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Abstract—Secure spectrum sharing or spectrum co-existence
of multiple 5G networks and future 6G networks is a powerful
enabler technology. The National Spectrum Strategy (NSS) pub-
lished by the White House in November, 2023, and the subsequent
NSS implementation plan led by the National Telecommunication
and Information Administration (NTIA) is the driver of a
national effort to enable co-existence of government incumbents
and commercial networks in selected spectrum bands. Cellular
networks such as 5G & 6G and non-cellular Wi-Fi 6E & 7 are
the prominent wireless technologies considered for co-existence
with incumbent wireless links. Security of the spectrum sharing
solutions is a must to make this transformation of spectrum use
possible, specially for mission critical communications. However,
current spectrum sharing solutions rely on centralized data bases
with inherent vulnerabilities. This paper focuses on secure spec-
trum sharing among multiple 5G networks using unlicensed and
shared frequency bands. It presents an innovative AI/ML based
distributed spectrum sharing approach that can be autonomously
used by multiple networks. Each sharing network uses its
own observation of the Radio Frequency (RF) environment,
which consists of RF measurements reported from the 5G User
Equipment (UE), to adjust the transmission power levels for
secure co-existence. Data is presented to illustrate the superior
performance of this solution compared to other spectrum sharing
solutions where each network can utilize usage data of the other
networks. Finally it discusses how this efficient spectrum sharing
solution can evolve in the future for the 6G networks.

Index Terms—Spectrum Sharing, Spectrum Co-existence,5G,
6G, Wi-Fi 6E/7, Wireless Security

I. INTRODUCTION

In 2020, the Federal Communications Commission (FCC)
repurposed 1200 MHz of spectrum (5.925-7.125 GHz) in the
6 GHz band, previously assigned for exclusive federal use, for
the commercial use of Wi-Fi 6E/7 and 5G-NR-U in addition to
its existing user. In November 2023, President Biden issued the
”National Spectrum Security Memorandum on Modernizing
United States Spectrum Policy and Establishing a National
Spectrum Strategy” [1]. It ”...directs my Administration to
build on prior innovation by promoting efficient and effec-
tive spectrum use by both agencies and non-Federal users
...goal is to accelerate United States leadership in wireless
communications ...and to unlock innovations that benefit the
American people, while ensuring necessary access to spectrum
for agencies and private-sector users, such as for scientific,
public safety, critical infrastructure, and national security uses,
now and into the future.” The National Spectrum Strategy
(NSS) was subsequently published by the White House [2] that
states ”...identify spectrum bands for potential repurposing ..

to meet these growing demands.”
The National Telecommunications and Information Admin-

istration (NTIA) created the 2024 National Spectrum Strategy
(NSS) implementation plan [3] to support the NSS. This
implementation plan has identified additional bands, including
mid bands such as 7/8 GHz band, to be studied for possible
co-existence of commercial devices with federal incumbents.
Spectrum co-existence requires advanced spectrum sharing
technologies which not only function efficiently at large scale,
but are also secure and resilient under adversarial operating
conditions. Hence security and resiliency in 5G/6G/Wi-Fi
spectrum sharing needs further research and development
that is critical to the success of the intended spectrum co-
existence. Current spectrum sharing solutions for 5G and Wi-
Fi 6E/7 rely on centralized data bases that are vulnerable to
adversarial attacks. New distributed spectrum sharing solutions
are required to remove this primary attack surface and provide
a path towards scaling at the national level. Use of unlicensed
spectrum, made possible with the 5G New Radio-Unlicensed
(NR-U), will increase worldwide to deploy private 5G net-
works. In the future, 6G will use this powerful capability for
continued growth of private cellular networks, and increased
focus on secure spectrum sharing research is needed for the
future 6G networks as well as advanced Wi-Fi technologies.
In U.S., future 6G spectrum allocations are also likely to be
intertwined with the outcome of the NSS implementation plan.

A. Additional spectrum repurposing for co-existence

The 2024 NSS implementation plan [3] has identified a total
of 2,786 MHz to be studied for co-existence of commercial
devices with federal incumbents by repurposing spectrum use
in these bands [4]. These bands are listed in Table I.

