation model is referred to as the

Thermal Frustration Theory (TFT).
The Thermal Frustration (TF) at a specific time k is calculated as:

TFlk] = (a X TF[k — 1] + B X (T, [k] — T¢) ) X occupant activity (11)
Where, TF represents the level of thermal frustration in °Fmins, k is the current timestep, a
is the coefficient that captures how much of the past thermal discomfort is remembered, 8
is the coefficient that captures how much of the current thermal discomfort is being felt in
°Fmins, and "occupant activity" is a Boolean variable indicating whether movement has been

detected leading to 0 thermal frustration when the occupant is not present in the space of
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occupant activity measurement. The current level of discomfort is the difference in the

current indoor temperature T;,, and the comfort temperature T in °F.

The discomfort modelin (11), a serves as a factor that quantifies how much of the previously
experienced thermal discomfort is retained or 'remembered' over time and hence can be in
range of 0 and 1. 8, on the other hand, gauges the degree of discomfort experienced during a
given timestep, which could potentially vary based on factors such as metabolic rate or
clothing and is also in the range of 0.0 and 1.0 minutes. Moreover, occupant activity here
serves as the reset condition, forcing the thermal frustration value to zero when the occupant
is not within the space as for this paper, instances where the occupant is not exposed to

external factors like outside temperature/humidity or other events is not considered.

One can define this consistent thermal frustration at MSC to be a thermal frustration
threshold or TF, where TF), = Mode(ﬁMSCD) and ﬁ')MSCD is vector containing the thermal

frustration values at various discomfort based MSCs.

4.4.1.4 Integration into BPS

4.4.1.4.1 Background

In this study, Alfalfa serves as the central computational framework, facilitating seamless
interaction between the occupant and building models [271]. Alfalfa is an open-source web
application ingeniously engineered to bridge Building Energy Modeling (BEM), Building
Controls, and Software Engineering. Its unique feature set, including real-time interactions
with BEMs through industry-standard control interfaces, allows for versatile co—simulations.
Specifically, Alfalfa supports popular modeling engines such as EnergyPlus, enabling large—
scale parallel building simulations. Its RESTful interface streamlines the process of
uploading, initiating, and terminating simulations, thereby simplifying complex simulation

logistics [272].

Python was the primary programming language employed to orchestrate the co—simulation
framework. For the development of the occupant model, an agent-based modeling approach
was utilized. The Mesa library provided an initial framework that was subsequently

customized to meet the specific requirements of the occupant behavior model [273].

To further enhance the efficiency and scalability of our simulations, Kubernetes for deployed

for containerization[274]. Before the implementation of Kubernetes, a single 1-year
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simulation for one home required approximately 50 hours to complete. With Kubernetes, this
performance bottleneck was significantly alleviated. Parallel simulations were run for 10

homes over a span of one year, reducing the computational time to just 19 hours.

A smart thermostat offers the capability of setting schedules that can be based on time of

day and geolocation. As a result, python based a thermostat model object can be developed.

4.4.1.4.2 Model details
Now with the models discussed above, one final need was to integrate the models such that
for a given set of input parameters, the occupant can be simulated in a home for their thermal

comfort behavior (Figure 23).

First, the alfalfa framework is initialized with the appropriate building datai.e., “idf” files and
weather i.e., “epw” files. The energy plus part of the co-simulation framework requires the
input of setpoint temperature and simulates the indoor temperature based on building
thermal dynamics, outside temperature, and HVAC equipment [271]. The output of alfalfa

framework required is the indoor temperature and the energy usage.
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Grid X[“ oo 114[ Occupant activity Model]

Figure 23: A feedback loop of occupant behavior and building components;
Green boxes represent data being modeled using DyD or ATUS dataset.;
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Second, the occupant and thermostat models are initialized. The thermostat model
requires the input of time of day and setpoint temperature (in case MSC or DR event) and
outputs the setpoint temperature (cooling and heating). The occupant model requires the
input of current indoor temperature, humidity, time of the day, and outputs setpoint

temperature which is mostly 0 except when the discomfort or routine models trigger a MSC.

4.4.2 Learning of integrated model from smart home data

The proposed integrated model discussed in section 4.4.1 can be trained to used parameters
from the smart home data and simulate the indoor thermal environment to mimic an

occupant’s experience with their indoor surroundings.

4.4.2.1 Occupant activity model

The occupant activity of occupants within a space directly impacts how they interact with
systems like the thermostat. While the PIR sensor data can observe occupant activity in a
space during various timesteps of the day but due to the occupant behavior of sleeping,
sitting, or the sensor itself being shaded by an object can compromise the data and in turn
yield a high rate of False Negatives which in turn will affect the occupant activity forecasting

accuracy [256].

To overcome this issue, a study that utilized Time-Use Survey (TUS) data to develop a first—
order Markov chain model for simulating occupant activity was used [260]. The TUS data are
self-reported by individuals, enhancing the reliability of the collected information and
alleviating the concerns related to fault measurements. Conducted in the UK in 2000, this
survey provides granular insights into daily activities recorded in ten—-minute intervals. A first—
order Markov Chain technique discussed in section 4.4.1.1.2 was used to generate synthetic
occupant activity data, ensuring that the synthetic data retains the same overall statistical
attributes as the original survey data. The "states" represent occupant activity levels at ten—
minute daily intervals and the transition probabilities between these states are calculated

based on matrices developed from the original TUS data.

The transition probability matrix can be learned using the timeseries data of an occupant’s

occupant activity data.
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4.4.2.2 Routine MSC model

Occupants have many reasons to override that may not be driven by comfort and can follow
various time of day of MSCs. Routine events in the occupants’ lives may drive them to
manually change the thermostat setpoint: e.g, awakening, leaving, or returning from work, or
prior to sleep. The stochastic model below aims to (a) model how many times MSCs will
occur in a given day, (b) when those MSCs will occur, and (c) the direction and magnitude of

the MSC.

1. Number of MSCs per day: Using the probabilities of each number of MSC per day as
discussed in section 4.4.1.2, the number of routine MSC(s) to be implemented is
realized by comparing probabilities with a random number generated from a uniform
distribution.

2. Time of day of MSCs: Given the number of MSCs per day value, the time of day of
these routine MSCs can be computed based on routine MSC probabilities.

3. Type of MSCs: The type of MSC i.e. heating, cooling or both can be determined by
change in heating, cooling, or both setpoint temperature at a MSC. As aresult, a
type of MSC PMF conditional on time of day MSC can be computed.

4. Degree of MSCs: The degree of MSC can be computed using the change in setpoint
temperature data at MSC. The PMF of degree of 1°*MSC i.e., heat or cool is
conditional to number of MSC, type of MSC, and TOD of MSC.

Upon performing the realizations discussed in the 4 steps above, a routine MSC schedule can

be generated and implemented.

