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Abstract

This paper presents a decision-making framework based on an
integrated artificial reasoning framework and Markov decision
process (MDP). The integrated artificial reasoning framework provides
a physics-based approach that converts system information into state
transition models, and the analysis result will be represented by the
transition probabilities that can be used with an MDP to find a
traceable and explainable optimal pathway. A dynamic Bayesian
network (DBN) is well suited for representing the structure of an MDP.
The causality information among process variables (or among
subsystems) is mathematically represented in a DBN by the
conditional probabilities of the node's states provided different
probabilities of the parent node’s states. To define node states in a
physically understandable manner, we used multilevel flow modeling
(MFM). An MFM follows the fundamental energy and mass
conservation laws and supports the selection of process variables that
represent the system of interest so that causal relations among
process variables are properly captured. An MFM-based DBN supports
developing state transition models in an MDP to capture the effect of
process variables of system having physical relations. The operators of
the target system can capture stochastic system dynamics as multiple
subsystem state transitions based on their physical relations and
uncertainties coming from component degradation or random
failures. We analyzed a simplified exemplary system to illustrate an
optimal operational policy using the suggested approach.
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Abbreviations

Al artificial intelligence

BN: Bayesian network

BoP: balance of plant

DBN: dynamic Bayesian network
EFS: energy flow structure

FW: feedwater

HX: heat exchanger

IARF: integrated artificial reasoning framework
IFS: information flow structure
MDP: Markov decision process
MFM: multilevel flow modeling
MFS: mass flow structure

ML: machine learning

RL: reinforcement learning

1. Introduction

Making operational decisions for large systems like nuclear power plants is a challenging job because of the complexity
and interdependent nature of their systems. There are many factors to consider, including system information and
uncertainties from diverse factors. Moreover, the decisions made in such systems often have significant consequences,
both positive and negative. For example, a decision to shut down a nuclear reactor may be necessary to prevent an
accident, but it could also have significant economic consequences, as well as impacting the energy supply to the
surrounding area. Therefore, decision-makers need to use advanced techniques, such as modeling and simulation, to
understand the potential outcomes of different decisions and to identify the best course of action. To make informed
decisions, it is necessary to understand the system’s nature, as well as the timing and sequencing of events. This timing is
essential because it can lead to different system trajectories depending on the plant’s detailed states, resulting in many
possible scenarios that must be considered. To address these challenges, decision-making support tools are needed that
can handle all available information about the system and uncertainties that come with complex phenomena. Many
traditional approaches for solving decision-making problems involve using hand-crafted heuristics that sequentially
construct a solution.' Such heuristics are designed by domain experts and are often suboptimal due to the complex nature
of the problems.

Machine learning (ML) algorithms are widely used in artificial intelligence to manage complex systems with numerous
process variables and connections and to provide operational decision-making support.” However, the black box nature
of most ML algorithms makes it challenging to understand the artificial reasoning behind their decisions. This lack of
explainability has limited the broader application of ML in many large control problems, including supervisory or fully
autonomous control systems.>* In the heavily regulated industry such as nuclear power, explainability is particularly
crucial for supervisory systems, as operators need to understand why an algorithm recommends a specific decision before
taking any action.

Reinforcement learning (RL) is a subfield of ML which can propose a viable alternative to automate the search of the
hand-crafted heuristics by training an agent in a supervised or self-supervised manner. Specifically, model-based RL
employs the state transition and reward models of any given state-action pair to mathematically formulate the
optimization problem as a Markov decision process (MDP).” As a result of its training and decision-making based on
transition and reward models, optimal solutions can be verified by tracing back state transitions and associated rewards.

One way to construct state transition models is by using the cell-to-cell mapping approach.® The objective of cell-to-cell
mapping is to divide a system into multiple state cells, with each cell representing a state entity. Probabilistic mapping of
the discretized system space in discrete time allows for the quantification of the probabilistic system evolution over time,
as well as tracking fault propagation throughout the system.” The number of state cells can be managed by space
discretization methods, such as equal width discretization® and data-driven discretization.’

