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Abstract

Electron-Ion Collider (EIC) is a next generation particle
accelerator to be built at Brookhaven National Laboratory,
in partnership with Thomas Jefferson National Accelerator
Facility. In Electron Storage Ring (ESR), 18 single-cell
591 MHz SRF cavities are required to compensate for up
to 10 MW energy loss due to synchronic radiation. Two
high power FPCs for each cavity are used to deliver up to
800 kW power to the beam. The high power FPC were de-
signed and reviewed. The FPC prototypes will be ready for
high power test around mid-2026.

This paper presents the latest development of FPC pro-
totyping and path forward for FPC conditioning.

INTRODUCTION

The EIC [1] to be built at BNL will be a discovery ma-
chine, providing answers to long-elusive mysteries of mat-
ter related to our understanding of the origin of mass, struc-
ture, and bind of atomic nuclei that make up the entire vis-
ible universe. The EIC includes a hadron accelerator that
provides hadron beams and an electron accelerator that
provide electron beams. The hardon accelerator is based on
an upgraded version of the Relativistic Heavy Ion Collider
[2] (RHIC) accelerator system. The electron accelerator is
a new accelerator system, including electron injector,
Rapid Cycling Synchrotron (RCS) and Electron Storage
Ring (ESR). Figure 1 shows the schematic layout of EIC.

Figure 1: Schematic layout of EIC.

There are 18 single-cell SRF cavities in the ESR for syn-
chronic loss compensation. In each cavity, there are two

* Work supported by Brookhaven Science Associates, LLC under Con-
tract No. DE-AC02-98CH10886 with the U.S. DOE.
+ email: wxu@bnl.gov

high power FPCs to deliver up to 800 kW power to the
beam. Therefore, a 400 kW CW FPC design is needed for
EIC ESR SRF cavity. This paper presents the latest results
of FPC prototype and testing plan.

FPC DESIGN OVERVIEW

FPC design features

The EIC FPC is an improved design of KEK/SNS/BNL
BeO window FPCs [3,4,5]. Figure 2 shows ESR SRF cry-
omodule layout and the design of high-power coupler.
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Figure 2: EIC ESR cavity.

There are two FPCs in each cavity, and they are installed
horizontally 180 degree apart. With implementing lessons
learned from the similar FPC window, there are several
features in the EIC FPC[6].

1.  RF window material: 99.5% alumina.

2. Broadband window design for multiple frequencies
in EIC RF complex.

Robust thickness of the RF window: 10.5 mm
Large the distance between the window surface to
choke tip. This allows visual inspection of the braz-
ing joint and improvement on the uniformity of TiN
coating under the choke.
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5. FPC coaxial line was optimized for lower RF field,
higher coupling factor, and minimize the multipact-
ing zone in the FPC.

6. Make sure the whole FPC can survive 5 g impact
load.

7. Part of vacuum side FPC outer conductor (FPC-cav-
ity connection section) is immersed in liquid he-

lium.

8. Helium gas cooled FPC vacuum side outer conduc-
tor.

9.  Water cooled inner conductors, air side outer con-
ductor and doorknob.

10. Water cooled window inner and outer surface.

11. 4.5 KV of DC bias will be ready to apply, if needed.

12. Instrumentations: arc detector, vacuum gauge, ther-

mal sensors, water flow switches.

RF-thermal analysis

Table I listed the FPC operation scenarios. FPC-cavity
integration study was carried out in the worst power loss
case, i.e., the case for FPC conditioning in cryomodule.
Figure 3 shows the FPC thermal profile under the worst
power loss case, which result is reasonable.

Figure 3: FPC thermal profile

One challenge for ESR cryomodule is the limit available
space, which leads to the FPC-cavity flange (2K) to FPC
window flange (300 K) as short as 4 inches. This is shown
in Figure 4. A comprehensive RF-thermal analysis was car-
ried out and a cooling scheme was designed. The required

5 K helium flow is 200 mg/s and the heat flow to 2 K is
minimized to 4.2 W.

Table 1: FPC operation scenarios

Case 18 GeV | 10GeV | CMtest | FPC conditioning
to 4.4MV in cryomodule
Total Pfwd per 556 560 223 800
cavity (kW)
Doorknob OC (W) 362 367 287 950
Doorknob IC (W) 161 166 158 338
WTC (W, warm 13.6 14.2 14.7 23
Cu)
Vac side IC (W) 188 198 220 300
Window (W) 28.8 31.9 47.4 27

RF Heating

Type: Temperature
Unit: ¥

Tine: 15
5/22/2025 11:47 AM

285.69 Max
1

=

Figure 4 Top: FPC cold-to-warm transition, Bottom: tem-
perature profile around FPC-cavity flange.

FPC PROTOTYPING PROGRESS

A FPC manufacture is broken down into three subcom-
ponents: window assembly, doorknob and coaxial line
components. The most challenging part is the FPC win-
dow assembly, and the progress is shown in Figure 6. Two
whole FPCs will be completed in March 2026.
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Figure 5: FPC window assembly and its components.

TiN coating recipe development

To verify the TiN coating uniformity and quality, a win-
dow mock up was built with slots to place alumina coupon
strips, as shown in Figure 6. The mock-up window was
sent to two vendors for TiN coating. TiN coating results
were analysed by TEM in CFN at BNL[]. Figure 7 shows
the thickness and uniformity along the radius of the win-
dow surface. TiN coating covers all over the ceramic, par-
ticularly, the area under inner and outer choke. The thick-
ness in most of locations meets the specification (10 +/- 5
nm), except for small area under the inner conductor choke.
This is acceptable. SEY measurement results on two TiN
coated alumina samples along with an uncoating alumina
were shown in Figure 8. It demonstrated the TiN coating

dramatically reduced SEY. Therefore, the TiN coating rec-
ipe development was completed.

Figure 6: Top: Window mock up; Bottom: TEM measure-
ment.
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Figure 7: Top: Locations for TEM measurements; Bot-
tom: TiN coating thickness.



Comparison of Secondary Electron Emission Coefficient on BNL samples
100

: BNL #1 (PMB coating, in-situ USR w/ ethanol, No heating)

Q : BNL #2 (CPI coat in-situ USR w/ ethanol, No heating)

O: BNL #3 (No coating, in-situ USR w/ ethanol, No heating)
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Figure 8: SEY measurement results

FPC TESTING PLAN
FPC conditioning setup

High power RF test is a critical step forward to verify
the FPC design. A rectangular conditioning box was de-
signed to adapt two FPCs testing simultaneously. Figure 9
shows the schematic diagram of the FPC conditioning
setup. Majority of the instrumentations will be reused from
BeO window FPC test.
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Figure 9: FPC conditioning setup.

FPC conditioning process

Due to the delay of 591 MHz klystron, we plan to con-
dition FPCs with the existing 704 MHz klystron. The 704
MHz FPC conditioning box is a shorten version of 591
MHz conditioning box, which allows minimum resource
and time to spend on the one-off test box. Testing FPCs at
704 MHz will verify the power handling capability of the
FPCs and provide early reassurance of FPC design and
manufacture. The maximum power testing at 704 MHz will
be 370 kW, which is equivalent to 400 kW at 591 MHz.
Eventually, all FPCs will be conditioned with 591 MHz
klystron, prior to installation on the ESR cryomodule.

SUMMARY

A CW 400 kW FPC was designed, and prototyping was
in progress. Detailed FPC-cavity integration study has
completed. TiN coating recipe has developed. FPC condi-
tioning path forward has laid out. We expect to start high
power FPC test in mid-2026.
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