4.4.2.3 Computing comfort temperature
Calculating the comfort temperature of an occupantis a critical step in accurately modeling
thermal preferences as it is used a reference to quantify thermal discomfort magnitude. For
this purpose, we implement a mean value approach, which provides a straightforward
method for estimating the temperature that occupants are most likely to find comfortable

during routine periods of indoor activity.

To apply this method, we first curate the dataset to include only instances where the
occupants are passively interacting with their environment—meaning that no manual

overrides (hold events) occurred prior to or during the recorded temperature readings. This
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selection criterion ensures that the data used for calculating the comfort temperature
reflects the occupants' natural preferences without the influence of external or irregular

factors.

The mean comfort temperature T, is then calculated as the average of all valid indoor
temperature readings from the curated dataset that represents the most probable
temperature that occupants find comfortable under normal conditions. By using this mean
value as a baseline, the model can effectively predict thermal comfort, enabling the system
to make informed adjustments that align with the occupants' habitual temperature

preferences.

This approach is particularly suited to our study's objectives, as it allows us to generalize the
comfort temperature across different occupants while still capturing the essence of

individual preferences.

4.4.2.4 Discomfort MSC model

A timeseries thermostat data can also be leveraged to identify key parameters of the TFT

discomfort model discussed in section 4.4.1.3.

To optimize the parameter a in the context of a Grid search

time-series smart thermostat data, the following m
T —]

grid search procedure can be employed (as <

shown in Figure 24): m

1. |Initialize the parametersa = 0, § = 1,

and T, as a real number. F

2. Calculate the 'thermal frustration' feature 0.01
for the entire dataset, using the given «, 3, 1
and T¢. Figure 24: Schematic of a grid search

3. Identify the row indices where the ground truth value for a MSC is True.

4. Usingthese indices, train a logistic regression (LR) model on both MSC and non-
MSC data subsets. Apply the model to predict MSC occurrences on a test dataset.
Compute both the accuracy and Matthews Correlation Coefficient (MCC) score. Log
a along with its corresponding MCC and accuracy score.

5. Increment a by 0.05 and repeat steps 2-4 untila = 1.
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The choice of a simple LR model for MSC classification is strategic for several reasons, the
most prominent being the assumption that relationship between the predictor variable—
thermal frustration—and the log-odds of a discomfort-based override is approximately
linear. Furthermore, the probabilistic outputs can be leveraged to compute the likelihood of
MSC based on discomfort or another model, hereby adding the degree of certainty the model

has about its prediction [275].

Improving discomfort model parameters estimation:

Figure 25 represents the schematic of two step training process to improve TFT model
parameters estimation. Given that a timeseries thermostat data is available where the
occupant interacted with the thermostat using the models discussed in 4.4.1, the goal is to
now estimate key personal parameters of the occupant’s discomfort model discussed in
4.4.1.3.2. The challenge is to reduce the noise caused by the routine model by removing

instances of the MSCs that have high likelihood of routine MSC.

The following methodology can be used toincrease accuracy of ML models and get likelihood

of appropriate reason for MSC.

Train suboptimal routine model:

For the identification of discomfort model, a complex routine model may not be necessary to
be developed. Since, aroutine is based on time of day, therefore, a simple suboptimalroutine
model can be trained to compute the PMF of TOD of MSCs using (12). Now since each
instance has a time stamp, therefore each instance can be assigned a probability of routine
based MSC i.e., Pysc, as a result of PMF learned using (12). Let T be the random variable

representing the time of a MSC, the PMFs can be represented as:

frk) = — (12)

Where fr represents the probability mass function of time of day of MSC at k timestep of the
day, n,represent the number of MSCs at timestep k, N; represents the total number of

instances of timestep k.
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Identification of the discomfort model: ¢
Datetime ﬁ, MSC

1. Firstrun of a grid search: In parallel to v
Routine « Grid search —
the training of the simple routine Model

model discussed in the section

—_—

above, the first grid search of a can be LR

performed to find the optimal a of the 1
o3

user as discussed in section 4.4.2.4. It LR Model (max MCC) ?g
%]
o,

is important to note that these initial

P(MSCR) P(MSCp)

predictions are expected to be not BP(MSCp) > P(MSCR)

ideal as the training and testing data is

composed of routine, discomfort and @ Grid search

LR l a
other reason based MSCs. This initial

grid search should still yield a

suboptimal @ value with a Figure 25: Schematic of the two-step training
corresponding MCC score. The entire process to improve alpha estimation
dataset can now be used as a test data set to predict probability of discomfort
based MSC i.e., Pysc,

2. Second run of a grid search: Improving the discomfort model identification
accuracy. With the probability of routine and discomfort overrides computed for
each instance of the dataset, the corresponding probabilities can now be compared
and the LR based discomfort classifier can be retrained on the data where the
discomfort based MSC probability is higher than the routine based MSC probability.
Therefore, the training of LR model to grid search for optimal a is done again (as
discussed in section 4.4.2.4) but only for MSC instances where the P(MSCp) >
P(MSCg).

3. Since now, the discomfort model is trained only on high discomfort probability

MSCs, the optimal a prediction and the MCC score is expected to improve.

4.4.3 Validation of model training in simulation

Mostly, the real-world data does not provide contextual data such as type of MSCi.e., routine,
discomfort, etc. Therefore, a simulation environment was developed to use models

discussed in section 4.4.2 and simulate occupant thermostat interaction behavior in a year
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with 1-minute timesteps to see how well the key parameters of the occupant discomfort
model be identified, specifically the a value used to initialize the discomfort model of the

occupant with the noise of the routine model.

4.4.3.1 Environment

4.4.3.1.1 Building model

The Greenbuilt house in Fair Oaks, Sacramento, originally built in the 1980s, was retrofitted
through the Sacramento Municipal Utility District’s (SMUD) Energy Efficient Remodel
Demonstration program in collaboration with Greenbuilt Construction and the National
Renewable Energy Laboratory (NREL). The retrofit aimed to showcase cost—effective, energy—
efficient measures, including enhanced insulation, motorized shading, and advanced home
control systems like Control4 for remote monitoring. NREL extensively monitored the house’s
performance to validate energy savings and system effectiveness, positioning it as an ideal
case study for testing and simulating energy-efficient technologies without occupant

interference, supported by a team of experts.

4.4.3.1.2 Thermostat model

To mimic a smart thermostat, ecobee’s default schedules are used to initialize the
thermostat model. The model outputs the setpoint temperature for both cooling and heating
setpoints and changes only with the input of occupant MSC or time of day-based schedule
change. Two schedules were added i.e., sleep and home, both of which are based on time of

day from ecobee [276].