The cell-to-cell mapping technique can be extended to dynamic Bayesian network (DBN) if causality information
among process variables is considered.” A DBN, which relates variables to each other over adjacent time steps, is a
probabilistic graphical model for representing domain knowledge where each node corresponds to process variables and
each edge represents causality among nodes.'® The causality information is represented mathematically by the
conditional probability of the node’s state provided different probabilities of the parent node’s state. Therefore, it is
crucial to establish a clear and comprehensible state definition with relevant system process variables so that the state
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Figure 1. Flowchart of decision-making process in IARF, where e, m, and i in the DBN denote energy, mass, and
information nodes, respectively.

transition can be explained physically and state-space explosion due to increased number of process variables can be
avoided.

In previous studies, authors proposed an integrated artificial reasoning framework (IARF),''='® which is a physics-based
approach of developing the DBN structure. This study presents an extended application of IARF in decision-making.
Figure 1 shows the system modeling and decision-making process flowchart. First, the system is decomposed into
multiple subsystems from descriptive system information (or system schematics). Each subsystem is further decomposed
with respect to mass, energy, and information flow as needed. Next, a multilevel flow modeling (MFM) based DBN is
formulated to perform a mathematical and graphical system modeling. The state in each DBN node is defined by using a
state discretization method, and state transition models are developed based on DBN and state discretization results.
Lastly, model-based RL is utilized to find optimal solutions maximizing (or minimizing) an objective function. Since
reward modeling is dependent on the problem domain, this research focuses on state transition modeling and decision-
making in IARF.

In this paper, Section 2 introduces IARF and MDP fundamentals, Section 3 demonstrates the proposed approach through
an optimal decision-making problem with a simplified balance of plant (BoP) considering component degradation, and
Section 4 concludes the study.

2. Integrated artificial reasoning for decision-making

2.1 Framework overview

There are three steps for system modeling and one step for decision process in the IARF. A hierarchical decomposition of
the system in a top-down fashion is the first step. The system is divided into subsystems as needed. MFM modeling'* is
the next step and is a qualitative modeling and reasoning technique to represent system characteristics and phenomena.
An MFM follows the fundamental energy and mass conservation laws and supports the selection of process variables that
represent the system of interest so that causal relations among process variables are properly captured. Applying the MFM
technique, one can decompose a system into several mass, energy, and information flow structures, and each flow
structure of the MEM model can be modeled as a node in a DBN.'? After converting the DBN to an MDP and solving it,
the optimal solutions found can be explained by the relationships among nodes in the DBN, which were connected based
on physical laws and reasoning. An example of MEM-based DBN structure design can be found in.'?

Figure 2 shows how a heat exchanger (HX) system in the BoP is modeled in IARF. From the system information in
Figure 2(a), one can develop an MFM model, as shown in Figure 2(b), where the tube and shell sides of the HX are further
decomposed with respect to energy flow structure (EFS) and mass flow structure (MES) following the MFM modeling
syntax. In each flow structure, the basic flow functions 15 used for modeling are storage (0), transport (¢), source (©), and
sink (®). Each flow function represents a process variable of the system or physical phenomenon. Table 1 shows process
variables and their representative MFM flow functions used for the HX modeling. For instance, tral.m represents mass
transport inside the HX tube and st2.m represents the HX water level (shell side). In the model development, the following
thermohydraulic phenomena have been captured in the relationships between the HX EFS and MFS:
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Figure 2. From system schematic to static MFM and MDP model structure. In (a) the physical diagram of the
system is given. In (b) the MFM qualitative causal reasoning decomposition of the system is depicted. In (c) the MDP
structure of the system is given. R, E, M, I, and A denote reward, energy, mass, information, and action, respectively.

Table 1. MFM flow structures and functions used for an HX model.