TABLE I
NATIONAL SPECTRUM STRATEGY TARGETED BANDS (FREQUENCIES IN

MHZ)

Start Freq End Freq Width Center Freq
3100 3450 350 3275
5030 5091 61 5060.5
7125 8400 1275 7762.5

18100 18600 500 18350
37000 37600 600 37300



B. Spectrum Co-existence in CBRS

Citizens Broadband Radio Service (CBRS) is a 150 MHz
wide band (3.55-3.7 GHz) allocated by FCC for shared use in
the United States. Current spectrum sharing among multiple
networks in the CBRS band depends on the enforcement
of access rules and arbitration of spectrum access by the
Spectrum Access Server (SAS) database [4]. The CBRS band
is increasingly used for private LTE and 5G networks across
various industries, such as manufacturing, education, and smart
cities. By the end of 2023, spending on LTE and 5G NR-
based CBRS network infrastructure reached approximately
$900 million, with projections to grow at a Compound Annual
Growth Rate (CAGR) of 20% through 2026 [5].

C. Spectrum Co-existence for Wi-Fi

The 6 GHz band made available for commercial co-
existence by FCC encompasses four U-NII (Unlicensed Na-
tional Information and Infrastructure) bands: U-NII-5 to UNII-
8 [6]. The highest power commercial Wi-Fi operation out-
doors, called Standard Power (SP), is limited to U-NII-5
(5.925- 6.425 GHz, 500 MHz wide) and U-NII-7 bands (6.525-
6.875 GHz, 350 MHz wide) and requires Automatic Frequency
Coordination (AFC) to avoid interference with incumbents.
Similar to SAS, AFC is a centralized database with data on
incumbent assignments in the shared 6 GHz band. As number
of commercial Wi-Fi 6E devices continue to rise at a rapid
pace, the actual use of the SP operation is only starting with
the recent availability of commercial AFCs. Addressing the
incumbents’ concern of possible interference from Wi-Fi SP
operation outdoors, Department of Energy (DOE) Office of
the Cybersecurity, Energy Security, and Emergency Response
(CESER) has engaged Idaho National Laboratory (INL) for
a science based objective assessment of AFC effectiveness in
real world Wi-Fi operation outdoors. This research, already
underway, will include a security assessment of the AFC to
ensure that the Wi-Fi use continues without any impact to the
incumbents under potential threats to the AFC operation. In
the worst case, attacks on the AFC can allow commercial Wi-
Fi to use the same radio resources used by a nearby utility
link and render it nonoperational.

D. Need for Distributed and Autonomous Spectrum Sharing

As discussed, the current spectrum sharing architecture for
both CBRS and 6 GHz bands rely on centralized data bases.
CBRS also requires additional sensors for the Environment
Sensing Capability (ESC) to detect use by incumbents. In
addition to these databases being performance bottlenecks,
they can become focal points for security attacks. Falsification
of reported spectrum sensing data [7] can create sub-optimal
and unfair spectrum usage or in the worst case, render incum-
bent wireless links to be not usable by allowing illegitimate
commercial Wi-Fi use.

In this paper, we summarize our ongoing research with an
innovative AI/ML based distributed spectrum sharing approach
that can be autonomously used by multiple 5G networks. Each

sharing network uses its own observation of the Radio Fre-
quency (RF) environment, which consists of RF measurements
reported from the 5G User Equipment (UE), to adjust the UE
power levels for secure co-existence. This solution removes the
reliance of spectrum sharing decisions on vulnerable databases
and the need for an additional sensor network resulting in
a secure and robust solution for spectrum sharing and co-
existence.

The rest of this paper is organized as follows. Section II pro-
vides background on Reinforcement Learning (RL). Section
III describes an innovative and autonomous beam scheduler
that can be independently utilized by the operators sharing the
spectrum. Section IV presents new numerical evaluation of
this solution to demonstrate its effectiveness. Finally, section V
descrbes how the presented solution will remain important and
relevant in 6G and possible areas of enhancements utilizing
new capabilities to be introduced in 6G.

II. BACKGROUND: REINFORCEMENT LEARNING

Given a Markov Decision Process (MDP) (S,A, R, T )
where S,A, R and T respectively denote the state space,
action space, reward function and the environment transition
function, Reinforcement Learning (RL) seeks to navigate
through the MDP by observing the environment state and
choosing proper actions so that the expected reward in the long
run is maximal. In particular, given some initial state st ∈ S,
the agent takes an action at ∈ A with probability µ(at|st)
according to some policy µ which satisfies

∫
a
µ(a|st)da = 1

(summation if the action space is discrete). Impacted by at,
the environment transitions (governed by T ) to a new state
st+1 and the agent receives a reward rt = R(st, at, st+1) as
an indication of how good at is. The collection of transition
quadruples {(st, at, rt, st+1),∀t} is called experiences of the
agent. The return Gt is defined as the cumulative future
rewards Gt

∆
=

∑∞
τ=0 γ

τrt+τ with γ ∈ (0, 1] being the discount
factor. The Q-function Qµ of the policy µ is defined as the
expected return starting from any state-action pair (s, a), i.e.,
Qµ(s, a)

∆
= E [Gt|st = s, at = a] .

