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Location Error Correction

page iv Missing acknowledgement for the use of
INL HPC
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page 7 Wrong description of TRISO cell in Fig-
ure 2.1

omm + ir instead of omm

page 8 Wrong upper equation in Eq. (2.1) (Σmrt+ir,a +Σmrt+ir,p) instead of Σomm,t
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ABSTRACT

Griffin, a MOOSE-based reactor multiphysics code jointly developed by Idaho National Laboratory

and Argonne National Laboratory under the DOE Office of Nuclear Energy’s NEAMS program,

has pursued the development of an online multigroup cross section generation capability for a few

years to enable high-fidelity, problem-dependent neutronics analyses of advanced thermal reactors.

Recent advancements in Griffin’s online multigroup cross section generation capability have

significantly improved the accuracy, robustness, and efficiency of self-shielding calculations for both

prismatic and pebble-bed TRISO-fueled reactor applications. Key developments include a unified

fuel self-shielding method applicable to both TRISO and annular compact/spherical shell fuel zone

geometries; an advanced Dancoff Category-based Equivalence Theory using a bell function for

non-fuel resonance treatment, achieving more than an order-of-magnitude speedup compared to

the Tone method; an on-the-fly multigroup equivalence approach to mitigate group condensation

errors; and a streaming correction method for pebble-bed homogenization. A proof-of-concept

demonstration of on-the-fly group condensation with consistent P0 transport correction was also

achieved. The method reproduced direct fine-group solutions with excellent accuracy (eigenvalue

errors within 10 pcm and pin-power differences within 0.5%), but due to performance limitations of

the current fixed-source solver, improvements to solver efficiency will be addressed in future work.

Verification tests were performed on graphite-moderated TRISO-fueled two-dimensional core

benchmark problems representing gas-cooled microreactors, heat pipe-cooled microreactors, gas-

cooled pebble-bed reactors, and fluoride salt-cooled high-temperature reactors. Across all cases,

Griffin showed excellent agreement with Serpent2 continuous energy Monte Carlo solutions: eigen-

value errors within 200 pcm, pin-power root-mean-square errors within 2%, and control rod and

drum worth errors less than 2%. It should be noted that, for the benchmark problem, cross section

generation contributed less than 3% of the total simulation times.

These results demonstrate that Griffin’s online cross section generation capability delivers accu-

rate and efficient reactor physics solutions across a wide spectrum of TRISO-fueled advanced reactor

designs. With further improvements to the fine-group fixed-source solver and planned extensions

to depletion, transients, and coupled neutron–gamma transport, Griffin will be well-positioned to

become a powerful and comprehensive tool for advanced reactor analysis.
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1. Introduction

Griffin [1, 2] is a MOOSE-based reactor multiphysics analysis code jointly developed by Argonne

and Idaho National Laboratories under the DOE-NE Nuclear Energy Advanced Modeling and Sim-

ulation (NEAMS) program. A central goal of Griffin is to enable high-fidelity, problem-dependent

neutronics simulations of advanced reactor systems, including prismatic block-type and pebble-

bed-type high temperature reactors, molten-salt reactors, fast reactors, and micro-reactors.

A key component supporting this objective is the online multigroup cross section (XS) genera-

tion capability, provided through the Self-Shielding Application Programming Interface (SSAPI).

The SSAPI produces region-wise multigroup XSs on the fly, explicitly accounting for heterogeneous

fuel geometries, resonance effects, and streaming phenomena. Since its initial implementation [3],

this capability has advanced substantially, with notable improvements in methodology, accuracy,

and computational performance. To date, documentation of these developments has appeared only

intermittently as subsections in previous reports, including the FY23 and FY24 milestone reports

[4, 5]. This reports therefore provides the first comprehensive summary of the recent methodolog-

ical advancements and associated verification results for two-dimensional (2D) core problems of

advanced reactors of current interest.

Recent progress has focused on unifying and extending methodologies for both prismatic and

pebble-bed reactor (PBR) applications. One major development is a unit cell-based slowing-down

method with direct Dancoff correction to collision probability (CP) coefficients, applicable to both

Tristructural Isotropic (TRISO) particle (micro-level) and compact or pebble (macro-level) self-

shielding. The new method builds upon the Pin-based Slowing-down Method (PSM) approach [6]

but extends it to TRISO problems with an improved application of the Dancoff correction to CP.

This approach replaces the previous Iterative Local Spatial Self-Shielding (ILSS) method [7] for

a TRISO-cell problem, achieving good speedup while maintaining comparable accuracy. It also

serves as an alternative to the Equivalence Dancoff factor Cell (EDC) method previously used

for compacts in prismatic gas-cooled reactors or pebbles in PBRs. Unlike the EDC method, the

new approach eliminates the need for a binary search to determine the equivalent EDC size in

a one-dimensional (1D) geometry and avoids the occasional convergence failures associated with

that search. The methodology has further been extended to accommodate annular compacts and

1 ANL/NSE-25/82
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spherical-shell-type fuel zones in a pebble, enabling direct application to High-Temperature Gas-

cooled Reactor (HTGR)s and fluoride salt-cooled high temperature pebble-bed reactor (PB-FHR)s

without geometric approximations. This extension was achieved by deriving the TRISO Dancoff

factor for such annular geometries.

For prismatic reactors, dedicated improvements have been made to treat non-fuel resonances

more effectively. First, the existing Tone method based on heterogeneous XS tables [8] was extended

to support homogeneous resonance integral (RI) tables. The homogeneous RI table was carefully

generated to ensure homogeneous–heterogeneous equivalence within the Tone method for arbitrary

geometries. Because the homogeneous RI table is not problem-specific, its generation procedure is

included in the SSAPI library build, thereby eliminating the need to prepare heterogeneous tables

for each target problem. Second, the Dancoff Category-based Equivalence Theory (DCET) method

was developed as an alternative approach. Unlike the Tone method, which employs fixed-source

calculations to numerically account for gray resonances, the developed method synthesizes the

fuel escape probability by evaluating only the black limit and extending it to gray resonances using

optical-thickness-dependent bell factors (bell functions) of an isolated black region that are obtained

either analytically or numerically. In this approach, isotopes are grouped into Dancoff categories

based on their black configurations, and a representative Dancoff factor is calculated for each

category. Because a typical problem involves only a small number of unique black configurations,

the number of fixed-source calculations is drastically reduced compared to that required by the Tone

method. The uniqueness of this approach compared to the conventional Equivalence Theory method

is the use of the bell function, eliminating the error caused by the N-term rational approximation

and the need to perform fixed source calculations at several grey optical thickness points to derive

the optimum N-term coefficients. Benchmarking confirmed that this approach achieves accuracy

comparable to the Tone method while providing an order-of-magnitude speedup.

Additionally, an on-the-fly multigroup equivalence factor, historically referred to as superhomo-

genization (SPH) factor, has been introduced to mitigate condensation errors arising from neglecting

the angular dependence of total XS in the resonance energy range [9]. Region-dependent factors

within a fuel compact are obtained from unit cell-based on-the-fly slowing-down calculations and

applied in the subsequent transport calculation. This correction is particularly important for cases
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with high TRISO packing fractions or strong moderator effects, where neglecting angular depen-

dence tends to overestimate the neutron flux entering compacts and results in a negative reactivity

bias of up to 300–400 pcm in strong cases.

For gas-cooled PBRs, a homogenization technique that accounts for pebble ensemble-wise flux

weighting was first implemented in Griffin [10]. Building on this foundation, the SSAPI was further

augmented with a streaming correction capability to capture the strong streaming effects arising

from void regions between pebbles. In such environments, conventional flux-volume weighting

underestimates the diffusion coefficient and, in turn, the leakage, leading to power tilts and an

overestimation of eigenvalue. To address this streaming effect, the Benoist method [11] was applied

to the existing pebble-bed collision probability method (CPM) solver developed in FY23 [10],

providing a correction either to the diffusion coefficient for diffusion calculations or to the first-

order self-scattering XS for transport calculations. In addition, accounting for region-dependent

pebble volume fractions is important, as local variations influence resonance self-shielding and

power distribution. To support this, a test script for evaluating pebble volume fractions cut by

region boundaries in a 2D-RZ geometry in a very efficient manner has been verified and is planned

to be merged into Griffin in the next FY.

Additionally, an on-the-fly energy group condensation scheme with consistent P0 transport

correction has been introduced to improve performance. This approach reduces the number of

groups used in multigroup transport relative to the fine-group library structure without resorting

to equivalence parameters, thereby lowering computational costs while preserving accuracy. A

proof-of-concept study has demonstrated promising results: condensed-group transport calculations

reproduce fine-group solutions within 10–20 pcm in eigenvalue across a series of test problems and

yield close power distributions within 0.5% difference.

In this report, Section 2 presents the theoretical background for the fuel and non-fuel self-

shielding methods as well as the on-the-fly multigroup equivalence parameter. Section 3 describes

the way to define local pebble-bed configurations and the homogenization technique with streaming

correction for pebble-bed XS generation. Section 4 introduces the on-the-fly condensation scheme

with consistent P0 transport correction and provides preliminary verification results. Section 5

presents verification results for the gPBR (generic pebble-bed gas-cooled reactor) and gfluoride high-
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temperature reactor (FHR) (generic fluoride salt-cooled pebble-bed reactor) benchmark problems, 

along with the Gas-Cooled Micro Reactor (GCMR) and Heat Pipe-cooled Micro Reactor (HPMR) 

2D core problems, focusing on both accuracy and performance. Finally, Section 6 concludes the 

report and outlines future work.

4



Improvement and Verification of Online Cross Section Generation Capability of Griffin for TRISO-fueled Reactors

September 30, 2025

2. Improved Self-Shielding Method in SSAPI

This section outlines the self-shielding methodology in Griffin to evaluate self-shielded, fine-group

microscopic XSs of all resonant isotopes in each heterogeneous region. The first subsection de-

scribes the self-shielding method for TRISO-bearing fuel, followed by the treatment of non-fuel

resonances in the second subsection. Fuel resonances are handled using slowing-down calculations,

whereas non-fuel resonances are treated either with the Tone method or with the newly developed

DCET method using improved homogeneous RI tables. The specific efforts carried out in FY25

are highlighted in the relevant parts of this report.

2.1 Self-Shielding Method for TRISO-bearing Fuel

The ultrafine slowing-down method is employed as the self-shielding treatment for TRISO-bearing

fuels. The basic idea is to obtain an ultrafine spectrum directly by performing slowing-down

calculations in a unit cell and then use this spectrum as the weighting function to generate self-

shielded XSs. The unit cell must properly capture the lattice shadowing effect, which is quantified

by the Dancoff factor. The Dancoff factor is calculated prior to the slowing-down calculation and

used to account for the shadowing effect in the unit-cell-based slowing-down procedure.

For regions containing TRISO, the self-shielding procedure consists of two stages: the first

slowing-down calculation in a TRISO cell and the second slowing-down calculation in a macro cell.

The first stage homogenizes XSs over the stochastic region (e.g., a compact or the fuel macro-region

of a pebble) using flux-volume weighting at each ultrafine group in the slowing-down energy domain.

The second stage condenses the stochastic-region-homogenized XSs into a fine-group structure. The

resulting stochastic-region-averaged, self-shielded fine-group XSs are then used in subsequent flux

calculations. If the fuel is a homogeneous fuel pellet without TRISO, only the second stage is

required.

In terms of Dancoff-factor evaluation, only solid compacts and spherical fuel macro-regions of

pebbles without non-fuel inner regions were supported prior to FY25. In FY25, the TRISO Dancoff

factor evaluation capability was extended to include annular compacts for HTGRs and spherical-

shell fuel macro-regions of pebbles for PB-FHRs. Regarding the slowing-down algorithms, the

ILSS method [7] had been used for the first stage but was replaced by Bell function-based Analytic
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Two-region Slowing-down Method (BATSM) [12] in FY24 [5]. For the second stage, the EDC

method had been employed but was replaced in FY25 with the Improved Pin-based Slowing-down

Method (IPSM) method. The designation “improved” refers to the enhanced treatment of the

Dancoff correction, which is now applied to the CP coefficients in a manner consistent with Dancoff

theory and applicable to arbitrary geometry types, in contrast to the original scheme [6].

This section provides not only the FY25 improvements but also the complete picture of the

methodology of SSAPI. The first subsection gives an overview of the two-stage slowing-down cal-

culation procedure. The second subsection describes the procedure for calculating Dancoff factors.

The third subsection describes the improved methodology for incorporating the Dancoff factor into

the slowing-down calculation.

2.1.1 Two-stage Slowing-down Procedure Overview

Fig. 2.1 illustrates the two-stage slowing-down procedure, which includes TRISO-cell and macro-

cell problems and supports the presence of an inner region inside the TRISO-bearing macro-region.

In the figure, the circle for the TRISO cell always represents a sphere, whereas that for the macro

cell represents either a cylinder (with an inner region) for a prismatic-type reactor problem or a

sphere (with an inner region) for a PBR problem.

The procedure begins with constructing the macro cell. In Step (A), a volume-homogenized

mixture of any compositions outside the TRISO-bearing macro-region (typically a graphite block

for a prismatic problem or the graphite shell of a pebble, coolant, and any dummy graphite pebbles

for a PBR), labeled as omm in Fig. 2.1, is placed outside the TRISO-bearing macro-region, with the

cell size determined by volume-ratio preservation. In Step (B), the probability of neutrons exiting

the macro-region toward the outer region and subsequently reaching the macro region of another

compact or pebble is calculated. This probability, denoted Cmac, represents the Dancoff correction

factor for the macro cell (the complement of the Dancoff factor D). Its calculation method is

explained in the next subsection.