MFS - HX (Tube Side)

MFM flow sol.m
function
Representing HX inlet (tube side)
variables mass flow
EFS - HX (Tube Side)
MFM flow sol.e
function
Representing HX inlet (tube side)
variables temperature,
pressure

tral.m st1.m

Mass Amount of

transport coolant inside
the tube

tral.e stl.e

Energy Enthalpy of

transport coolant inside
HX tube

tra2.m sil.m

Mass HX outlet (tube

transport side) mass flow

tra2.e sil.e

Energy HX outlet

transport  (tube side)
temperature,
pressure
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Table 1. Continued
MFS - HX (Shell Side)

MFM flow so2.m tra3.m st2.m tra4d.m si2.m

function

Representing HX inlet (shell side) Mass HX water level Mass HX outlet (shell

variables mass flow transport transport  side) mass flow

EFS - HX (Shell Side)

MFM flow so2.e tra3.e st2.e trad.e si2.e

function

Representing HXinlet (shell side)  Energy Enthalpy of Energy HX outlet

variables temperature, transport coolant inside transport  (shell side)

pressure HX shell temperature,

pressure

IFS - System Power Control

MFM flow sol.i tratl.i sitl.i

function

Representing Initial power Power Terminal power

Variables controller status changes controller status

IFS - Health Status of HX (Tube Side)

MFM flow so2.i tra2.i si2.i

function

Representing Initial structural Structure Terminal

Variables deformation level deformation structural
deformation
level

IFS - Health Status of HX (Shell Side)

MFM flow so3.i tra3.i si3.i

function

Representing Initial structural Structure Terminal

Variables deformation level deformation structural
deformation
level

* Energy gives an effect to a mass (e.g., high pressure increases mass flow rate).
* Mass gives an effect to an energy (e.g., amount of steam influences pressure).
* Energy gives an effect to the HX health level (e.g., thermal deformation).

* The HX health level affects neither energy nor mass.

In addition to energy and mass flow inside the system, we can consider system control and component health information,
which is modeled as information flow structures (IFS) in the MFM. For instance, when system operators increase the
system power level (tral.i 1), it affects the inlet temperature and pressure of the HX tube side (sol.e 1) and consecutively
the outlet temperature and pressure of the HX tube side (sil.e 1). Once the temperature and pressure of the HX (tube side)
increases (sol.e 1), the HX health level will get a negative impact (tral.i {). In principle, the health information of every
component in the system can be modeled.

The DBN’s structure, as depicted in Figure 2(c), was modeled in accordance with the causal information among flow
structures in the MFM. System power controller information nodes connect to the energy nodes of the HX tube side.
Additionally, nodes for mass flow in the HX shell side and nodes for HX health information are connected to reward
nodes considering rewards from electricity generation and costs of a plant shutdown caused by severe HX structure
deformation.
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2.2 Markov Decision Process with Dynamic Bayesian Network

DBN is well suited for representing the structure of an MDP.'® Generally, there are three types of DBN nodes at each time
step in an MDP: reward (R(©), system (S"), and action (AY), where t represents time step. In this research, we propose
splitting S into nodes representing system process variables (i.e., P() and nodes for components’ statuses
(or operational mode) (i.e., C), where status can affect process variables. Component statuses were given individual
nodes so that component failure under certain actions could be explicitly considered in the modeling. Figure 3 shows the
structure of an MDP model in the form of a DBN. The action (A")) taken at the current time step will change the state of
the component status node in the next time step, whereas the component status nodes affect the process variable nodes in
their own time step (i.e., there is no temporal delay between control input and process variable change).

The MDP is based on the set of Bellman equations,'” describing the following process [1]:
1) State transition is modeled as a conditional probability.

2) The conditional probability distribution of a future state, given both past and present states, is solely dependent
on the present state (i.e., Markov property).

3) An action (aV) is taken based on monitoring the state of process variables (p!') and component statuses (c¥).
4) An action (aV) affects the state of the component status at the next time step (ct+D)y,

5) The reward (r'V) of each state is determined by the state of process variables (p!') and component statuses (c!).

6) Gain (gm) is the summation of rewards with a discount factor, y:

Figure 3. Structure of an MDP model as a DBN, where R, P, C, and A denote state of reward, state of process
variable, state of components’ status (or operational mode), and state of actions, respectively; the super-
scripts are for time points; and the dotted red line represents system state.