Due to the recent advancement of the Deep Neural Net-
works (DNNs), Deep Reinforcement Learning (DRL) uses
DNNs to represent the policy (the actor network) and Q-
function (the critic network) in order to take advantage of
DNN’s representation capability. Deep Deterministic Policy
Gradient (DDPG) [8] is a DRL algorithm which focuses
on deterministic policies that map each state s to a specific
action a = µ(s). It uses an actor-critic architecture in which
two separate DNNs with parameters θµ and θQ are used to
represent the policy µ(s|θµ) and the Q-function Q(s, a|θQ).
Multi-agent DDPG (MA-DDPG) [9] is an adaptation of DDPG
to the multiple-agent domain to combat the nonstationarity
issue commonly seen in multi-agent RL systems. MA-DDPG
uses a centralized-training-distributed-execution framework in
which the actors and critics are trained periodically with
network-level experiences while the action of each agent is
determined based solely on that agent’s local observation. In



particular, let a ∆
= (ai)

K
i=1 and s

∆
= (oi)

K
i=1 denote the joint

actions and observations of all agents where oi denotes the
local observation of agent i. The learning process is described
as follows. The critic and actor of agent i is represented
by two DNNs Qi(s,a|θQi ) and µi(oi|θµi ). In order to make
the learning more data-efficient, an experience replay buffer
D is used to store the past experiences of all agents in a
sliding-window manner. Mini-batches of experiences are then
sampled repeatedly from D to train the actors and critics
using Stochastic Gradient Descent (SGD). More specifically,
given a mini-batch of samples B = {(sj ,aj , rj , s′j)}j where
rj = (rji )

K
i=1 are the rewards of the agents, the critic network

θQi of agent i is trained by minimizing the loss

L(θQi ) =
1

|B|

|B|∑
j=1

(
yji −Qi

(
sj , (ajk)

K
k=1|θ

Q
i

))2

. (1)

Let yji
∆
= rji + Q′

i(s
′j , (a′k)

K
k=1|θ

Q′

i )
∣∣
a′
k=µ′

k(o
′j
k |θµ′

k ),∀k be the

regression target generated by two target networks Q′
i(·|θ

Q′

i )

and µ′
i(·|θ

µ′

i ). Note that s′j
∆
= (o′jk )

K
k=1 denotes the joint

observations following the sample sj in time. Also note that in
(1) the Q-function of agent i has an input including the local
observations and actions of all agents which is made possible
by the use of the replay buffer. The actor network θµi of agent
i is trained by minimizing

L(θµi ) = −
1

|B|

|B|∑
j=1

Qi

(
sj , (ajk)k ̸=i, ai|θQi

)∣∣
ai=µi(o

j
i |θ

µ
i )

(2)

which is equivalent to maximizing the Q-function. Note that
in the input of the Q-function in (2), the action of agent i is
generated by the actor θµi while the actions of other agents are
sampled from the buffer. Finally, the DNN parameters of the
target networks are updated according to

θQ
′

i ← τθQ + (1− τ)θQ
′

i ,

θµ
′

i ← τθµ + (1− τ)θµ
′

i (3)

for some small number τ ∈ (0, 1). In MA-DDPG, exploration
is achieved by adding a random noise nt to the actor output,
i.e., a(t)i = µi(o

(t)
i |θ

µ
i )+nt which is clipped to within a proper

range to be consistent with the action space definition.

III. DRL-BASED SPECTRUM SHARING APPROACH

We summarize the MA-DDPG-based spectrum sharing
scheme in the authors’ previously published papers [10], [11]
as follows. Each 5G base-station (BS) i is modeled as an RL
agent that is equipped with an actor for action selection and a
critic for evaluating the Q-function. In particular, the actor µi is
represented by a DNN θµi and produces action ai = µi(oi|θµi ),
with oi being the observation of agent i. The critic Qi is also
represented by a DNN θQi . It is assumed that each BS does
not know the actions of other BSs. The MA-DDPG algorithm
with a centralized-training-distributed-execution framework is
adopted as shown in Fig. 1. The system is fully synchronized
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Fig. 1. Proposed MA-DDPG-based power allocation & spectrum
sharing scheme. Each BS k is equipped with an actor network µk

and a critic network Qk.

where all BSs choose their powers simultaneously at the
beginning of each slot based on their local observations. The
system then transitions to a new state and the experiences of all
agents are pushed to a centralized replay buffer D in the form
of (oi, ai, ri, o

′
i), i = 1, · · · ,K. The replay buffer operates in

a FIFO manner so the oldest experiences are ejected when the
buffer is full. In each slot, the actor and critic networks are
trained with mini-batches of data sampled from D according
to (1), (2). In addition, the parameters of the target networks
are updated softly according to (3). The action, observation
and reward are defined as follows.