Following Step (B), construction of the TRISO cell begins. In Step (C), a homogenized mixture

of the inner region of the target macro-region and the omm region from the macro cell is placed

outside the matrix region of a TRISO particle. In Step (D), the layers surrounding the fuel kernel,

matrix, inner-region composition, and omm are volume-homogenized; this resulting mixture is la-
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Figure 2.1. Two-stage slowing-down procedure of the self-shielding calculation for TRISO-bearing
fuel.

beled omt in Fig. 2.1. In Step (E), Cmic
lat. is calculated using the formula given in the next subsection,

where the subscript “lat.” indicates that inter-macro-region shadowing effects are considered.

The TRISO-cell slowing-down calculation is then performed using BATSM [12]. The method

solves a two-region (fuel kernel + omt) slowing-down problem in which the CP coefficients at

each ultrafine group are corrected by Cmic
lat. . The correction method is discussed later. Once the

flux solution is obtained, the XSs of the TRISO cell (fuel kernel + TRISO layers + matrix) are

averaged using flux-volume weighting at each ultrafine group. Note that the original volumes must

be used in the weighting: Vfk and Vlm, not Vomt for the moderator.

The second slowing-down calculation is then performed in Step (F) using these averaged XSs.

The IPSM method is used with the Dancoff factor Dmac = 1−Cmac. Because Cmac accounts only

for the region in the outer side of the fuel macro-region, interaction of the fuel macro-region with

the inner region is treated locally through CP coefficients of the isolated combined region, and

these coefficients are corrected together by Dmac. Once the spectrum for the fuel macro-region is

obtained, it is used as the condensation weighting function to produce the final self-shielded XSs
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of the fuel macro-region.

For both slowing-down calculations, the same ultrafine groups with equal lethargy width of

1/2400 are used (about 60 ultrafine groups span the asymptotic scattering width of 238U). A total

of 24,840 ultrafine groups are used, covering the energy range from around 10 keV to 0.4 eV. Owing

to the equal lethargy width, the scattering source can be updated recursively in a very efficient

manner. To reduce computational cost, isotopes whose number density is less than 1% of the

maximum in the composition are grouped into a single effective isotope whose mass is defined as

the number-density-weighted average of all isotopes in the group.

2.1.2 Dancoff Factor Evaluation

As discussed above, two Dancoff factors are required: one for TRISO and one for the macro region.

The macro-region Dancoff factor is calculated first because the TRISO Dancoff factor depends on

it. For clarity, we discuss the Dancoff correction factor C = 1−D rather than D itself. The macro-

region Dancoff correction factor is obtained using the Enhanced Neutron Current Method (ENCM)

for prismatic-type problems or an analytic formula for pebble-bed reactors derived in Reference

[13] (the dual-sphere method within an infinite pebble-bed region):

Cmac = 1− lmrt+ir((Σmrt+ir,a +Σmrt+ir,p)ϕmrt+ir − Σmrt+ir,p) for prismatic type,

Cmac =
e−2dmacΣomm,t

(lomm − 2dmac)Σomm,t + 1
for pebble type,

(2.1)

where subscripts t, a and p denote total, absorption and potential XSs, dmac is the graphite-layer

thickness of a pebble, and l denotes the average chord length. The quantities lomm and lmrt+ir are

given by

lmrt+ir =
4 (Vmrt + Vir)

SO,mrt
,

lomm =
4Vomm

SO,mrt
,

(2.2)

where SO,mrt is the outer surface area of the fuel macro-region. The scalar flux ϕ in Eq. (2.1) for a

prismatic type is obtained from the fixed-source problem formulated from ENCM:
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Ω⃗·∇⃗ψ(r⃗, Ω⃗)+
(
Σa(r⃗)+Σp(r⃗)

)
ψ(r⃗, Ω⃗) =

1

4π
Σp(r⃗),


Σa(r⃗) = 105, for r⃗ ∈ fuel region,

Σa(r⃗) = 0, for r⃗ ∈ non-fuel region.

(2.3)

The inner region of the target macro-region is assumed to be black, consistent with the definition

of Cmac. This Cmac is subsequently used in calculating the TRISO Dancoff correction factor Cmic
lat. ,

as explained below.

The inner region inside an annular macro-region is accounted for in the TRISO Dancoff cor-

rection factor. This consideration in Cmic
lat. for the inner region was introduced in FY25. The

discussion below is general enough that the formulas also apply to a solid macro-region without an

inner region. The total correction is the sum of intra- and inter-pebble terms:

Cmic
lat. = Cmic

intra + Cmic
inter. (2.4)

Fig. 2.2 depicts the CP coefficients used to calculate Cmic
intra and Cmic

inter. Here, C
mic
intra accounts for

the probability that neutrons leaving a fuel kernel reach another fuel kernel without exiting the fuel

macro-region (Cmic
intra,mrt), or exit to the inner side (E∗,d

I ), re-enter the fuel macro-region (Tir), and

then reach another fuel kernel (γ∗,dI ) without collisions. The superscript ∗ denotes evaluation at

the effective mean free path in the fuel macro-region, with inverse Σ∗
mrt = Σlm,t +

1
llm−2dmic , where

llm = 4rfk
3

(
1

p.f. (rfk/rTRISO)3
− 1
)
, p.f. denotes the TRISO packing fraction, and dmic is the total width

of the TRISO layers. The subscript lm refers to the homogenized mixture of TRISO layers outside

the fuel kernel and the graphite matrix. The superscript d indicates the dual-sphere model, which

accounts for the TRISO layers in the chord-length distribution between fuel kernels. Thus,

Cmic
intra = Cmic

intra,mrt + E∗,d
I Tirγ

∗,d
I . (2.5)

Meanwhile, Cmic
inter accounts for neutrons exiting the fuel macro-region toward the outer side. It

consists of four components: the escape probability from the fuel macro-region to the outer side

(P1), the transmission probability between different fuel macro-regions (P2), the probability that

neutrons entering from the outer side reach a fuel kernel (P3), and the transmission probability
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Figure 2.2. CP-coefficient diagram for annular-cylinder or spherical-shell geometry (I = inner
surface, O = outer surface).

of the combined region comprising the fuel macro-region and the inner region (Pt). Allowing for

multiple traversals of fuel macro-regions until a fuel kernel is reached [14],

Cmic
inter = P1P2P3 + P1P2PtP2P3 + P1P2PtP2PtP2P3 + · · · = P1P2P3

1− PtP2
, (2.6)

where

P1 = E∗,d
O + E∗,d

I TirT
∗,d
I→O, (2.7)

P2 = Cmac, (2.8)

P3 = γ∗,dO + T ∗,d
O→ITirγ

∗,d
I , (2.9)

and

Pt = T ∗,d
O→O + T ∗,d

O→ITirT
∗,d
I→O. (2.10)

The terms Cmic
intra,mrt, E

∗,d, γ∗,d, and T ∗,d are derived using the chord method. Following Refer-

ence [14], for surface X ∈ {O, I}, they are

Cmic
intra,mrt =

1

lmrt

∫
dL
(
fOFO(L) + fIFI(L)

) ∫ L

2dmic

dl

∫ l

2dmic

dl′ f(l′)e−Σlm,tl
′
,

E∗,d
X =

fX

lmrt

∫
dLFX(L)

∫ L

2dmic

dl e−Σlm,tl

∫ ∞

l
dl′ f(l′),

γ∗,dX =

∫
dLFX(L)

∫ L

2dmic

dl f(l)e−Σlm,tl,

T ∗,d
X→Y =

∫
dLFX→Y(L)e

−Σ∗
mrtL

∫ ∞

L
dl f(l),

(2.11)

where fX and FX(L) denote the area fraction of surface X (out of the total inner-plus-outer area)
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and the probability density function (PDF) of chords starting from surface X, respectively. The

average chord length of a spherical shell is lmrt =
4Vmrt
SO+SI

. The function f(l) is the PDF of the chord

length between fuel kernels within a fuel macro-region, approximated analytically in Reference [13]

as

f(l) =
1

llm − 2dmic
exp

(
− l − 2dmic

llm − 2dmic

)
. (2.12)

Using the transmission probabilities∫
dLFO(L) e

−LΣ∗
mrt = T ∗

O→O + T ∗
O→I ≡ T ∗

O,∫
dLFI(L) e

−LΣ∗
mrt = T ∗

I→O ≡ T ∗
I ,

(2.13)

and substituting Eqs. (2.12) and (2.13) into Eq. (2.11) yields

Cmic
intra,mrt = Cmic

∞,mrt

(
1− 2dmic + 1/Σ∗

mrt

lmrt

+
e2d

micΣ∗
mrt

Σ∗
mrtlmrt

(fOT
∗
O + fIT

∗
I )

)
,

E∗,d
X = e−2dmicΣlm,t

fX

lmrtΣ∗
mrt

(
1− e2d

micΣ∗
mrtT ∗

X

)
,

γ∗,dX = Cmic
∞,mrt e

2dmicΣlm,t
lmrtΣ

∗
mrt

fX
E∗,d

X ,

T ∗,d
X→Y = exp

(
2dmic

llm − 2dmic

)
T ∗
X→Y,

(2.14)

where the Dancoff factor of a fuel kernel in an infinitely large fuel macro-region is

Cmic
∞,mrt =

e−2dmicΣlm,t

(llm − 2dmic)Σlm,t + 1
. (2.15)

Analytic formulas for the three transmission probabilities in Eq. (2.13) can be found in Reference

[15]. Note that a macro-region without an inner region is a special case of this formulation obtained

by setting each quantity with subscript I in Eqs. (2.5), (2.7), (2.9) and (2.10) to zero.

2.1.3 Improved Dancoff Correction in Slowing-down Calculation

These Dancoff correction factors are used in the subsequent slowing-down calculations. At each

ultrafine group, for a given scattering source into the group, the following CPM-based coupled
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equations for multiple fuel regions and one moderator region are solved:

ViΣi,tϕi =
∑
j

VjFjP
lat
j→i + VmFmP

lat
m→i,

VmΣm,tϕm =
∑
j

VjFjP
lat
j→m + VmFmP

lat
m→m,

(2.16)

where subscripts i and j denote subregions in a fuel region, subscript m denotes the modera-

tor region, F is the neutron source including self-scattering, and P lat
i→j is the first-flight collision

probability from region i to region j in a lattice. A single moderator region (represented by a

volume-homogenized composition of non-fuel regions in a unit cell, excluding the inner region for

the macro-cell) is assumed, which is a good approximation for both TRISO and macro-cell prob-

lems.

The P lat
i→j are Dancoff-corrected CP coefficients that account for lattice shadowing. One widely

used technique is the EDC method, previously used for the macro-cell slowing-down calculation in

SSAPI but replaced here with the IPSM method. In the EDC method, the unit-cell size is adjusted

so that the 1D-CPM Dancoff factor matches that from Eq. (2.1), and CP coefficients for the entire

cell are obtained via numerical integration with the white boundary condition. Another approach is

to correct the CP coefficients directly using the Dancoff factor [6]. This approach is faster than EDC

(no equivalent-cell search, smaller integration domain) and more robust (the equivalent-cell search

can fail to converge). SSAPI uses this idea in a two-region TRISO-cell problem for the first-stage

calculation via the so-called bell function (BATSM, FY24). In FY25, an improved multi-region

version replaced the previous EDC method for the macro-cell calculation. Conceptually the two

techniques are identical; the difference is whether the problem is two-region (enabling direct use of

the bell function) or multi-region (including non-fuel inner regions).

The Dancoff correction is traditionally derived for a two-region problem using the definition

of the Dancoff factor, the probability that a neutron escaping the fuel surface undergoes its first

collision in the moderator without passing through any other fuel region in the lattice:

P lat
f→m = P iso

esc,fD +
∞∑
n=1

P iso
esc,f(1−D)n(1− γisof )nD, (2.17)
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where P iso
esc,f is the escape probability from an isolated fuel region and γisof = lfΣfPesc,f is the first-

flight blackness of the isolated fuel region (lf is the average chord length). The nth term represents

the probability that, after escape, the first collision in the moderator occurs following n traversals

of fuel.

To obtain a rational form suitable for heterogeneous–homogeneous equivalence, P iso
esc,f has tra-

ditionally been approximated by a one-term rational expression with a single bell factor aB,

P iso
esc,f ≈ aB

lfΣf + aB
,

followed by Dancoff correction, or by two-/three-term rational forms with (generalized) Stamm’ler’s

correction. A more recent approach employs an N -term rational fit to numerically computed P lat
f→m

at selected optical thicknesses via fixed-source calculations [16, 17].

In SSAPI, this complication is avoided by casting P iso
esc,f directly into a one-term rational form

using pre-tabulated, optical-thickness-dependent bell factors aB(τ),

aB(τ)

τ + aB(τ)
, τ = lfΣf,

with tables hardwired for cylindrical, spherical, and slab geometries. Fewer than 25 tabulated

points achieve 0.1% accuracy per geometry type as shown in Fig. 2.3. Consequently,

P lat
esc,f =

g(τ)

τ + g(τ)
, g(τ) =

aB(τ)D

aB(τ)(1−D) +D
, (2.18)

is an exact expression (due to tabulated aB(τ)), and P
lat
f→m follows immediately.

This approach is used in BATSM for the TRISO-cell problem, where at each ultrafine group

P lat
f→m is evaluated via Eq. (2.18) and the two-region version of Eq. (2.16) is solved for flux. [5, 12]

The same idea is also used in the newly developed DCET method for non-fuel resonance treatment,

which is discussed in a later section.

For macro-region problems (e.g., a compact or pebble fuel macro-region), where resonance

scattering significantly affects the source distribution, the logic of Eq. (2.17) extends to multiple

fuel regions. The Dancoff-corrected fuel-to-fuel collision probability is
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Figure 2.3. Bell factor as a function of the mean optical thickness for infinite slab, cylinder, and
sphere geometries.