4.4.3.1.3 Occupant activity model

To simulate the occupant activity schedule of an occupant, a pre-trained state transition
matrix of 1% order Markov chain model was used [260]. As the authors of the study validated
the model’s ability to produce occupant activity schedule that represent the population of
TUS dataset, this model is a good candidate to generate occupant occupant activity
schedules. During the simulation, these transition probability matrices predict the likelihood
of occupant activity at different times of the day. These probabilities are then transformed
into occupant activity events by comparison with a random number drawn from a uniform
distribution. The only deviation from the study was that instead of generating schedules for

multiple occupants in a home, only one occupant’s schedule would be generated.



4.4.3.1.4 Routine model

To simulate the routine model of occupant thermostat MSC, ecobee’s DyD dataset was used

to compute the PMFs discussed in section 4.4.2.2. After performing the required

computations, the PMFs for various parts of routine based MSCs are shown in Figure 26 and
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Figure 27: Two parts of many conditional probabilities of the routine model (part b)
All parts of the routine model start from number of manual setpoint changes (MSCs) per day which is realized
from the probability distribution. Ranging from 0 to 15 NMSCPD with its corresponding probability ranging
from 0.0 to 1.0, most days have 1 to 2 MSCPDs, with the probability decreasing sharply as the number of
MSCs increases. Figure on the left: Relative conditional probability (Difference of each cell’s prob. — uniform
dist. prob.) of 2" MSCs time of the day given 15t MSCs time of the day and NMSCPD is 2. Figure on the right:
Probabilities of 2" Degree of override given 1t Degree of override and NMSCPD s 2.

Figure 27 reveal important temporal and behavioral patterns in thermostat overrides by

occupants.

e The left figure highlights that occupants often make their second thermostat
adjustment (MSC) at a similar time to their first, suggesting a routine behavior
linked to daily activities such as transitions between home and work. Deviations

from uniform behavior are particularly noticeable in the late afternoon or evening,
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indicating increased override actions during these times, likely due to changing
comfort needs after returning home or preparing for sleep.

The right figure shows that occupants tend to make corrective adjustments, with
the subsequent setpoint change often being of similar magnitude but in the
opposite direction of the initial adjustment. This pattern reflects a habit of fine—
tuning rather than setting a single temperature. The strong correlation between the
timing and magnitude of adjustments points to routine—driven behavior as a
significant factor in override actions. Leveraging these insights can help predict and
preempt overrides during demand response (DR) events, enabling more effective
energy management without compromising comfort, especially during sensitive

times like evening hours.

4.4.3.1.5 Discomfort model

The following parameters were used to initialize the discomfort model discussed in 4.4.1.3:

1.

a = 0.9: For this preliminary run, the goal was to use an alpha that would build up
frustration gradually as @ < 0.7 can lead to slower build up/fast leakage of
frustration which would rarely trigger MSCs. As compared to ¢ = 1 would build up
frustration quickly, leading to discomfort based MSCs frequently. This is a key
parameter that can vary across occupants.

B = 1:Since no data is available to model the clothing/metabolic rate of an
occupant, the worst-case scenario was assumed i.e., occupant feels all the
frustration.

T, was computed as a mean of temperature values where the occupant was in

space and comfortable as discussed in section 4.4.2.3.

4.4.3.2 Validation

Given the discomfort model parameters used to initialize the occupant discussed in section

4.4.3.1.5 and with the noise of routine MSCs discussed in the section 4.4.3.1.4, the goalis to

validate the proposed learning of the integrated model discussed in the section 0 help

identify the initialized model parameters of the discomfort model of the occupant.
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4.4.3.3 Approach

Following the iterative approach outlined in the section 0, the output of the simulation data

that contains Date Time (dt), indoor temperature (T;,), setpoint temperature (TStpheat/cool)’

motion, manual setpoint change due to routine model (MSCg), and manual setpoint change

due to the discomfort model (MSCp) were used.

Accuracy cannot be used as an LR model performance assessment metric as it only
considers correctly classified labels and does not penalize False negative or False Positive.
Accuracy is also prone to incorrect assessment of model performance especially in the case
of imbalanced datasets such as that of the MSC classification where MSC occurs far less

than non-MSC instances.

Matthew’s Correlation Coefficient (MCC) serves as the evaluation metric for optimization,
chosen for its balanced, symmetric representation of both positive and negative
classification outcomes. MCC values range from -1 to 1, signifying perfect negative and
positive correlation, respectively, with a value of 0 indicating no better performance than

random classification.

4.4.4 Model training on real data

If the discomfort model parameters can be identified from the simulated dataset, therefore
our next goal is to confirm if the methodology in section 0 can also be used on real-world

data such as ecobee’s smart thermostat DyD dataset to identify a and T, parameters.

4.4.4.1 Occupant activity

Smart thermostat allows one to interact with their thermostat using a smartphone and hence
to train the discomfort model, it is crucial that the occupant experiences the thermal
conditions in a home to interact with their device as compared to remote interaction without
experiencing any thermal discomfort. While the DyD dataset offers PIR sensor-based
occupant activity data to determine occupant’s occupant activity in a space, but due to the
limitations of a PIR sensor, occupant activity data filtering becomes important. Authors have
previously discussed the occupant activity data filtering in detail and aim to use similar “gap
—filling” methodology to process occupant activity data [256]. In the study, various occupant
activity data filtering minutes were considered i.e., 15, 20, 30, and 120- minutes, where each

of filters aim to fill the gap if occupant activity was detected between in the filter minutes. As
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concluded from the study, the 30-minute filter served as the middle ground for false positives
and false negatives, therefore the same methodology will be used in this study to process

occupant activity data.

4.4.4.2 Routine model

The routine model training is intended to weed out MSC datapoints that create noise for the
discomfort model. Here the goal of the model is to compute probabilities of an occupant
interacting with the thermostat given the time of day. As discussed in section 0, a PMF is

trained to estimate probability of routine MSC given time of day.

4.4.4.3 Discomfort model

Before using the discomfort model, a static comfort temperature value (section 4.4.2.3) is
required to be identified to ensure that the TF computed during the fitting process in the
discomfort is as accurate as possible. As discussed in the section 4.4.2.4, the discomfort
model follows a two-step training approach, where the first training step is to use the LR
model to estimate discomfort-based MSCs and identify an occupant’s a and thermal
frustration threshold values and the second training step is to retrain the LR model after
removing the instances of MSCs where the routine MSC probability is higher than the

discomfort MSC probability (achieved from the first training step).

It is important to note here that additional flags were used to filter MSC datapoints used to
train the LR model. For this paper, only routine and discomfort models were considered but
there can be instances where other aspects of an occupant can motivate them to implement
a MSC. If an occupant has been home for 20 minutes, and previous setpoint was within 2
hours, only then an MSC is qualified to be considered for training the LR model. These flags
ensured that model can capture occupant’s thermal frustration that led them to interact with
their thermostat and remove the noise of MSCs caused by other aspects of an occupant’s life

such as social, environmental, financial, etc.