Action. Each BS needs to determine the transmit power
p
(t)
i ∈ [0, pmax

i ] to its scheduled UE. Since the tanh() ac-
tivation is used at the output layer of the actor networks,
the actor output a

(t)
i = µi(o

(t)
i |θ

µ
i ) falls into [−1, 1]. To

achieve exploration, a random noise nt is added to a
(t)
i ,

which is then clipped to within the range [−w,w] for some
w ∈ (0, 1). Therefore, the actor output is mapped to the powers

by p
(t)
i =

a
(t)
i +w

2w pmax
i .

Observation. This step is crucial since the observation
must contain useful information of the radio environment that
helps the BS make better power selections. In particular, the
observation of BS i (in slot t) is defined as o

(t)
i

∆
= o

(t)
i,1 ∪ o

(t)
i,2

where

o
(t)
i,1

∆
=

{
p
(t−1)
i , g

(t−1)
ii , g

(t)
ii , I

(t−1)
i , Îi

(t)
, C

(t−1)
i , C

(t−1)
i∑K

k=1
C

(t−1)
k

}
,

o
(t)
i,2

∆
=

{
g
(t−1)
ij p

(t−1)
j , g

(t)
ij p

(t−1)
j , C

(t−1)
j , j = 1, ...,K

}
. (4)

The first part o(t)i,1 contains several general measurements local
to BS i. In particular, p(t−1)

i is BS i’s power in the previous
slot, g(t−1)

ii = PL(dii)GTx
ii GRx

ii |h
(t−1)
ii |2 is the direct channel

gain in slot t − 1 which can be estimated via pilot training,
g
(t)
ii = PL(dii)GTx

ii GRx
ii |h

(t)
ii |2 is the direct channel gain in slot



t. Since the channel changes from h
(t−1)
ii to h

(t)
ii at the very be-

ginning of slot t before the new power p(t)i is determined, g(t)ii

can also be obtained by BS i. I(t−1)
i =

∑
j ̸=i g

(t−1)
ij p

(t−1)
j +σ2

is the total received interference at BS i in slot t − 1 and
Îi

(t)
=

∑
j ̸=i g

(t)
ij p

(t−1)
j + σ2 is the interference measured

at the beginning of slot t where the channels have changed
but the powers have not changed. C

(t−1)
i is the throughput

of BS i in slot t − 1, and C
(t−1)
i /

∑
j C

(t−1)
j represents the

contribution of BS i to the total throughput. The second part
o
(t)
i,2 contains measurements of received power and throughput

of other BSs. In particular, g
(t−1)
ij p

(t−1)
j and g

(t)
ij p

(t−1)
j are

the received power of BS j(̸= i) measured at BS i in slot
t − 1 and the beginning of slot t respectively. C(t−1)

j is the
throughput of BS j in the previous slot. Note that C(t−1)

j has
to be delivered to BS i from BS j despite all other interference
measurements can be directly obtained by BS i. We include
one previous slot in order for the agents to better keep track
of the temporal correlated channels.

State transition. The measured interference in each BS’s
observation (4) is determined by the random small-scale fading
and the BS transmit powers. Given the current state (i.e., joint
observations of all BSs) in slot t, once the powers are chosen,
the system will transition to a random new state.

Reward. The reward of BS i is defined as the total through-
put of the network, i.e., r

(t)
i =

∑
j C

(t)
j . This definition is

intuitive and avoids complicated reward design at the cost of
a slight communication overhead.

