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Addressing Gaps in Transient Behavior of Metallic Fuel

« THOR-M will study irradiated metallic fuel performance in transient overpower
and loss of flow conditions

* Evaluate in-pile LOF performance, like historic furnace test FM-5

* Measure in-pin fuel expansion, cladding deformation, axial location and
detailed characterization of any potential failure sites
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THOR-M-LOF Test Plan and Pin Specifications

IV. Comparisons drawn between pre- and post-transient
results and historical irradiation/test database

L ARl s el lll. Post-transient non-
destructive and destructive Il. Full pin LOF irradiation '

examination using test and p—~ destruc_tive_and destruc_tive
sibling pins examination on test pin

Q Test Pin Sibling Pin
Q@@QQ Subassembly and Pin ID X430A-T679 X430A-T681

Composition U-10Zr U-10Zr
Q OOOQ Fuel Diameter (mm) 5.71 5.71
Q Q Cladding Material HT-9 HT-9

0808080 Cladding Outer Diameter (mm) 7.37 7.37
O O Q O Cladding Thickness (mm) 0.406 0.406

Q O Q Plenum to Fuel Volume Ratio 1.4 1.4

Smear Density 75% 75%



THOR-M-LOF Test and Sibling Pin Irradiation Histories

IV. Comparisons drawn between pre- and post-transient

results and historical irradiation/test database

el ..

l. Pre-transient non- ’ lll. Post-transient non-

lluFullipin COFrradiation destructive and destructive

destructive and destructive
in TREAT T :
examination on test pin

examination using test and
sibling pins

@ Q Test Pin Sibling Pin
Q Q Subassembly and Pin ID X430A-T679 X430A-T681

O Composition U-10Zr U-10Zr

Q Calculated Peak Burnup (at.%) 7.4 73

OR@~O
QQQOQO Pin Peak Power (kW/m) 49.2 49.2

OO~
O] e B
OO

Pin Fast Fluence (x102%2 n/cm?) 20.6 20.6



Status of Planned Pre-Transient Characterization

Examination X430A-T679

Visual (VEM)
Neutron Radiography (NR)
Element Contact Profilometry (ECP)

Precise Gamma Scan (PGS)
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Fission Gas Assay, Sample, and Recharge (GASR)
Optical Microscopy (OM)
Scanning Electron Microscopy (SEM)
Electron Probe Microanalysis (EPMA)
Laser Flash Analysis (LFA)

Destructive

Burnup (BU) Analysis

C = Completed, FW = Future Work i
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Axial fuel strain and fluff structure length measured with neutron radiography

Pin

Fuel Pin ID T-679

T-681

Peak BU (at. %) 7.4

7.3

Axial Strain (%) 8.2

8.0

Fluff Length (cm) 0.44

0.71

“ Ndvanced Fuels Campaign
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Low Density Fluff Structures at the top of the fuel column
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Axial fuel strain and fluff structure length compare well with reported values

Typical behavior observed for U-Zr alloys Aligns well with fluff structure trend for U-Zr alloys
To consider: X423 ran at lower temp. and 316SS-clad To consider: Smaller diameter pins and D9-clad
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Typical diametral strain value and location, but anomaly above fuel
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Mild strain accumulation in X430A, but still within expected values

< Test Pin

= 075 * Peak above fuel column

5 s | : attributed to loose wire

S i Pl RN h. Wl wrap present on the pins
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Axial distribution of Cs-137 measured using Precise Gamma Scanning

* Increased concentration of Cs-137 above the fuel column within Na bond, which suggests fuel is intact
* Limited undulation along the fuel column, which agrees with no visible features from radiography
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Fission gas analyzed from destructive examination of sibling pin

Plenum

: Mass Calculation of
Punlcrmlirgland ?/g?dkgglsuﬁg Spectrometry Theoretical Calculate and
L of Sampled Fission Gas Compare FGR
Pressure Determination Gases Production
Determination

" : ~" “Expanded” P N
« Initial laser the upper plenum region / xpanded” pressure (Pyvap) \
of a fuel element (capsule) ,” Seal head pressure N

* Releases fission gas into the seal
head

.'

i Seal Head
* Record the gas pressure in the seal |
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Capsule (Vol: V_..)

cap

head

* Release the fission gas from seal
head to manifold and record
expanded pressure \ S

T M M

L L L

M. Kun and A. Oaks, “Specifications of FIPD Fission Gas Release Data”, No. ANL/CFCT-23/15 (2023)
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Fission gas analyzed from destructive examination of sibling pin