' An uppercase letter represents a random variable or function. A lowercase letter is for a realization of a random variable or function value.
This convention also applies to state variables in other equations.
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GY = RO ¢ y- RED yz R RO 4 y- G 1)

7) The expected gain, called the state value (v(SY)), is:
v(Sm) - E[G(‘)|S(‘) - {P(t)’c(t)}} — E{Rm Ty GO = {pm,cm}]

- E[R(‘)\S(‘) - {P<‘>,C<‘>H Yy E[G<‘+‘>|s<‘> - {Pm,CmH

which means that the state value V(S(‘)) equals the expected reward, E [ |P ] plus the expected gain of reaching
the successor states, E[G(*1)[S(®) = {P("),CV}], with a discount factor, y. The first term of Equation (2) can be further
expanded after applying the sum rule (Eq. (3)), product rule (Eq. (4)), and Markovian property (Eq. (5)):

E[R(‘)|S(‘) = {P(t),C<t)H = Erm ~Pr(r ) Z ZZZr ( (D 1O a0 D0 (t)) 3)
0

pED) ® g cl+1)

(@)

= ZZZZ ( ®, m) 'Pr( (D [a®, p® ”) Pr(p““) r(t)‘c(‘“)’p(l)’c(t)) @

1+1J r® )

=3V .Pr(a(l)|p(t)’c(t)) .pr( (1) |50, p® ) pr(pml) r(t>|c<n+1>’p<t)> )
() clt+1)

(t+1) () g

Similarly, the second term of Equation (2) can be expanded after applying the definition of expectation (Eq. (6)), sum rule
(Eq. (7)), product rule (Eq. (8) and Eq. (9)), and the definition of state value (Eq. (10) and Eq. (11)):

E[G(1+1)|S(t) _ } th+] Pr( (t+1) \p ) 6)

nl)

Zzzzzgm Pr( (L) (0 (t),C(H—l (t+1) |p ) )
+1)

rl alt CH»I (|+])

= Z Zzg(m) Pr(p<t+1) ROIPCRSCRICIRS <t>> .pr< (D) p0, O, D) 10 a(l)’c(t+l)) ®)

pED 1O g ) glt+)

:Z ZZ gt . p ( |p ) Pr( (t+1) |a p® ()>_Pr(pt+l |p H]))

p(t+l) )  a) clt+1) g(‘“)
_Pr(g(t+1)|pt+l),c(t+l)) )
_ Pr(a( ) gt+1 ( (t+1) |p1+1 I+1)) ~Pr< (t+1) \a p 0] )

a®) () p(wl) clt+1) g(l+l)

10)

)
= ZPr( >Z Z Pr( (D10 pO© ) Pr(p (D t0]p®, ‘“)) ~V(S(t+l)> (11)

() p(1+|) clt+l)

.Pr<p(t+l rOp®, D)

which is the probability-weighted sum of the state value of possible future states, v(S“*”). The state value is the
immediate reward plus an expected value of risk in the future, where the likelihood of the event (.e., p™D and ¢+
happen simultaneously, given a¥), p®, and c¢) is Pr( (1120, p®, “) Pr(p 1) O p®, 2 <‘“)) and the conse-
quence of eventisv(S(t+1 ) (i.e., risk =likelihood x consequence). The summation chaln is long because at state s there
are several actions (a¥) that could be taken and at each possible al¥) are several possible future states (s**"). Therefore:
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V<S(t)> = Z rt Pr(a ) Pr( (D)2, (‘),c<‘)> ~P1r<p<‘+l 9D, p(‘)>
Fy- . at ) Z ZPr<C (t+1) \a ) Pr(p (t+1) \p l+1)) V(S(t+l)>

al 0 o
:%Pr(a ) %;;Pr(cw a®, ) Pr(p(t+1 0|+, p(t)> (r<)+y V(S(H'l)))
— ¢t +Y AEPF< t),ct) ;ZH( (t+1) \a ) Pr< (t+1) |ct+l p(t)>.v<s(t+1)>

(12)

The goal of solving the Bellman equation is to find an optimal operational policy, denoted by m, which comprises a
sequence of actions from the set of actions (A), that provides the maximum state values at each time step:

(S()> gy max- ZZPr< (D)0 p ) ( (1) 500, 1+|)> .Vn(s(l+l)> (13)

c(t+1) ‘ +1)
Since v, (S(‘)) depends on v, (S“*”), the MDP agent will iterate over all the states and actions to solve the equation.