IV. EXPERIMENTAL EVALUATION

The proposed spectrum sharing scheme is evaluated on two
network configurations where three and seven BSs belonging
to different operators share a spectrum band with possible
interference if they transmit simultaneously (See Fig. 2 and
Fig. 4). The detailed experiment setup is described as follows.
The transmit beams (with 60◦ coverage) are aligned with the
UEs. The maximum power is chosen as pmax

i = 39 dBm for
all BSs. The BS antenna gain, main to side-lobe ratio (MSR),
is chosen as 20 dB. The total noise is calculated according to
σ2 (dBm) = 10 lg(κBT0×103)+NR (dB)+10 lgW where W
is the shared bandwidth. κB , NR and T0 denote Boltzmann’s
constant, receiver noise figure and temperature respectively.
Given the W = 500 MHz bandwidth at 6 GHz and the typical
values of NR = 1.5 dB, T0 = 290 K, we have σ2 = −85.49
dBm. The small-scale Nakagami fading parameters are chosen
as m = 50,Ω = 1 with temporal correlation of ρ = 0.1.
Each actor and critic is represented by a fully-connected
feedforward DNN with five layers including the input and
output layers. The three hidden layers contain 64, 128 and
64 neurons respectively with ReLU activation. Each actor
network has one output port with Tanh activation clipped to
within the range [−0.96,+0.96](w = 0.96). The proposed
scheme is implemented with PyTorch. The Adam optimizer
is used with learning rates 10−4 and 10−3 for the actor
and critic networks respectively. The action noise {nt,∀t} is
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Fig. 3. Throughput of the three-BS network.

chosen as i.i.d. Gaussian noise with a decreasing variance,
i.e., nt ∼ N (0, σ2

t ) where σt+1 = max{(1−10−4)σt, 0.001},
σ0 = 1. This guarantees adequate exploration in the early
stage of learning. The replay buffer is implemented as a FIFO
queue with size |D| = 2 × 105,∀i. Batch size is chosen as
|B| = 64. Other parameters are chosen as γ = 0.9, τ = 0.005.
The proposed scheme is compared with the state-of-the-art
power allocation scheme WMMSE [12] which is a centralized
algorithm that requires the knowledge of all cross channels.

Fig. 3 shows the average per-BS throughput achieved along
the learning process. It can be seen that the proposed scheme
converges in around 3000 iterations and outperforms the
baselines by a significant margin, demonstrating its superiority.
Note that although the actor and critic networks are trained
in a centralized manner in the proposed scheme, the power
allocation phase is fully distributed, i.e., each BS chooses its
power based solely on it local measurements. Fig. 5 shows the
throughput performance in the larger seven-BS network. It can
be seen that even with more complex network topologies, the
proposed scheme is able to achieve very close performance as



50 100 150 200 250 300
x axis (meters)

0

50

100

150

200

250
y 

ax
is 

(m
et

er
s)

BS 0 BS 1

BS 2 BS 3 BS 4

BS 5 BS 6

BS
UE

Fig. 4. Network with seven BSs.

0 1000 2000 3000 4000 5000
Number of slots

4.0

4.5

5.0

5.5

6.0

6.5

Av
er

ag
e 

th
ro

ug
hp

ut
 p

er
 B

S 
(b

ps
/H

z)

WMMSE
Random
Proposed

Fig. 5. Throughput of the seven-BS network.

WMMSE.

V. 6G EVOLUTION

6G, the next generation of worldwide cellular standards,
will continue the communication transformation started by 5G.
3GPP Rel 19, planned for late 2025, will be the last release
focused on 5G. However, it will also include some longer-
term technologies that will become the foundation of 6G, thus
setting the direction for Rel 20, the first 6G specification in
2026. Meanwhile, research on needed capabilities and key
changes in 6G over 5G to realize these new capabilities has
been well underway.

6G is expected to increase data rate and reduce latency
10 times over 5G along with similar increases in connected
devices and network capacity. It will also introduce 1) Joint
Communications and Sensing (JCAS), a transformational
change for the 6G BS to sense and geolocate its surrounding
space, thereby enhancing its capabilities significantly; 2) use
of full duplex radio; 3) use of new sub-THz frequency bands
(100-300 GHz) with Giga MIMO (gMIMO) antenna arrays

composed of significantly higher number of antennas; and 4)
pervasive use of AI/ML to become AI Centric.

Efficient use of spectrum will remain critical for the pro-
jected 6G improvements and new capabilities. Secure coexis-
tence of government and commercial networks to share spec-
trum will be needed at a larger scale to harvest the power of 6G
for economic growth worldwide. Distributed and autonomous
spectrum sharing solutions such as the one presented in this
paper can be further enhanced to realize secure and scalable
spectrum sharing solutions for the future with new capabilities
of 6G that include 1) JCAS to assess current spectrum use
by 6G BSs , and 2) use of narrower beams in the sub-THz
bands to reduce overlap of RF transmissions from multiple
networks sharing spectrum, resulting in increased use of the
shared spectrum.
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