Plenum

Mass Calculation of

Punlcrmlirgland ngdk?/glsuﬁg Spectrometry Theoretical Calculate and
L of Sampled Fission Gas Compare FGR
Pressure Determination Gases Production
Determination
. . . ra . ﬂE d d“ P l"\ .
« Sampled fission gas collected in bottle / xpanded” pressure (Pyvap) y
* Mass spectrometry to determine /" Seal head pressure N

molar % of fission gas composition
* |n mass spectrometry report air

|
i Seal Head
contamination of sample was reported !
|
|
|
|
|
|
]

Capsule (Vol: V_..)

cap

e Determined by 3 <N,/0,<5
» Correction factor applied based on
natural N,/O, and Ar/0O, ratios and 02
as the tracer \ ,

T M M

T 1 1 1 T T T

M. Kun and A. Oaks, “Specifications of FIPD Fission Gas Release Data”, No. ANL/CFCT-23/15 (2023)
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Fission gas analyzed from destructive examination of sibling pin

Plenum
Puncture and
Initial
Pressure
Determination

Backfills and
Void Volume
Determination

* Theoretical Fission Gas Production
calculated based on total fissions in
the fuel pin

* Kr/Xe ratio used to determine
probability of fission form U-235 or Pu-
239

« ENDF/B-VII.1 library for a 500 keV
neutron interaction with U-235 and
Pu-239

*‘ = Ndvanced Fuels Campaign

Mass Calculation of

Spectrometry Theoretical Calculate and
of Sampled Fission Gas Compare FGR
Gases Production

Pfuel Vfuel _

(nX’)predicted = BUgygq Ty * Yy

(My' predictea = Predicted yield of daughter fission product (mol)
BU,,4 = average fuel pin burnup (at. %)
Pruel = fuel density (g/cm’)
Viyer = fuel volume (cm’)

M = weighted average molar mass of heavy metal composition (g/mol)
my = probability of fission from parent nucleus
Yy = expected atomic yield of daughter fission product from parent nucleus

13



Measured Fission Gas Release Lower than Expected

Plenum
Puncture and
Initial
Pressure
Determination

Backfills and
Void Volume
Determination

e Air contamination likely during sample
bottle removal from GASR system,
shipping, or attachment to mass
spectrometer

e Correction provided by PNNL
increased FGR 44% — 54%

* Higher than expected N %

* Considered decay half life contribution

» Potentially affected by non-uniform
mixing

*,, Ndvanced Fuels Campaign

Mass Calculation of
Spectrometry Theoretical Calculate and
of Sampled Fission Gas Compare FGR

Gases Production
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R.G. Pahl et al., “Irradiation Behaviors of Metallic Fast Reactor Fuels”, JNM (1992)



Sibling pin sectioned for optical imaging, laser, and burnup analysis

Transverse Metallography Mount — = i —
Laser Flash Analysis Sample L= = ==
0.30 x/L R
- Burnup Analysis Sample 0.65 x/L ,
0.95 x/L ,
----Inner Cladding ——Fuel Centerline ——EOL Burnup
8
* 3 LFA samples sectioned for future work
: S 650 F
* 1 burnup sample sectioned for future work O 7 3
* 3 met mounts sectioned to be analyzed for ° =
microstructural properties under varied 3 550 %
conditions: g 6 S
* 0.30 x/L — High Burnup, Low Temp. g— 450 S5
« 0.65 x/L — High Burnup, High Temp. K o m
* 0.95 x/L — Low Burnup, High Temp.
350 : . . . 4

0 0.2 0.4 0.6 0.8 1

* Advanced Fuels Campaign Axial Position (X/L) e
- M. Yacout, et al., "FIPD: The SFR Metallic Fuels Irradiation & Physics Database," Nuclear Engineering and Design (2021)



Summary and Future Work

* Confirmation of test and sibling pin suitability:
* No visual corrosion from storage
* No uncharacteristic features observed in radiography

e Established baseline steady-state behavior
 Axial elongation within range of reported values for U-10Zr
Fluff structure length aligns with reported values for U-10Zr of similar burnup
Diametral strain within range of reported values for U-10Zr
Cs-137 distribution consistent with expected results for Na-bonded pins
Measured steady-state fission gas release, which will inform transient fission gas measurements

 Sibling pin metallography, SEM, EPMA, LFA, and BU will be analyzed

* Informs microstructure, composition, FCCI| behavior, and thermal properties

 Comparisons to Post-Test Pin PIE to extract contribution of transient behavior

* = Ndvanced Fuels Campaign 16
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