4.5 Results

The proposed integrated model was tested with alflalfa’s co—simulation framework. As
shown in Figure 28, the occupant’s occupant activity is key in implementing MSCs as the

thermal frustration exceeds the assigned thresholds.
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Figure 28: A snapshot of simulation run of integrated occupant and building model

4.5.1 Validation of model training in simulation

Section 4.4.3.1.5 discussed the parameters used to initialize the occupant discomfort model
in the simulation. As the simulation outputs the reason for an MSC, an initial test was run to
check if the fitting process can learn to classify MCC perfectly and exactly identify the a
value, therefore the model was tested on 0.6 of train/test ratio where for MSCs (label 1) only
discomfort based MSCs were provided with Non MSCs (label 0). As shown in Figure 30, the
model is able to capture all MSCs evidenced by MCC of 1 for &« = 0.9 (same as the

simulation’s initialized a parameter).

TABLE 4: CONFUSION MATRIX OF ROUTINE MSC CLASSIFICATION
Predicted Labels

0 1
0 5255229 2
True Labels
1 599 170

Having confirmed the fitting performance, routine and discomfort MSCs were mixed. The first
fitting of logistic regression model with routine MSCs identified a of 0.4 with MCC score of
0.09. Next step of training a simple routine model as discussed in section 4.4.2.4, yielded
accuracy of 0.99, precision of 0.98, recall of 0.22, F1 score of 0.36, and MCC of 0.46 (Figure
30). Lastly, upon removing the routine overrides, the fitting of logistic regression model

identified a of 0.75 and 0.85 with the similar MCC scores of 0.14.
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Figure 29: Performance scores of the LR model for alpha parameters
(with only discomfort overrides)
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Figure 30: MCC scores of the LR model for various alpha parameter
(with and without estimated routine overrides)

4.5.2 Model training on real data

Using the methodology discussed in this section 4.4.2.4, the DyD dataset was used to
compute the thermal frustration parameter for various a and logistic regression model was

trained to classify an MSC.

4.5.2.1 Model performance on aggregate data
Initially, the TF model was applied to the entire dataset without accounting for individual
differences among homes. This approach resulted in a Matthew's Correlation Coefficient

(MCC) of 0.002 (Figure 33), indicating a negligible improvement over random chance.
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Figure 32: Distribution of percent of routine MSCs found across homes
(50% of overrides are likely to be routine based overrides)

4.5.2.2 Distribution of thermal recollection coefficient (a)

The thermal recollection coefficient (a) is a crucial parameter in our model, representing the
degree to which previous thermal experiences influence current comfort levels. Our analysis
across a broad spectrum of individual homes highlights a notable trend: there is a
predominant clustering of a values at the upper end of the scale, specifically around 0.9 to

1.0 (Figure 34).
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The histogram depicting the distribution of percentage of routine MSCs found in homes

(Figure 32) shows the majority of homes exhibit routine MSC behavior even when using a

programmable thermostat.

4.5.2.3 Enhanced performance through personalization

Training on individual home data yielded various MCC scores for all the homes. Comparing

multiple MCC scores of various homes vs one population level model MCC score would be

inconsistent. Therefore, each home’s model fitting metrics such as true positives, false

positives, true negatives, and false negatives were summed and the MCC score was

computed. The model training that included routine overrides achieved an MCC of 0.23 and

model training without routine MSCs yielded an MCC of 49.40, indicating a substantial

enhancement in the model's predictive accuracy.
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4.6 Discussion

4.6.1 Model training in simulation

The results derived from our model, as corroborated by the alfalfa co—-simulation framework,
highlight the critical role of thermal frustration in dictating discomfort based Manual Setpoint
Changes (MSCs). The occurrence of MSCs is closely tied to the levels of thermal frustration
experienced by the occupants, which, when exceeding a certain threshold, prompts an
interaction with the thermostat system. Figure 5 provides a snapshot of this dynamic,
illustrating the direct correlation between occupant thermal frustration and the triggering of

MSCs.

4.6.2 Model training on real data

The validation process of our model training within the simulation environment brings to light
the nuanced dynamics of the a parameter, which represents the occupants' thermal
memory. As shown in Figure 6, the logistic regression (LR) model's ability to improve the
estimation of a from an initial 0.9 to a more precise range of 0.75 to 0.85 through iterative
training, particularly when factoring out non-routine MSCs, not only improved the a
estimation but also enhanced the Matthew's Correlation Coefficient (MCC) from 0.08 t0 0.14.
This improvement highlights the model's increased precision in capturing the occupants'

thermal comfort responses.

4.6.2.1 Model performance on aggregate data

Now focusing on the real-world DyD data, the application of the Thermal Frustration (TF)
model across a comprehensive dataset reveals the substantial impact of personalization.
The broad application of the model, without adjusting for individual household differences,
yielded an MCC of a mere 0.002 (Figure 7), hereby showing the limitations of a non-
personalized approach. This minimal MCC signifies an almost random predictive capability,
highlighting the complexity of human behavior which is not effectively captured by a one-

size—fits—all model.

4.6.2.2 Enhanced performance through personalization

In contrast, the personalized model, tailoring to the specific thermal histories and behavior

patterns of the occupants, we see a major improvement. The personalized TF model's
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predictive strength, as noticed by an MCC of 0.23, increases further with the exclusion of
routine overrides, reaching an MCC of 49.40 (Figure 8). Such an increase in predictive

accuracy clearly demonstrates the value of personalization in the modeling process.

4.6.2.3 Distribution of thermal recollection coefficient (a)

The distribution of the thermal recollection coefficient (a) indicates a strong preference
among households for higher a values, predominantly between 0.9 and 1.0, as depicted in
Figure 9. This convergence towards higher a values implies a shared threshold for thermal
frustration behavioral pattern that can be interpreted as a delayed yet noticeable response

to thermal discomfort.

Furthermore, the distribution of MSCs removed due to routine overrides provides additional
layers of insight (Figure 10). While the majority of homes show few MSC removals, a
significant tail-end of the distribution indicates a group of homes with numerous routine—
based MSCs. This distinction is crucial as it highlights the variability within the population
and underscores the importance of differentiating routine-driven behavior from comfort-

driven interactions with the thermostat.

The implications of these findings are manifold. Firstly, they validate the need for
personalized thermal comfort models that can adjust to the diverse preferences and
experiences of individual occupants. Secondly, they emphasize the importance of
distinguishing between routine and non-routine MSCs to ensure the accuracy of comfort
models. Lastly, they illustrate the potential for predictive interventions that can preemptively

address occupant discomfort before it prompts a manual override.

The evidence points to a clear direction for future efforts in thermal comfort simulations: a
personalized approach that not only captures the unique behavioral patterns of each
household but also provides a more accurate reflection of true thermal comfort responses.
Such models are pivotal for devising effective energy management and thermal comfort

strategies that cater to the nuanced needs of residential occupants.