In this research, we derived the Bellman equation in a form that includes the concept of functional decomposition
of the system into multiple subsystems. The conditional probability distribution of the system state in Eq. (13)
(i.e., Pr( (t+1)]p©, )) extends to the multiplication of multiple conditional probability distributions of subsystems.
Causality mformatlon among subsystems captured in a DBN is represented when one calculates the state value using the
Bellman equation. Eq. (17) shows how the DBN in Figure 2(c) is represented as a Bellman equation, and a derivation of
Eq. (17) promptly follows.

t t t t t t
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Conditional probability terms in Eq. (16) were simplified into conditional probability terms in Eq. (17) after applying

causal relations between nodes in DBN. Each conditional probability term in Eq. (17) encapsulates the stochastic process
of a subsystem. Pr (m(ﬁ)? , e%ﬁjle) |m<Tl‘),be, e(Ttl)lbe, i{,‘;}gr ) and Pr (mg:eh),e(s‘;lll) |m(st11e11’e(sllzena e%),be > describe the probabilistic
transient behaviors of process variables (e.g., pressure, temperature, mass flow rate) in the primary loop and secondary
loop, respectively. Pr (i(Tﬁ,le) |i(Tlibe,e(Tlflbe) and Pr (igl;}l) egﬁell,i(s‘ﬂeo describe state transitions of HX tube and shell side

health status given the energy state of tube and shell sides.

By expanding basic state transition models (i.e., Pr(c(®! [a¥), p®,c®) and Pr(p®+V |p®,c(V) in Eq. (13)), the effect of
process variables having physical relations can be captured in state transition models. For instance, the component health
level, which can be defined by time to failure (¢ ), is stochastic process, and the ¢ of heat exchanger due to creep can be
determined by Eq. (18):

tr = 1072 (18)

where LMP is the Larson-Miller parameter'® of HX that depends on applied stress, material properties, and failure
criteria, and T is applied temperature on HX. The physical relations shown in Eq. (18) are then represented in the state
transition models (i.e., Pr (iﬁjle) |e<T'L)lbe,i(T[l)lbe) and Pr (ighth) Iegﬁeu,i(s[ﬁeu)) in Eq. (17). Another advantage of the expansion
is that one can validate component characteristics that affect overall system performance by substituting one or more

component state transition models.

(a) (b) IFS (Feedwater Pump'’s Motor Status)
Generator )
—@ sol. trali sil.i
J
gﬁ = IFS (Feedwater Pump’'s Motor Health Level )
c @ N
© O
< '»n
g —
S Condenser
- <
v 4 .
% a SO2.i tra2i si2.i
\ S02.0 d

MFS (Seconda Loo\_S—\
{ it P tral.e

Feedwater
Pump

7
so2.e |
sol.m tralm sttm  tra2m sil.m

Figure 4. System schematic, static MFM model, and MDP model structure of a simplified BoP.In(c),R,M,I,and A
denote reward, mass, information, and action, respectively.
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3. Decision-making Example: Power generation optimization with component failure risk

This chapter presents a simplified power plant BoP in which both the health state of components and process variables of
the system change over time. Figure 4 is a system schematic of the simplified BoP. The main feedwater (FW) pump
provides coolant to the HX (shell side), and operators can maneuver the FW pump to control the mass flow of steam
coming out of the HX, which will affect the amount of electricity that the steam turbine generates. The plant is initially
operating in a steady-state condition and will continue to operate for four time steps for an illustrative purpose. During
operation, degradation occurs in the pump-driving electric motor, meaning the health state of the motor will change over
time, leading to different sudden failure likelihoods of the FW pump. At each time step, one decides to operate the system
at either a higher power to prioritize electricity generation or alower power to minimize the likelihood of failure. The goal,
as it is for any power plant, is to maximize the amount of profit generated from electricity production while also
maintaining safe operations without a high likelihood of motor failure, which will lead to plant shutdown. The MDP
model was developed with the following assumptions:

* There are two system operational modes: 100% and 80% rated electric power.
* The health state of the motor in the FW pump can change over time.
* Motor degradation depends on the power level: the higher the power is, the faster the degradation occurs.