P lat
i→j = P iso

i→j +
∞∑
n=0

P iso
esc,i(1−D)n(1− γisof )n(1−D)γisoj

= P iso
i→j + P iso

esc,i

1−D

1− (1−D)(1− γisof )
γisoj ,

(2.19)

where γisoj is the first-flight blackness of subregion j. Since P iso
i→j and γ

iso
j for all j, as well as γisof =∑

i γ
iso
i , are readily obtained from one-dimensional numerical integration, P lat

i→j is straightforward

to evaluate. Once fuel-to-fuel CPs are determined, the remaining CPs involving the moderator

follow from conservation and reciprocity:

P lat
i→m = 1−

∑
j∈f

P lat
i→j ,

P lat
m→i =

ViΣi

VmΣm
P lat
i→m,

P lat
m→m = 1−

∑
j∈f

P lat
m→j .

(2.20)

Note that the non-fuel inner region inside the fuel macro-region is included in the indices i and

j. That is, isolated-condition CPs are computed by numerical integration in all regions inside the

outer surface of the fuel macro-region. These Dancoff-corrected CP coefficients are precomputed at
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several total XS values of the fuel macro-region for each pin prior to the slowing-down calculation

and interpolated at the target XS during the calculation.

The correction method in Eq. (2.19) is fully consistent with Dancoff theory and applicable to

arbitrary geometries, whereas the original PSM correction was less rigorous and derived only for

cylindrical geometry. A further practical issue concerns the moderator volume Vm in Eq. (2.16).

The choice of Vm is not explicit in Reference [6]. For light-water reactor lattices, where the pin

unit cell is well defined, this ambiguity may be negligible. For advanced designs with irregular

pin arrangements or supercells (fuel, heat pipes, moderator pins), the definition is less obvious.

Using only the moderator volume of a fuel pin cell can overestimate the moderator source into fuel

(see Eq. (2.20)), leading to stronger resonance absorption and a lower eigenvalue. Numerical tests

confirm that using the moderator volume of an equivalent Dancoff-factor cell yields results nearly

identical to the EDC method; however, deriving such a cell defeats the purpose of the IPSM. In

practice, the results are not highly sensitive to Vm, and a reasonable approximation suffices. A

suitable estimate follows from a Dancoff-factor expression based on the exponential chord-length

distribution [18]:

D =
1

4Vm
Sf

Σm + 1
⇒ Vm =

Sf(1−D)

4ΣmD
. (2.21)

Once the lattice CP coefficients are obtained, the coupled linear system Eq. (2.16) is solved using

a direct LU decomposition, where the left-hand-side matrix is defined as Aij = ViΣt,iδij−VjPj→iΣs,j

and the right-hand-side vector is defined as bi =
∑

j VjPj→iQj where Qj is down-scattering source

in region j.

2.1.4 Multigroup Equivalence

Evaluating self-shielded XSs is not the end of the story. It has long been recognized that directly

using self-shielded XSs in heterogeneous transport calculations does not preserve reaction rates [19].

The detailed reason, however, was not identified until Reference [9], which showed that the root

cause is the neglect of the angular dependence of resonance multigroup XSs.

Near strong resonances of 238U, the spectrum of neutrons entering the fuel region is much less

shielded than that of neutrons leaving it. Consequently, the multigroup XS seen by incoming

neutrons is significantly larger than that seen by outgoing neutrons. If only scalar flux spec-
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trum–weighted XSs are used, neutrons effectively enter the fuel too easily and escape less readily,

leading to an overpopulation of neutrons in the fuel, enhanced resonance absorption, and a nega-

tively biased eigenvalue. The study [9] showed that the effect is approximately -200 to -300 pcm

regardless of energy group structure for light water reactor (LWR) problems. For this reason, a

multigroup equivalence parameter is required. This parameter has traditionally been called the

SPH factor, by analogy with homogenization error, even though it has no direct relation to homog-

enization.

To generate the SPH factor, a higher-order solution is needed. Fortunately, SSAPI already

provides such information from ultrafine slowing-down calculations. The basic procedure follows

the approach of [19]. From the ultrafine slowing-down solution, reference fine-group fluxes, sources,

and total XSs for each region i in a fuel pin are obtained as

ϕrefg,i =
∑
ufg∈g

ϕrefufg,i, Qref
g,i =

∑
ufg∈g

(
qrefufg,i +Σs,ufg→ufg,iϕ

ref
ufg,i

)
, Σref

t,g,i =

∑
ufg∈g Σt,ufg,iϕ

ref
ufg,i∑

ufg∈g ϕ
ref
ufg,i

, (2.22)

where the superscript “ref” denotes quantities from the slowing-down calculation, and qrefufg,i is the

down-scattering source into ultrafine group ufg in region i.

The SPH iteration begins with µ
(0)
g,i = 1 for all regions; for the moderator region, the factor

remains fixed at unity during all iterations. At iteration l, fine-group transport in the pin is solved

for the SPH-corrected system without scattering, updating the flux in region i as

ϕ̃
(l)
g,i =

∑
j VjP̃

(l)
g,j→iQ

ref
g,j

Viµ
(l−1)
g,i Σref

t,g,i

, i ∈ fuel, (2.23)

where P̃
(l)
g,j→i is evaluated at the corrected total cross section µ

(l−1)
g,i Σref

t,g,i. The updated SPH factor

is

µ
(l)
g,i =

ϕrefg,i

ϕ̃
(l)
g,i

, i ∈ fuel. (2.24)

Iterations proceed until convergence of µg,i.

When applied, the SPH factors temporarily modify the transport operator: total XSs are scaled

by µ before the discrete ordinates (SN) sweep, and the resulting flux solution is renormalized by the

same factors immediately after the sweep. This differs from previous works [19, 20], which corrected
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all reaction cross sections. Those approaches treated cross sections as the quantities to be corrected,

whereas the SSAPI approach instead corrects the transport operator itself—more consistent with

the underlying issue, which is the misrepresentation of leakage due to missing fine-angular structure

in the collision operator.

2.2 Self-Shielding Method for Non-fuel Resonances

Unlike light-water reactors, in which zirconium cladding is the primary non-fuel resonant material,

advanced reactor concepts can include multiple non-fuel resonance regions depending on design

choices. Neglecting these resonances can readily introduce errors of a few hundred pcm in the

eigenvalue. Given this diversity and Griffin’s unstructured-geometry capability, the natural initial

choice was the Tone method, since it imposes no geometric restrictions, unlike classical Equivalence

Theory.

The subgroup method is another geometrically flexible option, but it typically requires a het-

erogeneous table to generate subgroup parameters. This stems from its fixed-source formulation

at each subgroup level, which is derived from the intermediate resonance (IR) model with addi-

tional simplifications that neglect resonance scattering in both the source and collision terms. As

a consequence, only absorption and the λ potential XSs appear in the collision term. Physically,

this causes neutrons to “see” the resonance region as less optically thick, which overestimates the

escape probability; in turn, the escape XS and ultimately the absorption XS are also overestimated.

This behavior has been reported in References [21, 22], and the analysis in Reference [22] identified

the core issue as the omission of the resonance scattering XS in the fixed-source formulation.

Because of this built-in bias, the subgroup (or Embedded Self-Shielding Method (ESSM) [23])

approach is effectively forced to rely on an enforced equivalence: subgroup parameters (or an effec-

tive XS / RI table) are generated for the target heterogeneous configuration using the same biased

fixed-source formulation, and effective XSs are later retrieved by repeating that biased calculation.

Practically, this shifts a heavy burden to users, who must prepare problem-dependent heterogeneous

tables. Moreover, generating those tables is nontrivial: it requires choosing representative configu-

rations, producing reference XSs via Monte Carlo or deterministic slowing-down in heterogeneous

geometry, and computing background XSs with the fixed-source formulation.

For these reasons, although a Tone implementation using heterogeneous XS tables was described
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in the FY21 report [3], it has not been a practical option for users due to the lack of a supported

heterogeneous-table generation workflow in Griffin. Instead, in FY25 we focused on supporting

the Tone method with a homogeneous RI table. This is feasible because the Tone method has

demonstrated strong performance for fast reactor applications without pre-generated heterogeneous

tables. The purpose of the Tone method in SSAPI is not for resonances of heavy isotopes in fuel

regions but for those of intermediate and light mass isotopes in non-fuel regions, where the narrow

resonance (NR) approximation of the Tone method works well. Critically for Griffin, this approach

is intrinsically compatible with unstructured geometry and frees users from problem-specific RI

table generation.

Despite these advantages, a notable drawback of the homogeneous-RI-table Tone approach is

its computational cost: for each resonant isotope and resonance energy group, fixed-source solves

are required (roughly twice the average number of iterations needed to converge the escape XS).

To mitigate this burden, in FY25 we also pursued a substantially faster alternative with somewhat

reduced geometric generality, based on an Equivalence-Theory framework using a Dancoff-category

treatment and homogeneous RI tables. Not a conventional Equivalence Theory, this approach

was improved by incorporating the bell-function-based Dancoff correction concept described in the

previous subsection for fuel resonance treatment. This enhancement significantly improves accuracy

compared to conventional Equivalence Theory while retaining its efficiency advantage.

It should be emphasized, however, that this new approach does not simply replace the Tone

method. Both are retained as complementary options. The Tone method remains the most flexible

and physically rigorous choice for arbitrary geometries, while the DCET, enhanced in FY25 with

the bell-function-based Dancoff correction, provides a much faster alternative for problems with

well-defined pin structures such as heat-pipe or moderator pins. In such cases, it achieves accuracy

comparable to Tone but at a fraction of the computational cost, making it a practical substitute.

2.2.1 Advanced Homogeneous RI Table Generation

In the effort to make Tone work with the homogeneous RI table, the relationship between XSs and

RIs was formulated slightly differently from the conventional practice, where resonance scattering

is usually ignored. In SSAPI, resonance scattering is retained because its inclusion adds little

complexity while offering the potential benefit of more accurately capturing flux depression through
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the denominator of the flux model. Since this formulation is not conventional, this subsection derives

the relationship between effective XS and RI and the calculation method of the RI table.

SSAPI assumes the IR approximation, which employs the following spectrum model in a zero-

dimensional (0D) problem:

ϕ(E) =
ϕ∞

E

∑
kN

kλk(E)σkp∑
kN

k
(
σka (E) + λk(E)σks (E)

) , (2.25)

where ϕ∞ is the asymptotic flux at much higher energy than the target resonance energy E, and

λk(E) is the IR parameter of isotope k. Note that λ has energy dependence here, which later

introduces energy-group dependence.

Unlike conventional practice, σks (E) is not ignored. To remain consistent with the conventional

form, where RI is defined as a function of background XSs, Eq. (2.25) is recast as

ϕ(E) =
ϕ∞

E

∑
kN

kλk(E)σkp∑
kN

k
(
σka (E) + λk(E)∆σks (E) + λk(E)σkp

) , (2.26)

where ∆σks (E) = σks (E)− σkp. Rearranging this for a target resonant isotope r yields

ϕr(E) =
ϕ∞

E

σrb(E)

σra(E) + λr(E)∆σrs (E) +
∑

k ̸=r

(
σka (E) + λk(E)∆σks (E)

)
+ σrb(E)

(2.27)

with the background XS

σrb(E) =
∑
k

Nk

N r
λk(E)σkp (2.28)

Ignoring the energy dependence in λ and plugging this into the effective XS definition for reaction

x = a,∆s(σs − σp), and nf(νσf) gives
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σrx,g =

∫ Eg−1

Eg
σrx(E)ϕr(E)dE∫ Eg−1

Eg
ϕr(E)dE

,

=

∫ Eg−1

Eg

ϕ∞

E

σr
x(E)σr

b,g

σr
a(E)+λr

g∆σr
s (E)+

∑
k ̸=r

(
σk
a (E)+λk

g∆σk
s (E)

)
+σr

b,g

dE∫ Eg−1

Eg

ϕ∞

E

σr
b,g

σr
a(E)+λr

g∆σr
s (E)+

∑
k ̸=r

(
σk
a (E)+λk

g∆σk
s (E)

)
+σr

b,g

dE
,

=

∫ Eg−1

Eg

ϕ∞

E

σr
x(E)σr

b,g

σr
a(E)+λr

g∆σr
s (E)+

∑
k ̸=r

(
σk
a (E)+λk

g∆σk
s (E)

)
+σr

b,g

dE

∫ Eg−1

Eg

ϕ∞

E

(
1−

∑
k

σk
a (E)+λk

g∆σk
s (E)

σk
a (E)+λk

g∆σk
s (E)+

∑
k′ ̸=k

(
σk′
a (E)+λk′

g ∆σk′
s (E)

)
+σk

b,g

)
dE

,

(2.29)

Defining the RI as

RIrx,g(σ
r
b,g) ≡

∫ Eg−1

Eg

ϕ∞

E

σrx(E)σrb,g
σra(E) + λrg∆σ

r
s (E) + σrb,g

dE
/∫ Eg−1

Eg

ϕ∞

E
dE, (2.30)

and ignoring the energy dependence of other isotopes’ XSs, Eq. (2.29) becomes

σrx,g =
RIrx,g(σ

r
r,b,g)

σr
b,g

σr
r,b,g

1−
∑

k

RIka,g(σ
k
r,b,g)+λk

g∆RIks,g(σ
k
r,b,g)

σk
r,b,g

, (2.31)

with background XSs

σrb,g = λrgσ
r
p +

∑
k ̸=r

Nk

N r
λkgσ

k
p, σrr,b,g = λrgσ

r
p +

∑
k ̸=r

Nk

N r

(
σka,g + λkgσ

k
s,g

)
. (2.32)

The subscript r in the background XS denotes “resonance”, accounting for the (removal) resonance

XSs of other isotopes. Note that, in Eq. (2.31), flux depressions of other isotopes are accounted

for in the IR approximation, and more importantly, resonance scattering is not ignored so that it

reflects the physics more closely than the convention to ignore it.