4.6.2.4 Implications of personalization
These findings demonstrate the importance of personalization in modeling occupant-
thermostat interactions for thermal comfort. The tailored approach, which accounts for the

unique characteristics of each household, exhibits a distinct improvement in the model’s
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performance, as supported by the higher MCC scores. It also highlights the nature of thermal

comfort behavior, which is influenced by individual and household-specific factors.

The differences in model performance between the generalized and personalized models
suggests that future efforts in thermal comfort simulations should focus on personalized
model that capture the intricacies of occupant behavior, leading to better predictions and,
consequently, more effective energy management and thermal comfort strategies in

residential settings.

It is worth noting that the MCC score upon removing the routine MSCs was not improved for
all homes. While this strategy was helpful in improving the MCC score for majority of homes
but it also showed no change or rather decrease in MCC after removing the routine MSCs.
This is an important note as it shows that not all homes follow routine behavior, but instead
other models could be used to identify the correct alpha parameter. Also, while this
framework is helpful in estimating the discomfort model of an occupant, one should explore
other models to build a robust framework for discomfort override identification and

forecasting.

4.7 Conclusion

In this study, the development of a dynamic data—-driven integrated occupant-building model
was discussed with a focus on dynamic thermal discomfort behaviors of building occupants.
This model, integrating agent-based modeling with ecobee's Donate Your Dataset (DyD), the
alfalfa co—simulation framework, a green-built home environment, and filtering out routine
MSCs to improve classification accuracy of novel thermal frustration-based discomfort

MSCs is a novel methodology in thermal comfort simulations.

The approach is based on the use of machine learning models, trained and tested on the DyD
dataset, to identify critical occupant-specific parameters that enhance the accuracy of
manual setpoint change (MSC) classifications. This personalized approach has led to a
marked improvement in model performance, as evidenced by the Matthews Correlation
Coefficient (MCC) scores. Specifically, the logistic regression model, incorporating the novel
Thermal Frustration Theory (TFT), identified a values of 0.75 and 0.85 with MCC scores of

0.14, indicating an enhanced precision in capturing occupants' thermal comfort responses.
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However, the study also revealed variability in the model's performance across different
homes. While the removal of routine MSCs improved the MCC score for most homes, for
some, the score remained the same or even decreased. These findings highlight that not all
homes exhibit routine behavior, suggesting the need for other models to better identify the

correct alpha parameter for these homes.

The broad application of our model, without adjusting for individual household differences,
resulted in an MCC of only 0.002, showcasing the limitations of a non-personalized
approach. In contrast, the personalized models, tailored to specific thermal histories and
behavior patterns of the occupants, showed a major improvement. The MCC score increased
to 0.23 when routine overrides were included and further to 49.40 upon their exclusion. This
substantial enhancement in the model's predictive accuracy emphasizes the importance of

personalization in thermal comfort models.

In conclusion, our research represents advancement in the field of building energy efficiency
and occupant thermal comfort. By integrating dynamic occupant behavior model, new
avenues for enhancing building energy efficiency and occupant comfort can be explored. Our
findings highlight the importance of personalized models in capturing the complex and varied
nature of human-thermostat interactions and lay the groundwork for future research in

developing smarter, more responsive building environments.
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Chapter 5:

Conclusion

This dissertation developed and validated data-driven models to predict occupant
thermostat override behavior during demand response events using 5 minute-resolution data
from 1,400 single-occupant homes in the ecobee Donate Your Data (DyD) program. The
analysis quantified temporal patterns of manual setpoint adjustments—specifically
response latencies and magnitudes—and integrated these findings for the first time into
predictive algorithms for occupant-building interaction. By focusing on the timing and
probability of override events rather than static comfort setpoints, this work provides

empirically grounded inputs for demand response control strategies.

The remainder of this chapter discusses the dissertation’s findings, implications, limitations,
and pathways for future research. Section 5.1 (“Key Findings and Contributions”)
summarizes the core results from Chapters 2-4, quantifying temporal override behaviors,
evaluating predictive model performance, and describing the integrated occupant-building
behavior framework. Section 5.2 (“Implications”) examines the impacts of these findings on
grid operations, building controls, and policy frameworks. Section 5.3 (“Research Limitations
and Implementation Barriers”) identifies constraints in data representativeness, model
generalizability, and computational scalability. Finally, Section 5.4 (“Future Research
Directions”) proposes specific studies to address identified gaps in occupant behavior

modeling, control system design, and market integration.

5.1 Key findings and contributions

The main results from Chapters 2-4 are reviewed in this subsection: Chapter 2 quantified
occupant thermostat-override timing, frequency, and energy impacts; Chapter3
hypothesized the Thermal Frustration Theory (TFT) and demonstrated its superior predictive
performance (AUC) compared to static comfort models; and Chapter 4 developed a scalable
simulation framework that separates routine from discomfort-driven overrides and integrates

these behaviors into building performance modeling.
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Chapter 2's analysis of occupant thermostat-behavior dynamics, using data from 1,400
single—occupant homes from the DyD dataset, revealed fundamental patterns (occupant
thermostat interactions mainly setpoint magnitude changes are inversely proportional to
time to override override) in override behavior that previously undocumented at this scale.
The data demonstrated that occupants respond to thermal changes within a median time of
20 minutes, with the magnitude of setpoint change directly impacting response time.
Specifically, 8°F occupant-initiated thermostat setpoint change responses in 15 minutes,
while 2°F setpoint changes require 30 minutes. It is important to note that a relationship was
discovered for the first time. This relationship being exponential in nature between setpoint
change and response time challenges the conventional assumption of immediate occupant

response to discomfort.

Chapter 2 also revealed that approximately 60% of manual setpoint changes in both heating
and cooling modes resulted in increased energy consumption, with a median setpoint
change of 2°F during cooling seasons atindoor temperatures around 74°F, and 2°F increases
during heating seasons at indoor temperatures near 68°F. Analysis of override timing showed
distinct patterns, with peaks in the morning and evening hours, averaging 0.9 manual
changes per day per occupant. The duration of these overrides varied significantly, with
nighttime adjustments lasting 6-12 hours and evening modifications typically spanning 1.5-

3 hours, indicating time—-of-day dependence in override persistence.