* The likelihood of the pump having a locked rotor depends on the health state of the FW pump. A gradual
performance degradation of the FW pump is not considered to simplify prognostics.

* The component status of the next time step is dependent on the action and health state of the current time step.

» Three health states of the motor are assumed: healthy (State 1), in danger (State 2), and failed (State 3).

Eq. (19) is the corresponding Bellman equation for Figure 4. The likelihood of the FW pump locked rotor given the
current action and motor health state (i.e., Pr (c]\;[+1 la® 1,\?01)) and prognostics of the motor health

(ie., Pr (11(\;;:) |mg)op,i](¢[)m, &tll >) are encapsulated in Eq. (19). Conditional probabilities used in Eq. (19) are given in

Table 2. A key to the state definitions is given in Table 3.

_ (0 () (t+1) (t+1) () () (t4+1)
Va <S<t)> = r<mBoP’ 1Hea1th> +v- maa'XZPr<lMode|a 1Hedlth> Z ZPr( Lealth MBop> Hedlth’lHedlth)

((+1 ) (t+1) H» 1)
IMode BoP Hcdllh
- Pr(mip Imgp gl ) - va (S©) (19)

where r (m{;ip,igia],h) is the reward function determined by the mass flow of the BoP <m§lp) and the motor health state

(glahh> as shown in Eq. (20)—(22):

t -(t t -(t
r (miagpv 1(H)ea1th) =f (mfslp) +8 <1§-I)eallh> (20)
1 if ng,P = state 1 (BoP massflow rate with 100%power)

f (mgép) =408 ifml, = state 2(BoP massflow rate with 80%power) @n

0 if mglp = state 3(BoP massflow rate when motor fails)

0 if il = state 1 (Healthy)
8(iﬁ)ealm> =40 if il = state 2 (In Danger) (22)
—100 ifil = state 3 (Failed)
where f <mgzp) is the reward from electricity generation and g(iﬁiahh> is the cost due to motor health status.

g(i(}?whh = 3> is set to —100 because motor failure will lead to a plant shutdown, which is very costly. The optimal
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Table 2. State transition models with prognostics of a motor in slow degradation.
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Table 3. State definitions for Eq. (19).

state 1:= BoP massflow rate with 100%
power

state2:=BoP massflow rate with 80% power

state3:=BoP massflow rate with 0% power

i©

Health
state 1:=Healthy

state 2:=In
Danger

state 3:=Failed

i©

Mode

state 1 := Motor configuration for 100%
power

state2 := Motor configuration with 80%
power

state3 := locked rotor
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Table 4. State transition models with prognostics for a motor in fast degradation.
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action should yield the highest possible sum of the reward value and probability-weighted average of state values of next
states.

This formulation constitutes the framing of the problem. Iteratively solving Eq. (19) utilizing the state transition models
and reward functions, we developed a state transition flowchart, with part of the flowchart shown in Figure 5. The blocks
are different system states that contain the value of each state variable, the possible actions that can be taken from the state,
and the state value corresponding to taking each action. Arrows represent actions (100% and 80%) and point to
destination states with the corresponding probabilities of reaching these states. The plots do not include all the states
but follow only the most probable states selected by optimal actions. The MDP agent chooses actions based on the value
of each state, which has been solved by the MDP solver iteratively. For instance, at # = 0, the state value could be either —
2.33 or —2.53, depending on which action is taken. Because —2.33 > -2.53, the MDP agent will choose a 100% power
level. Because of the uncertainty in motor degradation, the state transition from # = 0 to 7 = 1 is a stochastic process,
whereas in this case, S, will be the most likely state after taking a 100% power level operation at t = 0. Following same
process, the optimal policy becomes {t=0: 100% Power Operation = t=1: 100% Power Operation - t=2: 100% Power
Operation = t = 3: 100% Power Operation}.