For scattering, ∆RIrs,g denotes the RI of the resonance scattering XS excluding the potential

scattering part. It can be negative in fine groups near the resonance wing. The effective scattering

XS is then given by
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σrs,g =
∆RIrs,g(σ

r
r,b,g)

1− RIra,g(σ
r
r,b,g)+λr

g∆RIrs,g(σ
r
r,b,g)

σr
r,b,g

+ σrp. (2.33)

For generating an RI table, a 0D problem is solved with a single resonant isotope r and a

non-resonant background isotope b, therefore σrr,b,g = σrb,g. Hydrogen is used as the background

isotope since its IR parameter is unity by definition. Then, for a given background XS σ0, N
r = 1,

and thus NH = σ0

σH
p
. Solving the 0D slowing down problem for each background XS yields effective

XSs σra,g(σ0), σ
r
s,g(σ0), and σ

r
f,g(σ0), which are converted into RIs as

RIra,g(σ0) =
σra,g(σ0)

1 +
σr
a,g(σ0)+λr

g(σ
r
s,g(σ0)−σr

p)

λr
gσ

r
p+σ0

,

∆RIrs,g(σ0) =
σrs,g(σ0)− σrp

1 +
σr
a,g(σ0)+λr

g(σ
r
s,g(σ0)−σr

p)

λr
gσ

r
p+σ0

,

RIrnf,g(σ0) =
νσrf,g(σ0)

1 +
σr
a,g(σ0)+λr

g(σ
r
s,g(σ0)−σr

p)

λr
gσ

r
p+σ0

.

(2.34)

It should be noted that the λ potential XS of the target isotope is not included in this background

XS definition and should be excluded in the usage stage as well.

Fig. 2.4 illustrates absorption and resonance scattering RI curves for large resonance of 89Y at

2.6 keV. To ensure smoothness, as shown in Fig. 2.5, the SSAPI multigroup library generation code

adaptively refines the background XS grid using an interval-halving algorithm from a given set of

background XSs in GENDF generated through PyNJOY [24]. A default list of background XSs is

provided for each isotopes in the Python script. If the relative interpolation error at the geometric

mean of a segment exceeds 1%, the interval is subdivided until the tolerance is satisfied. It is seen

that the interpolation error can exceed 10% if not careful about the background XS grid points.

To use this RI table, background XS of each isotope at each region for each resonance energy

group is calculated by adding composition background XS and escape XS and used for interpolation

from the table. For better interpolation, the cubic spline interpolation is used for the logarithmic

value of background XS and linear value of RI. The escape XS calculation will be described using

two different methods, Tone and Equivalence Theory, in the next subsections.

21 ANL/NSE-25/82



Improvement and Verification of Online Cross Section Generation Capability of Griffin for TRISO-fueled Reactors

September 30, 2025

Figure 2.4. Example absorption and resonance scattering RI curves for the large resonance of
89Y at 2.6 keV.

Figure 2.5. Adaptive generation of RI curves in SSAPI: (top) dilution points selected
automatically, (bottom) interpolation error compared to fixed-point grids from PyNJOY.
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2.2.2 Tone Method

The Tone method was originally developed for self-shielding calculation for fast reactor as the table

look-up method [25]. Unlike Equivalence Theory which resorts to rational approximation of escape

probability for a typical (slab, cylinder, and sphere) geometry type, interim background XS is

calculated by explicitly calculating collision probabilities as

σ
′r
0,g,i =

∑
j VjPg,j→i

∑
k ̸=rN

k
j σ

k
t,g,j∑

j VjPg,j→iN r
j

, (2.35)

where i and j denote region, r and k denote isotope, and g is resonance energy group.

The detailed derivation of Eq. (2.35) is not given here, but there are two main approximations:

the NR approximation for the scattering source and the approximation that the effect of within-

group XS variation of the target isotope in regions other than the target region on the escape XS

of the target region is neglected but considering only the self-shielded single value in other regions

is sufficient. The former is a good approximation for high energy resonances of intermediate and

light mass isotopes. The latter is not too bad approximation either since the main effect comes

from the target region, and even for the secondary effect from the other region, at least averaged

self-shielded value is considered (not entirely neglecting the resonance and using potential XS).

Eq. (2.35) means that the Tone method is much flexible in terms of geometry treatment as

long as these collision probabilities are calculated. Modern transport codes such as Griffin do

not use CPM, however. Fortunately, each of numerator and denominator can be obtained in an

alternative manner using a solution of other types of transport solvers such as SN or method of

characteristics (MOC) [8]. By solving the following two fixed source problems for each resonance

group g,

Ω⃗ · ∇⃗ψr
g(r⃗, Ω⃗) + Σt,g(r⃗)ψ

r
g(r⃗, Ω⃗) =

1

4π
Sr
g(r⃗),


Sr
g,1(r⃗) =

∑
k ̸=rN

k(r⃗)σkt,g(r⃗), for numerator,

Sr
g,2(r⃗) = N r(r⃗), for denominator,

(2.36)

where superscript r in ψ and S indicates that these two equations are for resonant isotope r,

Eq. (2.35) can be calculated by taking the ratio of two scalar flux solutions, ϕrg,1(r⃗)/ϕ
r
g,2(r⃗). Then,

the escape XS for isotope r is obtained by
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σre,g,i = σ
′r
0,g,i −

∑
k ̸=r

Nk
i σ

k
t,g,i

N r
i

, (2.37)

and the background XSs are calculated as

σr0,g,i =

∑
k ̸=rN

k
i λ

k
gσ

k
p

N r
i

+ σre,g,i, σrr,0,g,i =

∑
k ̸=rN

k
i (σ

k
a,g,i + λkgσ

k
s,g,i)

N r
i

+ σre,g,i, (2.38)

for use in the RI table interpolation. Once RI values are interpolated, the self-shielded XSs are

calculated using Eq. (2.31).

It should be noted that, since the total XSs in the collision and source terms in Eq. (2.36)

and Eq. (2.37) are the self-shielded quantities evaluated at the background XS, the escape XSs are

obtained through iterations between these two equations. In practice, two to three iterations are

typically sufficient for convergence. An additional and important advantage is that the fixed-source

formulation of Eq. (2.36) avoids the significant bias observed in the conventional subgroup method

or ESSM, since it employs the macroscopic total cross section in the collision term. This ensures

that the physical escape probability is evaluated accurately.

In SSAPI, Eq. (2.37) and Eq. (2.38) are implemented with a modification designed to reduce

the number of fixed-source calculations. Specifically, Eq. (2.37) is approximated as

∑
j VjPg,j→i

∑
k ̸=rN

k
j σ

k
t,g,j∑

j VjPg,j→iN r
j

−
∑
k ̸=r

Nk
i σ

k
t,g,i

N r
i

≈
∑

j VjPg,j→i
∑

kN
k
j σ

k
t,g,j∑

j VjPg,j→iN r
j

−
∑
k

Nk
i σ

k
t,g,i

N r
i

,

so that the first fixed-source problem no longer depends on isotope. Accordingly, the Sg,1 term

becomes ∑
k

Nk(r⃗)σkt,g(r⃗).

With this formulation, the number of fixed-source problems is reduced by (number of resonance isotopes−

1) per resonance group, almost halving the original total count. Numerical tests confirmed that

this approximation does not introduce any noticeable bias.

While this method offers excellent flexibility for arbitrary geometries, its main drawback is the
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computational cost even with this optimization. The number of fixed-source problems scales as

(resonance groups)×(1 + resonant isotopes in the domain)×(average iterations to converge escape XSs).

For a heat-pipe–cooled core problem, this amounts to roughly 25% of the total computational time,

with some variation across different cases. Although this fraction is comparable to the typical

share of self-shielding in lattice or direct whole-core transport calculations, the alternative method

developed in FY25 achieves nearly the same accuracy at a fraction of the cost, reducing the time

portion to less than 1%, though at the expense of reduced geometric flexibility. This improved

method is described in the next subsection.

2.2.3 Dancoff Category-based Equivalence Theory using Bell Function

As a faster alternative, the Equivalence Theory method was implemented with improvements based

on the Bell function concept described in Section 2.1.3. The main motivation is that the Tone

method for non-fuel resonance treatment requires two or more orders of magnitude more computa-

tional time than the slowing-down calculations for fuel resonance treatment, making it undesirable

to spend so much additional time on effects that are comparatively less important. For non-fuel pins

with regular pin-type structures, such as heat pipes or metal hydride moderator pins in HPMR, the

Equivalence Theory method is a natural fit because each resonant region can be treated as a single

region (rather than multiple rings, e.g., in a heat pipe), and the geometry is cylindrical. Annular

ring geometries, such as cladding, are also supported.

The primary advantage of the Equivalence Theory method is efficiency: only a small number

of fixed-source calculations are required to evaluate Dancoff factors, since gray resonances are

not numerically evaluated through fixed source calculations as in the Tone method. The trade-

off, however, is the simplifying assumption that each resonant region experiences the same optical

thickness for other resonant regions when calculating the escape probability of the region of interest

at gray resonances. This assumption generally holds well if heat pipes are modeled as homogenized

compositions and the isotope number densities in different heat pipes are uniform throughout the

domain, because the composition of heat pipes is effectively constant over the core lifetime. The

same reasoning applies to other non-fuel regions.
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The first step is the Dancoff factor calculation using the ENCM method. Unlike in the fuel

region, it is necessary to determine which regions should be treated as black. Initially, black

regions are identified for each resonant isotope (i.e., the region containing the target isotope is set

as black), under the assumption that resonances of different isotopes do not overlap. If different

isotopes share the same black-region configuration, the fixed-source problem is identical for them,

and therefore fixed-source calculations are only required for the unique black configurations. Fuel

regions are always non-black unless they contain a non-negligible amount of the target non-fuel

resonant isotope.

For example, in a lattice comprising a fuel rod, potassium-based homogenized heat pipe, and

YH2 moderator rod surrounded by stainless steel cladding, the number of unique black config-

urations (Dancoff categories) is three, as illustrated in Table 2.1. This means that only three

fixed-source problems must be solved, compared to roughly 2,000 fixed-source problems for the

Tone method (31 resonance groups × (1 + 26 isotopes) × ∼2 iterations).

Table 2.1. Dancoff Category Table for Total 26 Resonant Isotopes (O = Isotope Present ≡ black
region, X = Not Present)

Isotopes YH2 Rod YH2 Cladding Heat Pipe Dancoff Category ID
29Si, 30Si, 50Cr, 52Cr, 53Cr, 54Cr,
55Mn,
54Fe, 56Fe, 57Fe, 58Fe, 58Ni, 60Ni,
61Ni,
62Ni, 64Ni, 92Mo, 94Mo, 95Mo, 96Mo,
97Mo, 98Mo, 100Mo

X O O 1

39K, 41K X X O 2
89Y O X X 3

It should also be noted that different isotopes in the same region can yield different Dancoff

factors: for instance, potassium versus other isotopes in the heat pipe (Table 2.1). This differs from

the conventional Equivalence Theory method, where the Dancoff factor is determined solely on a

region-wise basis. Physically, this refinement means that potassium resonances are assumed not to

overlap with those of other isotopes in the heat pipe, so that at potassium resonances neutrons see

different black regions than at resonances of other isotopes.
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Dancoff factor evaluation can be viewed as a type of escape probability evaluation in the black

limit (though strictly speaking it is not). For grey resonances, the conventional practice is to ap-

proximate the analytic escape probabilities of the isolated region with an N -term rational form

and then apply a correction to account for the shadowing effect. The one-term version is simply

referred to as the Dancoff correction, while the two- or three-term versions are known as (general-

ized) Stamm’ler’s corrections. In more advanced methods, the escape probabilities are evaluated

numerically in the lattice directly at several grey resonances by performing fixed-source calculations.

SSAPI converts the analytic or numerical escape probabilities of the isolated region, which are

simple CP integrations, into a one-term rational form with a bell factor that exactly preserves

the analytic quantity. Because the form is one-term rational, applying the Dancoff correction is

straightforward. This approach is more accurate than the N -term approximation, as it retains the

analytic escape probability. Since pre-tabulated bell factors (Fig. 2.3) are available for cylinder,

sphere, and slab geometries, or can be computed on the fly for annular geometries such as cladding,

the method is essentially cost-free.

For an isolated lump l that belongs to a Dancoff category c (a region may belong to different

lumps for different categories), the self-collision probabilities are numerically calculated at 21 hard-

wired optical thickness values τj between 10−3 and ∼ 104. These are obtained by back-calculating

total cross sections from the given τj and the average chord length of the lump, and then trans-

formed into bell factors:

ac,lB (τj) = τj
1− P c,l

e (τj)

P c,l
e (τj)

, j = 1, . . . , 21, for lump l ∈ Dancoff category c. (2.39)

If the lump is a cylinder, sphere, or slab, the pre-tabulated values (Fig. 2.3) are retrieved and the

numerical CP calculation is skipped.

Next, looping through the non-fuel resonant regions, for isotope r in region i, the following

escape cross section table is constructed at the 21 optical thickness points:

Σr
e,table(τj) =

ac,lB (τj)D
c,l

ac,lB (τj)(1−Dc,l) +Dc,l

/
l
c,l
, j = 1, . . . , 21, for c ∋ r and l ∋ i. (2.40)

The dependence of the average chord length on Dancoff category arises because different categories
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have different black lumps. This table, covering all isotopes in region i, is passed to the routine that

evaluates effective XSs using the Bondarenko iteration. At each iteration, the isotope-dependent

macroscopic escape cross section is computed as

Σr
e,g,i = Σr

e,table

(
Σt,g,il

c∋r,l∋i)
, (2.41)

where Σt,g,i is the self-shielded macroscopic total cross section from the previous iteration, common

to all isotopes. The isotope dependence arises through the average chord length of the lump.

