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* The Generation 3 Particle Pilot Plant (G3P3) will feature a number of subsystems designed to provide stable plant operation and component safety including a 100 kW particle
trim heater located upstream of the particle to sCO, heat exchanger.

* The packed bed particle trim heater was augmented to provide fluidizing air to the particle bed to increase the heat transfer coefficient from the cartridge heater elements.

* By fluidizing the particles, a larger change in particle temperature in a single pass through the trim heater is possible allowing for better thermal transient rejection.
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Background

* The shell and plate primary heat exchanger is composed of parallel sCO, containing
plates which transfer the heat from the particles to the sCO, working fluid.

* Parallel plate heat exchangers are particularly vulnerable to thermal shock due to the
fully constrained plate architecture which can be stressed in the presence of large
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Moving Packed Bed Limitation
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1050 The original trim heater core consists of a vertical section of ductwork with
%1000 penetration through which cartridge heaters are immersed in the particle flow.
5 * A staggered array of cartridge heater rods with a maximum surface
c 930 At maximum flow (and temperature of 870 °C directly contact packed particle flow with the duct.
% 900 heat.transfer) the * The moving packed bed heat transfer coefficient from the rods to the particles
= e particle outlet is dependent on particle flow rate.
& temperature is 740 °C * Atlower flow rates, the heat transfer coefficient decreases limiting the
5 800 for safe element particle’s ability to cool the rods to below their maximum temperature
S 750 —+-CFD Modeling operation and 875 °C e Cartridge heater rods shut off to prevent overheating reducing total power
% 200 DEM Modeling for Iimited life delivered to particles.
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FImdlzed Bed Heater Design

Original particle heater core was reused with a new outlet hoper and support
frame that included an air sparger
* The two inlets to the heater were converted to L-valves to prevent air ingress
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20 1 The tall mass flow cone was replaced with a shorter self drain cone making

the fluidized system ~50% shorter.

The fluidization mixes the particles allowing for blending of hot and cold

- Funnel fiow particle streams from the hot and cold storage bins.

- droop and * Particle temperature reduction can also be realized through fluidization
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