Chapter 3 hypothesized the Thermal Frustration Theory (TFT) to fill a gap in existing comfort
models by explicitly incorporating time as a variable; TFT was then evaluated against the
Comfort Zone Theory and Delayed Response Theory using AUC to assess override prediction
accuracy. Since no comfort model to this date uses time as a parameter to model comfort,
the novelty of this theory lies in the introduction of time as a critical parameter in thermal
comfort modeling, contrasting with traditional static approaches. The theory's central
parameter, the thermal recollection coefficient (a), concentrated between 0.9-1.0 across the
studied single-occupant households. While initial evaluations used the Matthews
Correlation Coefficient (MCC), this metric proved problematic for demand response
applications. The MCC score is suboptimal for predicting rare thermostat-override events
because it equally penalizes false positives and false negatives, despite false negatives

(missed overrides) posing greater riskto demand response reliability. Instead, the Area Under
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the Receiver Operating Characteristic Curve (AUC) was selected as the primary evaluation
metric because it measures a model’s ability to distinguish override events from non-events
irrespective of class imbalance, aligning directly with the operational goal of accurately
identifying override occurrences during demand response events. The TFT model achieved
higher AUC scores (49.40) compared to both the Comfort Zone Theory (47.09) and Delayed
Response Theory (38.95), particularly after excluding routine behaviors. AUC analysis shows
TFT’s enhanced predictive capability to predict the rare but costly override events that
directly impact grid reliability and demand response program effectiveness. The difference
becomes especially important during demand response events, where false negatives
(failing to predict an override) can lead to program failures and financial penalties for utilities,
while false positives (predicting an override that doesn't occur) primarily result in

conservative but stable grid operations.

Chapter 4's implementation of the integrated dynamic occupant-building behavior model
(multiple occupant-behavior sub—-models i.e. active occupancy (i.e. occupant is awake and
moving — detected by PIR sensors), routine-based changes (occupant’s habitual setpoint
adjustments), discomfort—driven changes (occupant’s quick overrides driven by thermal
frustration) were combined into a single simulation framework) transformed theoretical
understanding into practical application through several key innovations. The integration of
three distinct behavioral models - active occupancy, routine-based changes, and
discomfort-driven adjustments — provided a broader representation of occupant-building
interaction. The active occupancy model, implemented through a first-order Markov chain,
captured temporal characteristics of space utilization. The routine model estimated time-
of-day-based patterns in setpoint adjustments, with conditional probabilities revealing
correlations between consecutive manual setpoint changes. The Thermal comfort
Frustration Theory (TFT) model parameters were methodically identified through a two-step
training process that separated routine from discomfort-driven behaviors, improving
model accuracy. Through containerization and optimization, simulation time reduced from
50 to 19 hours for 10 homes that were simulated for 1 year time frame, demonstrating
scalability (quick testing of DR simulation scenarios) for practical applications. The
framework's demonstration using the Greenbuilt house in Sacramento provided a real-world
test case, with the Alfalfa co—simulation framework enabling integration of building physics

with occupant behavior models. The implementation demonstrated that even with the
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complexity of multiple interacting models, the framework could capture the nuanced

dynamics of occupant-building interactions.

5.2 Broader impacts and future work

The findings of this research extend beyond individual buildings, influencing grid operations,
policy frameworks, and technology development. These findings fundamentally alter how we
approach demand response program design and implementation (do occupant-time
dynamics significantly change DR scheduling windows, or baseline assumptions?), while

raising important questions about market structures and regulatory frameworks.

5.2.1 Grid-scale implications of occupant behavior

The identification of occupant response time being inversely related to the magnitude of
setpoint change impacts grid operations and planning. ISO/RTO dispatch systems operate
on 5-15 minute intervals [277], creating a mismatch between grid control periods and
measured occupant behavior. If the predicted occupant override time falls before the signal
dispatch, occupant can override controls before the signal gets executed, hereby leading to
loss of energy savings or more energy use than savings in that event. The measured response
times establish operational constraints for automatic generation control systems,
addressing specific gaps identified in FERC assessments of demand response performance.
FERC Order No. 719 (issued in 2008) established reforms to eliminate barriers to demand
response participation in organized energy markets, requiring Regional Transmission
Organizations and Independent System Operators to accept bids from demand response
resources [278]. Additionally, FERC conducts annual assessments of demand response
potential, identifying challenges with demand response forecasting precision during grid
events including unpredictable occupant behavior and timing mismatches between grid
needs and customer responses. These assessments highlight that timing accuracy for
residential demand response remains a critical challenge for integrating these resources into
grid operations [279]. This research provides the occupant behavior parameters needed to

develop more accurate grid resource forecasting during demand response events.

The findings require modifications to day-ahead market structures. Because occupant
overrides vary with the magnitude and duration of setbacks, the probability of DR capacity

also varies accordingly. These distributions support NERC's transition toward probabilistic
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resource adequacy assessment, which can be supported by a probabilistic occupant model

that can help NERC better forecast resource adequacy [280].

TFT's AUC performance (49.40) provides a method for calculating capacity requirements
based on override probability distributions. AUC being a summary metric cannot be sufficient
for all scenarios; various probability thresholds can be used to balance precision and recall.
The probabilistic outputs of occupant override model allow one to improve capacity planning
informing. Current performance metricsresultin demand response reliability overestimation
[281]. The 49.40 AUC score represents a 27% improvement over DRT (38.95) in override
prediction accuracy. The improved prediction capability could inform the development of
performance-based demand response programs [77], where participants receive
compensation proportional to their actual delivered load reduction rather than fixed
payments based on enrollment capacity. These programs utilize verified performance
metrics to calculate payments, potentially benefiting from more accurate forecasting

methodologies that account for occupant behavior patterns.

5.2.2 Building-level implementation constraints

The analysis of 1,410 single—occupant homes conducted withing this dissertation revealed
that 60% of overrides increase energy consumption, and 50% of changes stem from routine
behavior. These percentages necessitate more adaptive controls or occupant-centered
feedback loops in building control systems [282]. Current residential systems typically only
accept user input for temperature setpoints [17]. The separation of routine from comfort—
driven behavior, demonstrated through the two-step classification process (novel

contribution of this dissertation), enables targeted optimization of setpoint trajectories [13].

The integrated dynamic occupant-building behavior model processes data at 1-minute
resolution, enabling prediction of occupant actions. This processing capability differs from
traditional control systems that respond to overrides after occurrence [14]. The framework's
implementation with the Greenbuilt house established the capability to simulate multiple
behavioral drivers: active occupancy, routine changes, and discomfort—driven adjustments

[139], [270].

Current demand response programs apply uniform setpoint adjustments across building

portfolios [120]. The research demonstrates this approach's limitations through measured
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variations in occupant response times: 15 minutes for 8°F changes versus 30 minutes for 2°F
changes. These temporal patterns, combined with the 50% routine behavior finding, indicate
the need for building-specific setpoint trajectories [159]. Implementation requires
incorporating measured override probabilities to maximize grid services while reducing

participant opt-outs [77].

5.2.3 Policy and economic framework

The quantification of occupant response times has implications for residential building code
requirements. Unlike commercial building standards such as ASHRAE 90.1, residential
codes including the International Energy Conservation Code (IECC) and state—adopted
residential provisions typically specify only steady-state efficiency metrics with minimal
smart control requirements [283]. The finding that 60% of overrides increase energy
consumption demonstrates how occupant behavior significantly impacts residential
building performance, suggesting potential residential code updates that could incorporate
occupant-system interaction patterns. Such updates might include specifications for
control system response capabilities that align with measured occupant behavior in

residential settings.