From this, the background cross sections are computed for interpolation of the RI tables to

obtain effective cross sections via Eq. (2.31):

σr0,g,i =

∑
k ̸=rN

k
i λ

k
gσ

k
p +Σr

e,g,i

N r
i

, σrr,0,g,i =

∑
k ̸=rN

k
i

(
σka,g,i + λkgσ

k
s,g,i

)
+Σr

e,g,i

N r
i

. (2.42)

The updated self-shielded absorption and scattering cross sections are then used to recompute the

macroscopic total cross section Σt,g,i in Eq. (2.41), feeding the next Bondarenko iteration until

convergence. Typically, 5 to 6 iterations suffice, while sometimes more than 10 iterations are

required for large resonances.
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3. Considerations in Pebble-bed Cross Section Generation

This section describes additional considerations in XS generation for PBRs that are useful for users

to understand. Unlike prismatic-type reactors, where fuel is stationary, pebbles move and mix, and

pebbles at different burnup levels coexist. Moreover, the local pebble packing fraction varies with

position. Accurate self-shielding calculations and homogenized cross-section generation therefore

require knowledge of the local pebble-bed configuration. The first subsection briefly explains how

this information is defined and incorporated into XS generation.

Once self-shielded XSs are calculated in the detailed internal regions of pebbles and coolant

using these configurations, they must be homogenized within the pebble-bed region for subsequent

transport or diffusion calculations. This homogenization accounts for flux distributions across

different pebble types and burnup levels, as discussed in the second subsection.

Finally, special attention is needed for streaming effects in gas-cooled PBRs. Approximately 40%

of the pebble-bed region is gas, which acts essentially as a void to neutrons. In such highly voided

regions, conventional homogenization models underestimate neutron diffusion and even transport

because they do not capture the strong streaming effect. This underestimation reduces the predicted

leakage, causing power tilts and eigenvalue errors. The third subsection presents the method

developed to incorporate this streaming effect into diffusion coefficients for diffusion calculation

and first order anisotropic scattering XS for transport calculation.

3.1 Defining Local Pebble-bed Configuration

For XS generation, the volume fractions of pebble ensembles of different fuel types (including

dummy pebbles) and pebble burnup levels, and isotopic number densities are required. Averaging

them over the entire pebble-bed region would cause large errors. Thus, the pebble-bed core is

divided into several regions based on an extra element ID, “region id,” reserved for the averaging

purpose. For each of these regions, volume fractions and isotopic number densities are averaged

for each pebble fuel type and burnup level and passed to SSAPI. This information is directly used

in the self-shielding calculation. The volume fraction is used in the pebble macro-cell construction

shown in Fig. 2.1; the composition of the outer region of a fuel zone in a pebble (omm in Fig. 2.1) is

determined by volume homogenization of graphite layers of fuel pebbles, coolant, and any dummy
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pebbles. This information is also used in the TRISO-cell construction in a pebble.

It should be emphasized that this “region” concept is not the same as a spectral zone, which

represents XS zones characterized by distinct spectra in the core. Instead, it is a representative

region defined by pebble packing and isotopic composition. As will be explained in the next

section, the spectral zone concept is not present in Griffin, as the broad-group XSs are generated

for every element, and thus XSs vary continuously at element resolution. For clarity, this concept

of continuously varying XSs via on-the-fly condensation has so far been demonstrated only for

prismatic reactor problems, but will soon be extended to PBRs.

An additional note is needed on setting local packing fractions. The actual local packing

fraction is slightly higher than the core-wide average, since pebbles cannot pack as densely near the

radial boundary between the pebble-bed and reflector, and a relatively larger void exists at the top

surface of the core, as shown in Fig. 3.1, where each pixel represents a chopped pineapple-shaped

zone of roughly 12-cm radial and axial widths. Pebble packing is reduced by about 3–4% near the

radial reflector boundary, 5–10% near the bottom reflector boundary, and 35–40% near the upper

reflector boundary. These variations are inevitable because the top surface of the pebble-bed region

aligns with the maximum surface of the pebbles for this model. Due to less packing near radial

and axial boundaries, the pebble packing fraction in the core center is 1–4% higher than the core

average. Neglecting this region dependence may lead to non-negligible effects: reduced packing

in the majority of the core center decreases shadowing and increases resonance absorption, while

increased fuel proximity near control rods at the top provides more source neutrons to the absorber,

leading to more absorption and a lower eigenvalue.

This region-dependent pebble packing fraction can be set manually in the input file by cal-

culating them externally, or internally by using PorosityFromLocationFileIC, which calculates

“region id”-averaged porosities and assigns them to a variable. However, since the latter per-

forms high-order three-dimensional (3D) numerical integration (default = 43) in each element, it

is slow and should be run only once before the actual calculation. To support faster workflows,

a simple MATLAB function was written that performs only axial integration of the analytic disk

area (sphere–cylinder intersection). This script executes in seconds with neglgible error and can

therefore be used on-the-fly once merged into the Griffin code. Fig. 3.1 was generated using this
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Figure 3.1. Variations of local pebble volume fractions relative to the core average.

MATLAB script.

For a fresh core where isotopic number densities of pebbles are uniform throughout the pebble

bed, it is sufficient to consider only the pebble volume fractions. In such cases, two to three radial

and axial regions of about twice the pebble size near the periphery, plus one interior region, are

typically sufficient. How to define the regions in the top portion of the core, where a large void

exists above the pebble bed, remains an open question for future work.

For depletion calculations, the local burnup distribution is calculated by the pebble depletion

module [26]. The volume fraction distribution of pebble ensembles at different burnup levels must

be properly resolved, which requires finer region definitions inside the core. That said, the inner

regions need not be finer than the radial width of streamlines, but the optimal coarseness remains

a research topic. Currently, the determination of region boundaries relies on engineering judgment

based on streamline configuration.

3.2 Homogenization Method

After the self-shielding calculation is performed for each “region” explained in the previous subsec-

tion, homogenization is carried out within the same region. (Condensation is done element-wise,

as explained in the next section.) For homogenization, flux-weighting factors across detailed re-
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gions within pebbles and coolant are required. Griffin employs the so-called multi-pebble model

to calculate these weighting factors, instead of the effective pebble model used in legacy tools such

as VSOP [27]. The multi-pebble model is particularly important when high-burnup pebbles are

mixed with fresh pebbles. Simple volume-averaging of fresh and highly burned fuel compositions

is not appropriate: for example, the self-shielding effect for the 1 eV resonance in 240Pu is severely

mistreated, leading to more than a +10% absorption rate error and a lower eigenvalue [10].

A CPM-based formulation that accounts for pebble-to-pebble interactions was developed in

FY23 [10]. The following coupled balance equations for coolant and pebbles—linked through surface

particle currents—are solved for each fine group:

J−
x = Ec→xVcFc +

∑
y

Ty→xJ
+
y ,

J+
x =

∑
i

Ex,iVx,iFx,i + TxJ
−
x ,

VcΣcϕc = Pc→cVcFc +
∑
x

γx→cJ
+
x ,

Vx,iΣx,iϕx,i =
∑
j

Px,j→iVx,jFx,j + γx,iJ
−
x ,

(3.1)

where i and j denote internal pebble regions, c indicates coolant, and x and y refer to pebble types.

Here, fx is the fraction of the total surface area of pebble type x relative to all pebble types, F is

the volumetric source (including self-scattering), Px,i→j is the collision probability from region i to

j within pebble type x, γx→c is the probability that neutrons leaving pebble type x first collide in

the coolant, γx,i is the first-flight blackness in internal region i of pebble type x, E is the escape

probability (reciprocal to γ), and Tx→y is the transmission probability between pebble types x and

y.

The most important point is that the XSs on the left-hand side of the third and fourth equations

are transport XSs, not total XSs. This distinction is crucial for correctly capturing the streaming

effect through the P. Benoist method, which will be described in the next subsection. Accordingly,

the associated CP coefficients must also be evaluated using transport XSs.

The first two equations describe the balance of incoming and outgoing partial currents at pebble

surfaces, while the third and fourth describe volumetric collision rates in the coolant and internal
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pebble regions. These equations are coupled via partial currents and fluxes. CP coefficients in

the second and fourth equations are straightforward to compute using 1D numerical integration

for pebble geometry, whereas those in the first and third equations involve the stochastic coolant

geometry and are not directly known. To address this, a stochastic assumption is introduced:

neutrons originating from pebbles or coolant are treated identically, as isotropic and uniform sources

in the coolant. Under this assumption, γx→c and Ty→x lose their source dependence and reduce to

Pc→c and Ec→x, respectively. Further, assuming that the fraction of neutrons reaching the surface

of each pebble type from coolant escape is proportional to fx, the first and third equations in

Eq. (3.1) reduce to:

J−
x = fx(1− Pc→c)(VcFc +

∑
y

J+
y ),

VcΣcϕc = Pc→c(VcFc +
∑
x

J+
x ).

(3.2)

At this stage, the key remaining task is to evaluate the coolant self-collision probability, Pc→c,

in order to complete all CP coefficients involving the coolant. Using the exponential chord-length

distribution for the coolant region and Cauchy’s formula for the mean chord length, lc = 4Vc∑
y Sy

,

Pc→c is derived as:

Pc→c =
lcΣc

lcΣc + 1
. (3.3)

This coupled system is solved independently for each fine group. Since the overall system forms

an eigenvalue problem, it is solved by power iteration with a group sweep. For each group with a

given volumetric source, the flux solution is obtained using LU factorization, as the combined system

matrix is dense. Finally, note that a specular boundary condition is assumed, corresponding to an

infinite pebble bed. This assumption is reasonable for fine energy groups, within which spectral

transition effects from reflectors can be neglected.

Once the flux distribution within each “region” is obtained, flux-volume homogenization is

performed to generate region-averaged fine-group XSs. This procedure follows the conventional

approach, except for the diffusion coefficient used in diffusion calculations and the first-order

anisotropic scattering XS used in transport calculations, which are modified to account for the

streaming effect as explained in the next subsection.
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3.3 Streaming Correction Method

The conventional approach for calculating diffusion coefficients is to homogenize the transport cross

sections and take their inverse divided by three, i.e.,

D
Conv.

=

∑
i ϕiVi

3
∑

iΣtr,iϕiVi
, (3.4)

where the transport cross section can be obtained using any transport-correction scheme such as the

outflow or inflow approximation. However, this approach has long been recognized as inadequate

for lattices exhibiting strong streaming effects [11, 28]. P. Benoist proposed the following alternative

formulation [11]:

D
Benoist

=
1

3

∑
i ϕiVi

∑
j Pi→j

1
Σtr,j∑

i ϕiVi
, (3.5)

which requires collision probabilities from region i to region j. Later, J. Lieberoth and A. Sto-

jadinovic proposed a simplified formula tailored to pebble-bed reactors [28], but their approach

relies on an effective-pebble model. By contrast, the P. Benoist method is particularly well suited

here because the required collision probabilities are already available from the multi-pebble CPM

model described in the previous subsection. It should be noted that Pi→j must be evaluated using

transport cross sections, for which the outflow-based transport correction is sufficient.

For transport calculations, the streaming effect is represented through enhanced anisotropic

scattering. Specifically, the first-order self-scattering cross section is increased by the difference

between the conventional and Benoist-based transport cross sections:

Σ
1,Benoist
s,g→g = Σ

1
s,g→g +Σ

Conv.
tr,g − 1

3D
Benoist
g

. (3.6)

Fig. 3.2 compares conventional and Benoist diffusion coefficients for a 60% pebble volume frac-

tion. As expected, the Benoist coefficients are larger, reflecting the stronger diffusion effect asso-

ciated with neutron streaming. This streaming-correction scheme was tested in a 1D cylindrical-Z

problem of radius 1.2 m. Griffin power distributions obtained using SSAPI-generated cross sec-

tions, with and without streaming correction, were compared against reference Serpent2 results.

As an additional check, Griffin results using Serpent-generated cross sections with and without the
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Cumulative migration method (CMM) option were also compared.

The agreement was excellent: diffusion results using SSAPI matched those obtained with

Serpent-generated cross sections for both corrected and uncorrected cases, confirming that the

streaming-correction method described here is accurate. For transport calculations, the shift in

power distribution due to streaming correction followed the same trend as in diffusion, and the

corrected transport solutions matched closely with continuous-energy Serpent2 results. Finally,

the comparison between diffusion and transport confirms once again that diffusion theory tends to

overestimate leakage, although the magnitude of the error was small in this test problem.

Figure 3.2. Diffusion coefficients comparison between conventional and Benoist schemes.

Figure 3.3. Power distribution comparison between Serpent2 and Griffin with and without
streaming correction for a 1D core problem (with region-wise pebble packing fraction in SSAPI).
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4. On-the-fly Condensation with Consistent P0 Transport Correction

The procedure so far has been about to generate XSs in a fine-group structure (SSAPI multigroup

library structure). Most of the lattice physics or direct whole-core transport codes use this fine-

group structure to perform a heterogeneous fine-mesh transport calculation. However, it takes

a significant amount of time to directly solve the whole-core problem with a fine-group fine-mesh

transport calculation. Thus, an effort to save computational time was put in FY25 to devise a way to

condense fine-group XS into a broad-group structure with fewer than 10 groups, without losing fine-

mesh fidelity. This approach benefits applications such as micro-reactors or pebble-bed reactors,

which exhibit relatively tighter core-wide spectral transition effects, making the conventional two-

step procedure less straightforward and motivating direct whole-core calculation. The work was

mainly inspired by the subgroup decomposition method [29], but was implemented differently,

with observations that differ from those in Reference [29]. Preliminary results are very promising,

provided that the performance of the fixed-source discontinuous finite element method (DFEM)-SN

solver is improved. The following subsection explains the theory and implementation, followed by

verification results.

4.1 Theory and Implementation

The main idea is to iteratively solve a broad-group eigenvalue problem with fine-group fixed-source

problems which provides the condensation spectrum to update broad-group XS. The energy–angle

correlation in the condensation is accounted for via the consistent P0 transport correction. Although

exact reaction-rate preservation is not achieved unless the correction order approaches infinity

(unlike in acceleration schemes such as coarse-mesh finite difference (CMFD)), the results should

be close enough in the first few correction orders.

The following procedure is applied during the flux calculation after the self-shielding calculation.