One advantage of capturing the probabilistic nature of system dynamics with state transition models is that one can easily
validate characteristics of a component or subsystem that affect overall performance of the system by replacing one or
multiple state transition models. Figure 6 is a flowchart of the system with prognostics of the motor undergoing faster
degradation. Corresponding state transition models are listed in Table 4. Because of the higher state transition probability

from “healthy” to “in danger”—which implies a fast motor degradation—of Pr <1(F;;L)h \ig)eahh,mglp,i&tég, when the

system operates at the 100% power level, the optimal action scenario begins transitioning to 80% power. At ¢ = 3, the
system can operate at the 100% power level if the motor health state remains in State 1 (i.e., healthy state). Different

transition probabilities of Pr (1&2;13}1 |ig)eahh,mglp,i&t£> change the state values and optimal operational actions at each

time step.

4. Conclusion

This study extended IARF capabilities in decision-making. In IARF, we used a physics-based approach that converts
system information into state transition models for MDP to find traceable and explainable optimal solutions. By
extending the conditional probability distribution of the system state transition to the multiplication of multiple
conditional probability distributions of subsystems, the effect of process variables having physical relations was
encapsulated in state transition models. The key benefits of the approach are:

It helps process large amounts of system information into state transition models, which can then support
explainable decision-making.

* By substituting one or more component state transition models, it aids in verifying the component or subsystem
characteristics that impact the overall system performance.

The case study showed the benefits of using the state transition and reward models of MDP knowing component health
characteristics. This MDP implementation supports operators making decisions that maximize profit by providing a clear
understanding of probabilistic system state trajectories, which was unavailable with conventional control methods based
on logical statements. The MDP agent successfully found the optimal scenario that can maximize the electricity
generation while maintaining the integrity of system components. More applications of our proposed approach for the
nuclear power industry will be presented in Part IT'?: Applications, including a prototype sodium fast reactor model and
two real-world operating applications.

Data availability
Zenodo: Code, data, and models used in this and Part II of the work can be obtained at the Repository
IARF_Models_Code_Data, https://doi.org/10.5281/zenodo.10680506.%°

This contains the MDP code utilized in Parts I and II, the resultant data for the case studies in Part II, and the system
simulation models used in Part II.

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).
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This manuscript presents a novel theoretical framework that integrates MDPs with IARF,
employing DBNs and MFM. The proposed framework addresses challenges in operational
decision-making for complex systems by providing traceable, explainable, and optimal decision
pathways.

INTRODUCTION:
> The citations seem sparse when discussing "traditional approaches" and ML limitations

> The review of "traditional approaches" (Reference 1) needs expansion with contemporary
examples

o The discussion of ML limitations in nuclear applications requires additional citations,
particularly regarding: a) Recent developments in explainable Al for critical systems and b)
Current applications of ML in nuclear operations

o The transition from general ML to RL could be more technically precise by: a) Explaining why
RL is particularly suitable for this application and b) Discussing specific advantages over
other ML approaches

SECTION 3: Decision-making Example
> The section describes state transition probabilities but could better explain how these
probabllltles are derived or validated. Were they derived from empirical data, expert input,
or simulations?

How scalable is the framework when applied to more complex systems with numerous
interdependent components? Are there computational limitations?

o Can the framework accommodate real-time updates to state transitions or probabilities
based on new data or changing operational conditions?
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> The benefits are described qualitatively, but their practical impact could be quantified or
exemplified. Please include metrics or examples that illustrate how this approach improves
decision-making efficiency or system reliability compared to conventional methods.
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The main purpose of the paper could be more explicitly stated at the beginning. Consider briefly
mentioning the specific problem or challenge the framework addresses. Example: "This paper
aims to enhance decision-making in complex systems by integrating artificial reasoning with
Markov decision processes."

Some technical terms (e.g., MFM, DBN) may not be familiar to all readers. Consider adding very
brief explanations for readers outside your immediate field. For example, you could include a
phrase like "Multilevel Flow Modeling (MFM), a method based on energy and mass conservation
laws."

It could benefit from a brief mention of key findings or results in the abstract section.
The connection between the problems presented (complexity, uncertainty, consequences) and
your proposed solution (ML, RL, MDP, DBN) could be more explicit.

The paper discusses existing challenges, but it would be helpful to clearly indicate how the
approach in your paper directly addresses these challenges.

It would be beneficial to highlight the gaps or limitations in the current literature. This will help to
better justify the need for your approach.
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