The identified relationship between setpoint magnitude and override timing provides a
quantitative basis for developing performance standards that balance energy savings with
occupant comfort. For example, certification standards could incorporate maximum
recommended setpoint adjustment rates based on the documented 15-minute and 30-
minute override thresholds, potentially using modified comfort maintenance scores that
account for the thermal frustration accumulation identified in this research [284]. Such
standards would provide both manufacturers and utilities with evidence-based parameters

for demand response algorithm design.

The economic implications extend beyond current cost-benefit calculations. Traditional
frameworks assume fixed resource availability during demand response events [285]. The
measured exponential relationship between setpoint changes and response times (15
minutes for 8°F vs 30 minutes for 2°F) found for the first time in this dissertation affects

resource valuation.
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5.2.4 Research and technology development pathways

Occupancy sensors must evolve to meet the requirements suggested by this research’s
findings. Poor true positive rate (33%) from PIR-based occupancy detection limits model
implementation [212]. While integration of temperature, CO2, and power consumption data
offers potential detection improvements [23], technical challenges remain in data fusion,
signal processing, and edge computing capabilities. Recent advances in millimeter-wave
radar technology demonstrate promising capabilities for non-intrusive occupancy detection
with higher spatial resolution and lower false negative rates [286]. The ARPA-E SENSOR
program has accelerated development of occupant-sensing technologies that could support
the occupancy detection needs identified in this research, particularly their focus on
multimodal sensing networks that maintain accuracy while addressing both privacy
requirements and practical deployment constraints including power consumption,
installation complexity, and long-term reliability [287]. These emerging technologies align
well with the research findings regarding occupancy detection needs for effective thermal

comfort prediction.

PID control systems demonstrate limitations in capturing occupant-building interaction
dynamics as that typical HVAC controllers (often described generically as PID) do not
account for time—-accumulative occupant discomfort (“thermal frustration”). The BOPTEST
framework implementation can demonstrate feasibility of thermal frustration tracking in

control systems [288], establishing a foundation for behavior-aware control development.

The temporal resolution requirements for simulation differ significantly from those needed
for practical control systems. While the research utilized 1-minute resolution data for
simulation accuracy [23], commercial building automation systems typically operate on 15—
minute control cycles for most applications [22]. The measured occupant response times of
15 minutes for 8°F changes suggest that current control frequencies may be adequate for
many scenarios, though some applications may benefit from the increasing adoption of 5—
minute control intervals now available in advanced residential thermostats. The principal
computationalchallenge lies not in control speed butin the data processing capacity needed
to analyze historical behavioral patterns across multiple timescales, from immediate
thermal responses to seasonal adaptation trends [140]. Future research should focus on

developing streamlined machine learning approaches that can identify occupant behavior
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patterns while operating within the practical constraints of existing control system

infrastructure.

5.3 Research limitations and implementation barriers

The implications discussed above highlight significant opportunities for transforming
building-grid integration, yet several limitations in the current research must be addressed

before realizing these possibilities.

5.3.1 Grid integration limitations

The data from 1,400 single—occupant homes represents 14% of typical utility-scale demand
response portfolios, which exceed 10,000 participants [120]. The data was limited to 1,400
homes to conduct this research on single-occupant homes which helps avoid
conflating behaviors. This limitation in sample diversity, particularly the focus on single—
occupant residential buildings, restricts immediate application in markets where
commercial and multi-family buildings dominate demand response portfolios [289]. Ecobee
has also released a bigger subset of the data (100k+ homes) which can be used in future

research.

5.3.2 Building-level implementation constraints

The low accuracy i.e. 33% true positive rate from PIR-based occupancy detection introduces
measurement uncertainty [212]. To mitigate this limitation, the research implemented a gap—
filling algorithm that filtered occupancy data to include only high-confidence occupied
periods while "filling in" short absences likely caused by sensor occlusion rather than actual
departures. Multiple filter windows (0, 15, 20, 30, and 120 minutes) were systematically
evaluated, with the 30-minute filter selected as the optimal balance between reducing false
negatives and minimizing false positives [290]. This approach was validated by measuring
average occupied period lengths across different filter settings, demonstrating that short-
duration filtering successfully joined fragmented occupancy periods without artificially
extending total occupancy time. Cross-verification with manual setpoint changes further
confirmed that the filtered occupancy data aligned with actual user presence patterns,
though the filtering approach did necessarily increase measured occupancy duration

compared to raw sensor readings. Future work should expand these sensing methodologies
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to multi-occupancy residential and commercial spaces, which would require additional
calibration to account for occupant interaction effects, competing thermal preferences, and

more complex zone control requirements not captured in the single-occupant model [18].

5.3.3 Computational and data processing challenges

The computational requirements of the integrated dynamic occupant-building behavior
model present significant implementation barriers. The framework requires 19 hours to
simulate 10 homes for a full annual cycle at 1-minute resolution, making real-time
applications in large-scale deployments impractical [288]. This computational burden
impacts both building performance simulation research and demand response
implementation. While containerization improved efficiency compared to initial runs (50
hours), the co—-simulation overhead through the Alfalfa framework still restricts widespread
adoption [291]. The stochastic nature of occupant behavior further compounds this
challenge, as multiple simulation runs are necessary to capture the range of possible
outcomes, exponentially increasing computational requirements. Model reduction
techniques offer one potential solution path, sacrificing some granularity for computational
efficiency. Alternatively, high—-performance computing resources could enable city-scale
simulations through massively parallel processing approaches, though this would limit
access to specialized research facilities [77]. For practical implementation by demand
response aggregators or utilities, simplified versions of the occupant behavior models that
preserve key temporal dynamics while reducing computational complexity will be necessary

to bridge the gap between research findings and operational deployment.

Data storage and processing requirements pose additional challenges in practical
implementation. The 1-minute resolution data necessary for accurate behavior prediction
generates substantial volumes—approximately 525,600 data points per home annually for
each measured variable—exceeding typical building automation system capabilities [22].
While modern cloud infrastructure could theoretically handle these requirements, the
associated costs and bandwidth limitations create practical barriers for building operators
[346]. The need for multi-year data storage to capture seasonal behavior patterns further
strains system resources [140]. Advanced data compression techniques and selective
sampling approaches offer partial solutions, potentially reducing storage requirements by

60-80% while preserving critical behavioral information [293]. Building automation systems
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could implement tiered storage architectures that maintain high-resolution data for recent
periods while automatically aggregating historical data to coarser resolutions, balancing
prediction accuracy with practical storage constraints. These approaches would enable the
capture of essential occupant behavior patterns without requiring impractical investments

in data infrastructure.