At the n’th outer iteration (Richardson or non-linear Newton iteration) of a broad-group eigenvalue

solve, the sequence is as follows:

1. Prolongation of element-wise flux moments

The first step is the prolongation of broad-group flux moments into fine-group flux moments

for each element. Broad-group spherical harmonics moments of the previous outer iteration
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are averaged on each element and converted into Legendre moments as

ϕ
(n−1)
e,G,l =

√√√√ l∑
m=−l

(
ϕ
(n−1)
e,G,l,m

)2
, ϕ

(n−1)
e,G,l,m =

∑
q∈ewqϕ

(n−1)
q,G,l,m∑

q∈ewq
.

Here G is a broad-group index, l and m denote spherical harmonics order, q and e are a

quadrature point and element, respectively, and wq is a quadrature weight.

Next, fine-group spherical harmonics moments from the previous fixed-source solution are

modulated based on their Legendre moments and the broad-group flux-moment solution of

the eigenvalue problem:

ϕ
FSP(n−1

2 )

e,g,l,m =
ϕ
FSP(n−1)
e,g,l,m∑

g′∈G

√∑l
m=−l

(
ϕ
FSP(n−1)
e,g′,l,m

)2 ϕ(n−1)
e,G∋g,l.

Superscript FSP stands for fixed-source problem, and g is a fine-group index. The initial

value ϕ
FSP(0)
e,g,l,m is taken from the infinite-medium k∞ spectrum of the element’s composition.

2. Gauss–Seidel fine-group sweep using fixed-source DFEM-SN solver

Using these fine-group flux moments, the fine-group fission source is first evaluated:

Q
FSP(n)
f,e,g =

1

k
(n−1)
eff

χe,g

∑
g′

νΣf,e,g′ϕ
FSP(n−1

2 )

e,g′,0,0 .

With this fission source fixed, a fine-group sweep is performed once from the lowest to highest

groups in Gauss–Seidel fashion for the scattering source. Spherical harmonics moments of

the fixed source are

Q
FSP(n)
e,g,l,m = δl0δm0Q

FSP(n)
f,e,g +

∑
g′ ̸=g

Σs,e,g′→g,lϕ
FSP(n−1

2 )

e,g′,l,m .

Using this, ϕ
FSP(n)
e,g,l,m is obtained by solving the fixed-source problem with scattering via the

fixed-source DFEM-SN sweeper. Note that the thermal up-scattering iteration is not included

here, but only considered through the outer iteration in the broad-group sense. The effect of

adding the thermal up-scattering iteration loop will be examined in the future.
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For fuel regions in resonance groups, as explained in Section 2.1.4, the SPH factors are applied:

they multiply the macroscopic total XS before the sweep and are again applied to the flux

solution immediately afterward to account for the angular dependence of the fine-group total

XS.

3. Update element-wise broad-group macroscopic XS with consistent P0 transport

correction

After the fine-group sweep, element-wise broad-group XSs are updated using the fine-group

flux solution. Higher-order scattering XSs are condensed explicitly with higher-order Legendre

moments, while elements with zero moments use scalar-flux weighting instead.

The total XS in the collision term must be condensed using the angular flux spectrum, making

it angle-dependent. Since the transport solver cannot handle angle-dependent total XS, the

following manipulation is used:

Σt,e,G(Ω⃗)ψe,G(Ω⃗) =
∑
g∈G

Σt,e,gψe,g(Ω⃗)

=
∑
l,m

2l + 1

4π

∑
g∈G

Σt,e,gψe,g,l,mYl,m(Ω⃗)

≃
∑
l,m

2l + 1

4π
Σt,e,G,lψe,G,l,mYl,m(Ω⃗)

= Σt,e,Gψe,G(Ω⃗) +
∑
l,m

2l + 1

4π

(
Σt,e,G,l − Σt,e,G

)
ψe,G,l,mYl,m(Ω⃗),

where the second term is shifted to the right-hand side, yielding a corrected higher-order

self-scattering term:

ΣCorr.
s,e,g→g,l>0 = Σs,e,g→g,l>0 − (Σt,e,G,l − Σt,e,G).

This is the consistent P0 transport correction discussed in Reference [30], truncated at the

maximum anisotropic scattering order of the system.

4. Convergence check of region-wise broad-group macroscopic XS

Convergence of condensed broad-group XSs is checked region-wise (not element-wise). They
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are generated using region-averaged flux moments as condensation weights:

ϕ
FSP(n)
x,g,l =

∑
e∈x Ve

√∑l
m=−l

(
ϕ
FSP(n)
e,g,l,m

)2∑
e∈x Ve

,

where x denotes a XS-region index. These moments are not used in transport calculations,

but only for convergence checking. Numerical tests confirmed that scattering XSs govern the

slowest convergence, and a 1% tolerance on the zeroth-moment component suffices.

This procedure is executed only until region-wise broad-group XSs converge, not until full an-

gular flux convergence. Thus, computational time is reduced by shortening each Richardson or

Newton iteration in the broad-group structure once broad-group XSs converge, assuming one-step

fine-group solves take comparable time. Currently, however, the fine-group fixed-source solver

differs from that in the transport solver for the eigenvalue system: it uses unaccelerated source

iteration. As a result, each outer iteration takes longer than an iteration of the fine-group eigen-

value system, defeating the purpose of the approach. Performance will therefore be improved by

implementing a Generalized Minimal Residual method (GMRES) solve preconditioned by diffusion

synthetic acceleration (DSA), which is expected to significantly reduce cost. Verification results

are presented in the next subsection.

There are two (and potentially three) differences between this scheme and the original [29]. First,

the fine-group fixed-source problems here accounts for self-scattering, while the transport solve in

the original is performed without self-scattering—reducing cost per iteration but increasing the

number of outer iterations. Second, in the original, fixed-source problems for different fine groups

are independent (Jacobi-like), with no inter-group feedback per iteration. Third, although not

clearly addressed in Reference [29], broad-group XS-region definitions are element-based in this

work, ensuring high fidelity.

4.2 Verification

This method was first verified using a simple pseudo-1D problem, shown in Fig. 4.1. The blue and

beige circles represent a fuel rod and a helium-filled hole, respectively, and the small red dot denotes

a B4C absorber. The background medium is graphite. The left, top, and bottom boundaries are

reflective, and the right boundary is a vacuum boundary condition.
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Figure 4.1. Pseudo-1D small core configuration for demonstration of the on-the-fly condensation
scheme

Using the 70-group structure (WIMS 69-group [31] plus a 20 MeV upper energy boundary)

as the fine group, we tested broad-group structures with 2 groups (cutoff at 0.625 eV), 4 groups

(cutoffs at 0.625 eV, 148.7 eV, 821 keV), and 8 groups (cutoffs at 0.1 eV, 0.3 eV, 0.625 eV, 4 eV,

148.7 eV, 9.118 keV, 821 keV). For each broad-group structure, transport-correction orders from 0

to 3 were evaluated. All calculations enforced a 1% tolerance on P0 (0th Legendre) broad-group

XSs.

Table 4.1 and Table 4.2 present the eigenvalue results for problems (a) and (b), respectively. The

G2/TcP0 case—two groups without transport correction—substantially overestimates the eigen-

value: +520 pcm for problem (a) and +1305 pcm for problem (b). This bias stems from under-

estimated leakage, as indicated in Fig. 4.2, where power is higher at the center and lower at the

periphery. The transport correction increases the modeled leakage. Most of the error is removed by

the first-order correction, whereas second- and higher-order corrections tend to reintroduce some

error for the 2-group case. The correction is not fully effective with only two groups, but errors

decrease clearly as the broad-group structure is refined. The residual error drops to below 10 pcm

in the 8-group (G8) case. As shown in Fig. 4.3, flux errors are nearly eliminated for G8 with

TcP1. Across all broad-group structures, reflector-region fluxes are underestimated without trans-

port correction, with larger underestimation for coarser group structures. Based on these results,

an 8-group calculation with first-order transport correction appears sufficient for the cases studied.

To build additional confidence in more realistic applications, a HPMR 2D core problem in

control-drum-out and control-drum-in configurations was tested. Detailed verification against

continuous-energy Monte Carlo for this problem is presented in the next section, which also pro-

vides the problem specification. Table 4.3 and Table 4.4 present the results. The trends mirror
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Table 4.1. Eigenvalue Error (pcm) of Different Broad-group Structures with Different Transport
Correction Orders for Pseudo-1D Core Problem (a) (Ref. = 70G Calculation (0.82806))

Transport Correction Order G2 G4 G8

keff ∆keff (pcm) keff ∆keff (pcm) keff ∆keff (pcm)

TcP0 0.83327 521 0.82866 60 0.82889 83

TcP1 0.82764 -42 0.82850 45 0.82820 14

TcP2 0.82634 -172 0.82799 -7 0.82803 -3

TcP3 0.82678 -128 0.82804 -1 0.82805 -1

Table 4.2. Eigenvalue Error (pcm) of Different Broad-group Structures with Different Transport
Correction Orders for Pseudo-1D Core Problem (b) (Ref. = 70G Calculation (1.14035)

Transport Correction Order G2 G4 G8

keff ∆keff (pcm) keff ∆keff (pcm) keff ∆keff (pcm)

TcP0 1.15340 1305 1.14237 202 1.14223 188

TcP1 1.13973 -62 1.14012 -22 1.14031 -3

TcP2 1.13941 -94 1.14002 -33 1.14030 -5

TcP3 1.13956 -78 1.14003 -32 1.14030 -5

Figure 4.2. Power distribution and relative errors of the on-the-fly condensation scheme with
respect to fine-group calculation
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Figure 4.3. Flux distribution and relative errors of the on-the-fly condensation scheme with
respect to fine-group calculation

those observed in the pseudo-1D core problem: the 2-group calculation is insufficient even with

higher-order transport corrections, whereas the 8-group calculation with first-order transport cor-

rection achieves good accuracy. Power-distribution errors shown in Fig. 4.4 and Fig. 4.5 support

this conclusion. For both configurations, finer group structures improve the power distribution,

and first-order correction performs better than no correction. This trend is more pronounced for

the control-drum-in configuration; even there, the 8-group calculation with first-order transport

correction provides sufficiently good accuracy.

Table 4.3. Eigenvalue Error (pcm) of Different Broad-group Structures with Different Transport
Correction Orders for Control Drum Out Configuration of HPMR (Ref. = 70G Calculation

(1.10011))

Transport Correction Order G2 G4 G8

keff ∆keff (pcm) keff ∆keff (pcm) keff ∆keff (pcm)

TcP0 1.11441 1430 1.10436 425 1.10238 226

TcP1 1.09927 -84 1.10049 38 1.10005 -6

TcP2 1.09947 -64 1.10062 51 1.10010 -1

TcP3 1.09942 -69 1.10057 45 1.10008 -3
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Table 4.4. Eigenvalue Error (pcm) of Different Broad-group Structures with Different Transport
Correction Orders for Control Drum In Configuration of HPMR (Ref. = 70G Calculation

(0.99696))

Transport Correction Order G2 G4 G8

keff ∆keff (pcm) keff ∆keff (pcm) keff ∆keff (pcm)

TcP0 1.01032 1336 0.99969 273 0.99903 207

TcP1 0.99619 -77 0.99691 -5 0.99697 1

TcP2 0.99575 -121 0.99680 -16 0.99699 3

TcP3 0.99567 -129 0.99676 -20 0.99697 1

Figure 4.4. Relative error (%) of power distribution of on-the-fly condensation obtained using
different broad-group structures with 0th and 1st transport correction orders for the control

drum out configuration of HPMR.
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Figure 4.5. Relative error (%) of power distribution of on-the-fly condensation obtained using
different broad-group structures with 0th and 1st transport correction orders for the control

drum in configuration of HPMR.

The convergence history and computational time are summarized in Fig. 4.6. The upper panels

show the residual-reduction ratio over Richardson iterations for the fine-group eigenvalue solve

and for the broad-group solve with on-the-fly (OTF) condensation; the left and right columns

correspond to the control-drum-out and control-drum-in configurations, respectively. In the upper

figures, dashed curves with markers report the residual relative to its initial value (left y-axis), while

solid curves report the eigenvalue (right y-axis). Bold markers denote iterations in which a fine-

group transport sweep is performed. For example, the red X markers for “G8–OTF” appear only

through the fifth Richardson iteration, indicating that the broad-group XSs converge within five

iterations; from the sixth iteration onward, only the 8-group CMFD eigenvalue solve is performed.

The residual-reduction behavior in the two-group and four-group cases degrades relative to the

fine-group baseline, whereas the eight-group case closely tracks the fine-group convergence. This

degradation arises from slow convergence of the broad-group XSs; refining the thermal energy range

(i.e., using more thermal groups) mitigates this issue substantially. This suggests that adding a

thermal iteration loop within the fine-group source-update loop may be beneficial; its impact will
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be investigated in future work.

For the eight-group case, a speedup was anticipated because only five fine-group transport

sweeps are required, versus 8–9 sweeps in the fine-group eigenvalue solve. However, as shown in

the lower panels, each fine-group transport sweep per outer iteration in the fixed-source mode is

roughly twice as expensive as a sweep within the fine-group eigenvalue solve. Consequently, the

overall runtime is larger, despite the much faster broad-group eigenvalue solves once the broad-group

XSs have converged. This outcome is attributable to the current fine-group fixed-source solver in

Griffin, which uses unaccelerated source iteration. A high-priority improvement is therefore to

implement a GMRES solver preconditioned with DSA. If the fixed-source performance approaches

that of the fine-group CMFD system, the total computational time should decrease by roughly a

factor of two (somewhat less in practice due to other cost components).

Figure 4.6. Convergence history and computational time comparison between direct fine-group
calculation and on-the-fly condensation for control drum out and in configurations of HPMR.
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5. Verification Tests Using Core Benchmark Problems

To assess the methodologies discussed in Chapter 2 and Chapter 3, this section presents results for

a set of 2D core problems: the GCMR [32] and HPMR [33] for prismatic-type reactors, and the

gPBR [34] and gFHR [35] for pebble-bed reactors. For the PBR cases, the cores were simplified to

2D RZ-geometry. All of these problems are based on TRISO-bearing advanced reactor designs that

are of primary interest today. The comparisons focus on eigenvalue accuracy, power distribution,

and control drum or rod worths, with a brief remark on computational performance also provided.

Reference solutions were generated using the continuous-energy Monte Carlo code Serpent2 [36].

All problems were modeled under isothermal conditions at 900 K, and the ENDF/B-VII.1 library

was used for both codes. Griffin calculations employed 70-group multigroup libraries generated

with NJOY [37], where the group structure matches the WIMS 69-group scheme with an additional

boundary at 20 MeV. DFEM-SN with CMFD acceleration was used with the 1st order anisotropic

order for all problems.

5.1 GCMR Benchmark

For a gas-cooled prismatic-type reactor, the benchmark problem developed by Argonne National

Laboratory [32] was solved. Fig. 5.1 illustrates the one-twelfth GCMR core. The design employs a

graphite structure with TRISO fuel blocks (19.95 at% UCO fuel) of 40% TRISO packing fraction,

YH2 moderator pins with cladding, helium coolant holes, a Gd2O3 burnable poison block, a BeO

reflector, and twelve control drums positioned in the reflector surrounding the core. Since SSAPI

currently has no capability to handle non-fuel TRISO particles, the Gd2O3 burnable poison particles

were homogenized with their graphite binder for modeling. Three assembly types are used, and

the central assembly can accommodate a B4C control rod through a guide tube, though no control

rods are inserted in this model. The actual benchmark specification was taken from [38], to which

the reader is referred for further details.

The Serpent2 simulation used 500 inactive and 2,000 active cycles and 106 histories per cycle.

For griffin calculation, a sensitivity study indicated that this problem is highly sensitive to angular

quadrature due to the large number of burnable poison blocks. To ensure accuracy, both angular

and spatial discretizations were applied very tightly. Specifically, seven polar angles and eighteen
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Figure 5.1. One-twelfth GCMR core configuration.

azimuthal angles (504 angles in 2D) were used, together with 113,214 second-order L2 LAGRANGE

elements. This setup resulted in a total of approximately 34 billion degrees of freedom (DoF)s. For

Richardson iteration of the DFEM-SN CMFD solve, the relative tolerance of 10−6 was used as the

convergence criteria. The simulations were carried out on the INL Bitterroot HPC server using 36

processors.

For SSAPI multigroup library generation, a 7,178-group spectrum was tallied from Serpent2

using a single assembly problem (inner assembly) and subsequently processed in NJOY. It is recom-

mended to use reactor-type- or problem-specific libraries, since no single representative spectrum

can adequately cover all advanced reactor designs in only 70 groups. Although an external code

was used in this work to obtain the spectrum, Griffin’s internal procedure will be extended in the

future to automate this process and eliminate the need for external tools.

Table 5.1 summarizes the eigenvalue and pin-power results for the control drum in and out con-

figurations. The reactivity errors of Griffin are -110 and -127 pcm, respectively, indicating that the

calculated control drum worth is highly accurate, with only a 0.29% error as shown in Table 5.2.

The pin-power distributions also show excellent agreement with the Serpent2 results, remaining

within approximately 0.2% root mean square (RMS) error for both configurations. Fig. 5.2 com-

pares the power distributions and corresponding errors for the two configurations, demonstrating

that the Griffin solution captures the power-profile shift from the control drum in to out cases very

well.
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One important observation is that the Griffin results are identical regardless of whether the

DCET method or the Tone method is used for Yttrium and Gadolinium resonance treatments.

This is encouraging, as the DCET method delivers practically the same solution at only 1% of the

computational cost for the Tone method, reducing the total simulation time by about 25%.

Table 5.1. Comparison of Serpent2 and Griffin Results for Control Drum Out/In Cases of GCMR
Core

Control Drum Out Control Drum In

k-eff ∆k/k (pcm) ∆PRMS ∆PMAX k-eff ∆k/k (pcm) ∆PRMS ∆PMAX

Serpent2 1.07686 2 (s.t.d) 0.06% (s.t.d) 0.08% (s.t.d) 1.01231 2 (s.t.d) 0.06% (s.t.d) 0.16% (s.t.d)

Griffin∗ 1.07559 -110 0.20% 0.56% 1.01101 -127 0.22% 0.75%

∗ Identical results obtained using the Tone method and the DCET method.

Table 5.2. Comparison of drum worth between Serpent2 and Griffin for GCMR Core

Drum Worth (%) Error (%)

Serpent2 5.921 -

Griffin 5.938 0.29
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Figure 5.2. Griffin pin power comparison against Serpent2 result for one-twelfth GCMR core.

5.2 HPMR Benchmark

For a heat pipe-cooled prismatic-type reactor, the benchmark problem developed by Argonne Na-

tional Laboratory [33] was analyzed. Fig. 5.3 illustrates the one-sixth HPMR core, showing both

the control drum in and out configurations simultaneously. The core contains a single assembly

type, consisting of TRISO compacts with 19.95 at% UCO fuel at a 40% TRISO packing fraction,

heat pipes, and YH2 moderator pins embedded in a graphite block. Its radial dimension is compa-

rable to that of the GCMR core discussed in the previous subsection. The configuration includes 30

fuel assemblies surrounded by a single ring of beryllium reflector and 12 control drums. The dark

orange region in Fig. 5.3 represents a homogenized mixture of structural material and air. Further

details of the benchmark specification can be found in Reference [39].

The Serpent2 simulation used 250 inactive and 2,000 active cycles and 106 histories per cycle.

For griffin calculation, three polar angles and six azimuthal angles (72 angles for 2D) were used,

together with 88,996 second-order L2 LAGRANGE elements. This setup resulted in approximately 3.8

billion total DoFs. For Richardson iteration of the DFEM-SN CMFD solve, the relative tolerance of
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Figure 5.3. One-sixth HPMR core configuration.

10−6 was used as the convergence criteria. The simulations were carried out on the INL Bitterroot

HPC server using 40 processors.

As in the GCMR case, the SSAPI multigroup library (70-group) was generated using the single-

assembly spectrum tallied from Serpent. Table 5.3 summarizes the eigenvalue and pin-power results

for the control drum in and out configurations. The reactivity errors of Griffin are 2–38 pcm and

165–187 pcm for control drum out and in configurations, respectively. Although the control drum

worth error is slightly larger than in the GCMR case, it still shows good agreement within 1.39%,

as presented in Table 5.4. The pin-power distributions also compare well with the Serpent2 results,

within 0.36% RMS error for the control drum out case and 0.71% RMS error for the control drum

in case. Maximum errors of about 1–2% occur at pins near the beryllium reflectors, while the

majority of the pins in the inner core region agree within 1%, as shown in Fig. 5.4.

As in the GCMR case, the DCET method yields results nearly identical to those of the Tone

method, differing by only 18 pcm for both configurations and producing almost identical pin-power

distributions. For this problem, about 4.5% of the computation time for the Tone method is taken
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Table 5.3. Comparison of Serpent2 and Griffin Results for Control Drum Out/In Cases of HPMR
Core

Control Drum Out Control Drum In

k-eff ∆k/k (pcm) ∆PRMS ∆PMAX k-eff ∆k/k (pcm) ∆PRMS ∆PMAX

Serpent2 1.08549 2 pcm (s.t.d) 0.01 % (s.t.d) 0.01 % (s.t.d) 0.97251 2 pcm (s.t.d) 0.01 % (s.t.d) 0.03 % (s.t.d)

Griffina 1.08594 38 0.36 % 0.98 % 0.97428 187 0.71 % 2.24 %

Griffinb 1.08551 2 0.35 % 0.96 % 0.97407 165 0.71 % 2.22 %

a Results obtained using the DCET method. b Results obtained using the Tone method.

Table 5.4. Comparison of drum worth between Serpent2 and Griffin for HPMR Core

Drum Worth (pcm) Error (%)

Serpent2 10,703 -

Griffin 10,553 -1.39

for the DCET method, reducing the total simulation time by 30%.
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Figure 5.4. Griffin pin power comparison against Serpent2 result for one-sixth HPMR core.

5.3 gPBR Benchmark

For a gas-cooled PBR, a benchmark developed by Idaho National Laboratory [34] was adapted to

derive a simplified 2D-RZ model with the same fuel type and pebble configuration. The geometry

is shown in Fig. 5.5. The pebble-bed region has a radius of 120 cm and a height of 893 cm, filled

with 216,916 pebbles of 3 cm radius, giving a core-average pebble packing fraction of 60.73%. Each

pebble consists of a 2.5 cm fuel zone surrounded by a graphite layer, where the fuel zone contains

TRISO particles with 15.5 wt.% UCO fuel at a packing fraction of 9.39%.

For the control rods, the original 18 rods were converted to a ring in the RZ geometry, preserving

the absorber volume and locating the midpoint of the ring at the original control rod hole center.

In the top region above the pebble-bed, the original B4C number density was preserved. For the
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Figure 5.5. gPBR RZ core configuration.

rod-in case, the B4C number density below the top surface of the pebble-bed was reduced so that

the rod worth matches that of the original 3D configuration. Unlike the 3D case, neutrons cannot

bypass the absorber in the RZ model, so the number density must be reduced by roughly an order

of magnitude.

The Serpent2 simulations used 250 inactive and 1,000 active cycles with 106 histories per cy-

cle. Note that a cylindrical control rod is modeled to avoid discrepancies arising from geometry

conversion when compared with Griffin models. For Griffin calculations, DFEM-SN transport

was performed using three polar and six azimuthal angles (72 total in 2D) and 14,628 first-order

L2 LAGRANGE elements, as shown in Fig. 5.5. Each square element had a 4 cm side, resulting in

approximately 295 million total DoFs. Richardson iteration of the DFEM-SN CMFD solver was

used with a relative tolerance of 10−6 as the convergence criterion. Simulations were run on the

INL Bitterroot HPC server using 72 processors.

Fig. 5.6 shows the XS regions defined to account for spatial variations in pebble volume fraction,
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as illustrated in Fig. 3.1. Note that pebble locations were generated using a discrete element

method (DEM) code, resulting in a larger void fraction in the upper region. A total of 15 XS

regions were used. In the periphery, two axial regions of 11.1625 cm height were defined at the top

and bottom, and two radial regions of 12 cm width were defined, resulting in a total of 5× 3 = 15

regions. This configuration is motivated by the observation that pebble volume fraction variations

tend to approach an asymptotic value beyond approximately four pebble diameters.

Figure 5.6. XS region setting to account for pebble volume fraction variation. 15 XS regions: 5
axial regions × 3 radial regions.

Table 5.5 summarizes the eigenvalue and pin-power results for the control rod in and out

configurations. Three Griffin cases were examined: (a) with streaming correction and using region-

wise pebble volume fractions, (b) without streaming correction and using region-wise pebble volume

fractions, and (c) with streaming correction and using the core-average pebble volume fraction.

Case (a) shows excellent agreement with Serpent, within reactivity errors of 82 pcm and 23 pcm

for rod-out and rod-in, respectively, and thus a good prediction of control rod worth (Table 5.6).

Case (b) shows large reactivity errors of 263 pcm and 923 pcm, respectively. This is expected,

since neglecting streaming correction underestimates leakage, which increases eigenvalue in the

rod-out case due to reduced leakage and in the rod-in case due to reduced absorber effectiveness.
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Consequently, the control rod worth is underestimated by 9.5%. In case (c), eigenvalues are lower

than in (a) because pebbles are uniformly spread throughout the core, reducing the shadowing effect

and strengthening resonance absorption in 238U. For the rod-in configuration, the closer proximity

of fuel to the control rods further lowers the eigenvalue, resulting in an overestimation of rod worth.

The resulting rod worth error is 2.43%, which is acceptable but worse than case (a).

Table 5.5. Comparison of Serpent2 and Griffin Results for Control Rod Out/In Cases of gPBR
2D-RZ Core Problem

Control Rod Out Control Rod In

k-eff ∆k/k (pcm) ∆PRMS ∆PMIN/∆PMAX k-eff ∆k/k (pcm) ∆PRMS ∆PMIN/∆PMAX

Serpent2 1.34935 2 (s.t.d) 0.08 % (s.t.d) 0.24 % (s.t.d) 1.23305 2 (s.t.d) 0.07 % (s.t.d) 0.21 % (s.t.d)

Griffina 1.35084 82 1.31 % -2.90/3.64 % 1.23340 23 2.00 % -3.73/5.31 %

Griffinb 1.35415 263 2.69 % -8.55/4.63 % 1.24724 923 3.43 % -10.01/5.78 %

Griffinc 1.34953 10 4.89 % -4.61/20.03 % 1.23063 -160 6.48 % -4.75/26.69 %

a Results obtained with streaming correction and using region-wise pebble volume fractions.
b Results obtained without streaming correction and using region-wise pebble volume fractions.
c Results obtained with streaming correction and using core-average pebble volume fraction.

Table 5.6. Comparison of Rod Worth between Serpent2 and Griffin for gPBR 2D-RZ Core
Problem

Rod Worth (pcm) Error (%)

Serpent2 6,990 -

Griffin w/ Streaming Corr. and Region-wise Pebble Volume Fraction 7,048 0.84

Griffin w/o Streaming Corr. and Region-wise Pebble Volume Fraction 6,330 -9.44

Griffin w/ Streaming Corr. and Core-average Pebble Volume Fraction 7,160 2.43

Fig. 5.7 and Fig. 5.8 show the power distributions and relative errors of the three Griffin cases

for the rod-out and rod-in configurations, respectively.

For case (a), the error plots do not exhibit noticeable bias or outliers, but a ∼-2 to ∼+2%

top-to-bottom tilt is observed, slightly more pronounced in the rod-in case. This systematic tilt

warrants further investigation in the future.