5.3.4 Model validation and parameter estimation

The validation of both Thermal Frustration Theory and Comfort Zone Theory models revealed
several limitations affecting generalizability. While TFT demonstrated marginally higher
predictive performance (AUC of 49.4) compared to CZT (AUC of 47.0), both scores indicate
substantial room for improvement in parameter estimation methods [156]. Two critical
limitations constrained model validation. First, the comfort temperature calculation method
used simple averaging of temperatures during non-override periods, failing to capture daily
or seasonal variations in thermal preferences that have been documented in field studies
[135]. Second, validation was restricted to a single building (the Greenbuilt house), limiting
generalization across different construction types, climate zones, and HVAC system
configurations that might significantly influence occupant thermal perception [165]. These
constraints highlight the need for multi-building validation studies across diverse building
stock to establish broader applicability of the thermal frustration model before widespread

implementation.

The fixed comfort parameter implementation does not address seasonal adaptation patterns
in thermal preferences. Field studies demonstrate that outdoor temperatures influence
indoor comfort expectations, with occupant thermal neutrality shifting by approximately
0.31°C per 1°C change in outdoor temperature [135]. The model also excludes occupant
learning behaviors observed through repeated system interactions, where preferences
evolve based on system responsiveness and historical comfort experiences [294]. These
limitations extend to non-thermal factors affecting override decisions, including
environmental drivers (e.g., solar radiation, spatial temperature variation), financial
considerations (e.g., energy costs, time-of-use pricing awareness), and social influences
(e.g., household dynamics, cultural norms) [66]. Recent research on spatial temperature
variations within residential buildings indicates that room-to-room temperature differences

averaging 2-4°F significantly impact occupant comfort perception and thermostat
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interaction patterns [295], yet the current model treats buildings as thermally homogeneous.
Future implementation of TFT in demand response applications will require integration of
these multi-dimensional factors to accurately predict override behaviors across diverse

occupant populations.

5.3.5 Policy and market structure limitations

A fundamental mismatch exists between the probabilistic nature of occupant behavior
models and the deterministic structure of electricity markets. Current regulatory frameworks
require fixed capacity commitments for demand response resources, with penalties for non-
delivery [296]. However, this research demonstrates that occupant override probabilities vary
based on setpoint magnitude, duration, and other factors, creating inherent uncertainty in
resource availability [78]. This uncertainty cannot be adequately represented within market
structures that demand firm capacity values. Bridging approaches could include threshold-
based participation, where only capacity with override probabilities below certain thresholds
are bid into markets, or confidence band bidding that incorporates statistical reliability
metrics [74]. Without standardized methods for translating behavior prediction into resource
valuation, utilities and aggregators must either bid conservatively, reducing the economic
value of demand response, or risk non—-performance penalties that threaten program viability
[79]. Addressing this regulatory-technical gap requires evolution in both market rules and
occupant modeling approaches to establish a common framework for probabilistic resource

assessment.

The regulatory landscape presents multiple distinct barriers to implementing behavior-
aware demand response programs. Privacy and data security frameworks remain inadequate
for the granular data collection required by occupant behavior models [297]. Current
regulations typically focus on aggregate load profiles rather than individual residential data,
leaving uncertainty about what level of monitoring is permissible [47]. Simultaneously,
program evaluation mechanisms operate largely on resource—centric metrics that fail to
incorporate occupant behavior impacts [298], creating fundamental misalignment between
how programs are assessed and how they actually perform. For example, PJM's capacity
performance standards evaluate resources based on delivered capacity without accounting
for occupant comfortimpacts or override rates [120]. This measurement gap is compounded

by the absence of standardized protocols for risk allocation in behavior—prediction programs,



112

leaving unclear who bears financial responsibility when occupant behavior deviates from
forecasts . Without regulatory structures that explicitly recognize, and value occupant-
centric approaches, utilities and aggregators have limited incentive to implement the more

sophisticated models developed in this research.

5.3.6 Technical standards and protocols

The technical standards landscape creates integration challenges forimplementing behavior
prediction in residential settings. While commercial buildings utilize established protocols
like BACnet and Modbus, residential automation systems typically rely on proprietary or
consumer-oriented technologies with limited interoperability [299]. Existing smart home
standards focus primarily on device connectivity and basic scheduling rather than behavior
prediction capabilities [22]. Even in emerging standards like Matter and Thread,
specifications lack requirements for sensor accuracy needed for reliable occupant
detection, data collection protocols for override prediction, or computational provisions for
processing behavioral models processing [300]. While APIs exist for individual smart
thermostats and home automation systems, they remain fragmented across manufacturers
and lack standardized methods for integrating third—party behavior prediction algorithms
[22]. These standardization gaps create practical barriers for implementing the residential
behavior prediction models developed in this research, requiring custom integration

approaches for each deployment context.

5.4 Concluding remarks

This dissertation addressed fundamental gaps in modeling occupant thermal comfort
behavior for demand response applications. The research established the temporal
characteristics of override behavior, introduced the Thermal Frustration Theory for modeling
dynamic comfort responses, and developed a framework for implementing these insights in

building control systems.

The findings highlight how we understand occupant-building interactions in three significant
ways. First, the research revealed a consistent relationship between temperature change
maghitude and occupant response timing—larger temperature deviations trigger faster
responses, with specific quantifiable patterns that can inform system design. Second, the

Thermal Frustration Theory outperformed both Delayed Response Theory and Comfort Zone
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Theory in predictive accuracy, demonstrating that occupants accumulate discomfort over
time rather than responding to fixed temperature thresholds. Third, the research
developed a methodology to distinguish between routine-based thermostat adjustments
and those driven by actual thermal discomfort, revealing that approximately half of all
thermostat interactions stem from habitual patterns rather than temperature-driven

discomfort.

The implementation framework developed through this research enables integration of these
findings into building control systems and grid operations. At the urban scale, the model's
ability to predict occupant override behavior supports more accurate energy use forecasting
across building populations, potentially improving grid-level demand projections by 15-30%
compared to static approaches [301]. The research specifically enables demand response
programs that align event durations with measured occupant tolerance thresholds—8°F
setbacks maintained for 15-minute periods or 2°F setbacks for 30-minute periods—creating
opportunities for semi-personalized setpoint trajectories based on occupant behavior
clusters rather than uniform adjustments [279]. By tailoring demand response events to
these occupant-specific temporal thresholds, utilities can fulfill grid requirements while
simultaneously reducing override rates, creating a positive synergy between occupant
satisfaction and grid stability that strengthens the reliability and scalability of residential

demand response resources.

These advances in understanding and predicting occupant behavior provide a foundation for
the next generation of building-grid integration. The methods and frameworks developed
here enable more effective use of building loads for grid services while respecting the

complexity of human responses to thermal conditions.
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