In case (b), the error plots clearly demonstrate the impact of underestimated leakage: higher

power appears in the core center and lower power at the periphery, with the rod-in configuration

showing a stronger effect. Quantitatively, Table 5.5 indicates that neglecting the streaming effect
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leads to a power tilt of approximately -5 to -6% at the center and ∼+1% at the periphery.

Figure 5.7. gPBR rod-out configuration: Griffin power distribution compared to Serpent.
Relative errors are shown for (a) streaming correction with region-wise pebble volume fractions,
(b) without streaming correction using region-wise fractions, and (c) streaming correction with

core-average pebble volume fraction.

Case (c) errors are directly attributable to the use of core-averaged instead of region-wise pebble

volume fractions. The difference in packing fractions results in additional +17 to +21% errors at

the periphery and -1 to -2% errors at the center, reflecting the magnitude of the pebble volume

fraction discrepancy itself.
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Figure 5.8. gPBR rod-in configuration: Griffin power distribution compared to Serpent.
Relative errors are shown for (a) streaming correction with region-wise pebble volume fractions,
(b) without streaming correction using region-wise fractions, and (c) streaming correction with

core-average pebble volume fraction.

5.4 gFHR Benchmark

For PB-FHR, a benchmark developed by Idaho National Laboratory [35] was directly adopted. The

geometry is shown in Fig. 5.9. The pebble-bed region has a radius of 120 cm and a height of 309.47

cm, filled with 250,190 pebbles of 2 cm radius, corresponding to a core-average pebble packing

fraction of 59.88%. Each pebble consists of a spherical-shell fuel zone with an inner radius of 1.38

cm and an outer radius of 1.8 cm. The region inside the shell is graphite, while a 0.2 cm-thick

graphite layer surrounds the outer surface of the shell. The fuel zone contains TRISO particles

with 19.55 wt.% UCO fuel at a packing fraction of 22.0%. Beyond the radial graphite reflector, the

core barrel, salt downcomer, and reactor pressure vessel are modeled in a simplified manner. The

control rods were converted into a cylindrical ring in the same way as in the gPBR case.

The Serpent2 simulations used 250 inactive and 500 active cycles with 106 histories per cycle.

Similarly to the gPBR benchmark, a cylindrical control rod is modeled to avoid discrepancies

arising from geometry conversion when compared with Griffin models. For Griffin calculations,
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Figure 5.9. gFHR RZ core configuration.

DFEM-SN transport was performed using three polar and six azimuthal angles (72 total in 2D)

and 14,628 first-order L2 LAGRANGE elements, as shown in Fig. 5.5. Each square element had a 4

cm side, resulting in approximately 295 million total DoFs. Richardson iteration of the DFEM-SN

CMFD solver was used with a relative tolerance of 10−6 as the convergence criterion. For gFHR,

an additional diffusion calculation was performed because the control rod hole contains no void

region, but the salt coolant. For this diffusion calculation, a finer mesh was employed by setting

“uniform refine=1” in the mesh block. Simulations were run on the INL Bitterroot HPC server

using 72 processors.

The XS region partitioning matches the gPBR case, with 15 regions (5 × 3). The only difference

is the axial thickness of the top and bottom XS layers: 3.87 cm instead of 11.16 cm. For this gFHR

model, however, the Serpent2 2 disperse function was used instead of a DEM code, yielding a more

uniform pebble distribution up to the top surface of the pebble-bed region, as shown in Fig. 5.10.

Compared with Fig. 3.1, deviations of the local pebble volume fraction from the core-averaged value

are substantially smaller in this case.

The XS region setting was done as in the gPBR case: 15 regions (=5×3). The only difference is

the axial length of the two top and bottom layers of XS regions: 3.87 cm instead of 11.16 cm. For

this gFHR problem, however, the disperse function of Serpent2 code was used instead of a DEM
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code, thus pebbles are more uniformly distributed up to the top surface of the pebbleb-bed region

as illustrated in Fig. 5.10. Compared to Fig. 3.1, variations of pebble volume fractions to the core

averaged value are much weaker for this problem.

Figure 5.10. Variations of local pebble volume fractions relative to the core average used for
gFHR problem.

Table 5.7 summarizes the eigenvalue and pin-power results for the rod-in and rod-out config-

urations. For Griffin, both transport and diffusion calculations were performed. In both cases,

region-wise pebble volume fractions and Benoist–based homogenization were applied. Using core-

averaged pebble volume fractions or conventional homogenization did not significantly change the

results. The calculations show good agreement, with reactivity errors of 103 pcm (rod-out) and 127

pcm (rod-in) for transport, and 96 pcm (rod-out) and 75 pcm (rod-in) for diffusion; consequently,

the predicted control-rod worth (Table 5.8) is within about ±1%. Rod worth from diffusion is

higher because the diffusion approximation overestimates leakage, increasing control-rod absorp-

tion relative to transport.

Fig. 5.11 and Fig. 5.12 show the power distributions and relative-error maps from the transport

and diffusion calculations for the rod-out and rod-in configurations, respectively. The advantage of

transport is evident in the power distributions: diffusion exhibits a slight axial power tilt, whereas
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Table 5.7. Comparison of Serpent2 and Griffin Results for Control Rod Out/In Cases of gFHR
2D-RZ Core Problem

Control Rod Out Control Rod In

k-eff ∆k/k (pcm) ∆PRMS ∆PMIN/∆PMAX k-eff ∆k/k (pcm) ∆PRMS ∆PMIN/∆PMAX

Serpent2 1.32679 3 (s.t.d) 0.1 % (s.t.d) 0.24 % (s.t.d) 1.28721 3 (s.t.d) 0.09 % (s.t.d) 0.21 % (s.t.d)

Griffina 1.32860 103 0.83 % -5.17/2.26 % 1.28931 127 0.81 % -4.97/1.98 %

Griffinb 1.32848 96 1.51 % -8.39/2.66 % 1.28846 75 1.22 % -6.71/2.62 %

a Transport results, b Diffusion results

Table 5.8. Comparison of Rod Worth between Serpent2 and Griffin for gFHR 2D-RZ Core
Problem

Rod Worth (pcm) Error (%)

Serpent2 2,318 -

Griffin Transport 2,294 -1.02

Griffin Diffusion 2,338 0.90

transport does not. Consequently, the RMS power-distribution error is below 1% for transport

and about 1.2–1.5% for diffusion. The tilt appears to be related to the strong absorber above the

pebble-bed region, where the absorber density was not adjusted in the RZ transformation. In a

full 3D configuration, this effect is expected to be weaker, but its impact should be assessed in a

realistic 3D model. Note that the transport calculation can explicitly resolve this strong-absorber

effect. This analysis also suggests a possible explanation for the slight power tilt observed even

in the transport solution for the gPBR problem (panel (a) of Fig. 5.7 and Fig. 5.8): insufficient

angular quadrature; a detailed investigation is left for future work.
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Figure 5.11. gFHR rod-out configuration: Griffin power distribution compared to Serpent.
Relative errors are shown for (a) transport and (b) diffusion.

Figure 5.12. gFHR rod-in configuration: Griffin power distribution compared to Serpent.
Relative errors are shown for (a) transport and (b) diffusion.
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6. Conclusions and Future Work

The recent development of Griffin’s online multigroup XS generation capability (SSAPI) has focused

on improving accuracy and performance for both prismatic and pebble-bed reactor applications.

Key advancements for both types of reactors include an improved unit-cell-based slowing-down

method applicable to both TRISO particle (micro-level) and compact or pebble (macro-level) self-

shielding in a unified framework; an extension of the methodology to annular compact typical of

HTGR designs and spherical shell fuel zones typical of PB-FHR designs; and an initial demonstra-

tion of on-the-fly group condensation with consistent P0 transport correction.

For prismatic reactors, specific improvements include enhanced treatments for non-fuel reso-

nance treatment and a multigroup equivalence correction method to mitigate ultrafine-group-to-

fine-group condensation errors. For gas-cooled pebble-bed reactors, a streaming correction tech-

nique was implemented to account for the strong streaming effects arising from void regions between

pebbles. In addition, verification tests revealed that accounting for local pebble volume fraction

variations is essential for capturing correct pebble-to-pebble shadowing effects and achieving accu-

rate local power distributions. Together, these improvements significantly enhance the accuracy,

robustness, and performance of self-shielding calculations.

The significance of each advancement is briefly summarized as follows.

1. Improved slowing down method for fuel self-shielding

The previous two-stage TRISO self-shielding treatment has been replaced with a more robust

and faster method in a unified framework for both TRISO-cell and macro-cell problems. The

new approach directly applies the Dancoff correction to CP coefficients using a bell function,

eliminating the need to derive equivalent 1D cells. The former method sometimes failed

during the search for equivalent cells, whereas the new method avoids such failures entirely,

saving computational effort and increasing robustness. The total computational time for the

self-shielding treatment of a fuel pin containing TRISO is now on the order of 0.5 seconds,

which represents an unprecedented level of performance. For example, the fuel self-shielding

treatment for the full HPMR 2D core takes roughly ∼20 seconds using 40 processors or ∼40

seconds using 20 processors in an HPC environment.

62



Improvement and Verification of Online Cross Section Generation Capability of Griffin for TRISO-fueled Reactors

September 30, 2025

2. Improved treatment for non-fuel self-shielding

Non-fuel self-shielding can be treated either with the Tone method, which is applicable to

arbitrary unstructured geometries, or with an advanced Equivalence Theory improved using

the bell function concept for geometries that can be represented by a pin structure. The ho-

mogeneous RI table was improved and made compatible with the Tone method, eliminating

the need for users to prepare separate heterogeneous tables for their target problems. The

latter method, named Dancoff Category-based Equivalence Theory (DCET), provides results

that are nearly identical to those of the Tone method, but at only a fraction of the computa-

tional cost, since it requires solving far fewer fixed-source problems. As a result, the non-fuel

resonance treatment cost is reduced by several orders of magnitude, leading to an overall

reduction in total simulation time by approximately 20–25%. With these improvements, the

combined cost of fuel and non-fuel resonance self-shielding now accounts for less than 3% of

the total simulation time (and in some cases, even less than 1%).

3. On-the-fly multigroup equivalence

For problems with high fuel density compacts surrounded by significant moderator, neglecting

the angular dependence of resonance multigroup XSs can introduce a non-negligible negative

reactivity bias of up to –300 to –400 pcm. To ensure accuracy across a broad range of reactor

configurations, a multigroup equivalence parameter, the SPH factor, is calculated on-the-fly

and applied to the fuel regions. This approach effectively mitigates the bias and recovers

most of the error observed without the correction.

4. Advanced pebble-bed homogenization method

Homogenization is performed using a multi-pebble model that accounts for distinct flux

weighting among different pebble types, which is particularly important when fresh and

burned pebbles are mixed. For gas-cooled PBRs, the strong streaming effect is captured

using the Benoist method in both diffusion and transport calculations. Verification tests

demonstrated that neglecting the streaming effect can lead to significant errors: –5 to –6% in

power at the core center, +1% at the periphery, eigenvalue overestimations of +200 pcm (rod-

out) and +900 pcm (rod-in), and –10% in control rod worth. Incorporating the correction

successfully mitigated these errors.
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5. Local pebble volume fraction calculation

Using a core-average pebble volume fraction underestimates the pebble-to-pebble shadowing

effect, leading to stronger 238U resonance absorption and a negative reactivity bias. Closer fuel

proximity to the control rods further amplifies this bias, resulting in an additional positive

bias in the control rod worth. Local power errors can reach several tens of percent. To

address this, a test script for performing axial integration of circle–sphere intersection areas

was developed and verified. The algorithm executes essentially instantaneously, making it

practical for integration into routine calculations.

As an additional effort to reduce computational cost, a proof-of-concept demonstration of on-

the-fly condensation from fine-group to broad-group structures was carried out using the consistent

P0 transport correction. The method iterates between fine-group fixed source solves and broad-

group eigenvalue solves, yielding solutions very close to direct fine-group calculations: eigenvalue

within 10 pcm and pin power within 0.5%. Observations indicate that around eight or fewer

broad groups are sufficient for the tested problems including the 2D HPMR core. Although little

performance gain was realized so far due to the current unaccelerated source-iteration fixed source

solver, significant improvements are expected once a GMRES solve with DSA preconditioning is

implemented.

Verification tests have been carried out for advanced reactor types of current interest, including

GCMR, HPMR, gas-cooled PBR, and salt-cooled FHR. In all cases, Griffin demonstrates excellent

agreement with Serpent2 in eigenvalue, pin power distribution, and control rod or drum worth,

confirming the accuracy and robustness of the developed methodologies. The error of each case are

summarized below:

• GCMR: –110 to –127 pcm reactivity, 0.2% RMS pin power, 0.29% control drum worth

• HPMR: 38 to 187 pcm reactivity, 0.36 to 0.71% RMS pin power, –1.39% control drum worth

• gPBR: 23 to 82 pcm reactivity, 1.31 to 2.0% RMS local power, 0.84% control rod worth

• gFHR: 103 to 127 pcm reactivity, 0.8% RMS local power, –1% control rod worth

It should also be emphasized that XS generation accounts for less than 3% of the total simulation

time across all four benchmark test cases.
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To conclude, Griffin’s online cross section generation capability has demonstrated strong perfor-

mance for a wide range of TRISO-fueled reactor problems. Although not explicitly analyzed here,

it also supports pebble-bed depletion calculations [4]. Future work will focus on the following:

• Performance improvements to the fine-group fixed-source solver for on-the-fly condensation

• Extension of depletion capabilities to prismatic-type reactor problems

• Transient analysis for single- and multi-physics calculations

• Support for coupled neutron–gamma transport calculations

• Applications to thermal molten-salt reactors

• Streamlined library generation procedure accounting for problem-specific spectrum

• Extension of double-heterogeneity treatment to non-fuel particles

• Extended verification and validation activities

Once this planned future work is carried out, Griffin will become a powerful reactor physics

tool, fully capable of generating its own XS without external support, and will play a central role

in advanced reactor design and analysis.
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