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ABSTRACT

We present an agent-guided approach to CAD geometry decomposition that automates hex/hybrid
meshing with graph neural networks (GNNSs) to accelerate next-generation ModSim workflows.
Our end-to-end pipeline (i) reduces 3D boundary-representation (B-Rep) models to a 2D chordal-
axis skeleton (CAT) and then to a 1D bipartite graph of surface and curve nodes, (ii) assigns per-
node labels as Cubit® WebCut actions, (iii) trains a multi-action GNN under supervised learning,
and (iv) predicts five surface-node and three curve-node actions on out-of-distribution test
geometries. Each graph node carries geometric, topological, and meshing attributes drawn from
the B-Rep “skin” and CAT “skeleton,” with two-way mappings across 3D—2D«1D
representations to maintain traceability back to 3D CAD. The supervised learning model exhibits
stable convergence of the binary cross-entropy loss and achieves 98.7% accuracy on unseen lattice
models. To operationalize decision-making, we rank predicted commands by geometric
significance and prototyped the agent-guided workflow through the Cubit® Meshing PowerTool
GUI. As a stretch goal, we explore reinforcement learning (RL) to reduce or remove label
requirements and to learn policies for action sequences that maximize total reward (e.g., size of
hex-meshable regions and resulting hex mesh quality). When all-hex meshing is not feasible, the
agent assists in producing hybrid meshes—prioritizing hex in critical regions and transitioning to
tetrahedral elements (tets) elsewhere—maintaining fidelity while ensuring robustness. The
overarching objective is to replace manual, heuristics-based decomposition with data-driven,
reproducible automation, cutting meshing turnaround time by orders of magnitude. We anticipate
direct impact on simulation workflows through intelligent, scalable decomposition of complex
CAD models into hex-meshable subdomains.

1. INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS

Automated hexahedral meshing for complex CAD remains a critical bottleneck in many modeling
and simulation (ModSim) workflows. Mature tools like Cubit® provide robust meshing
operations and geometry decomposition operations but still depend on expert user’s reasoning
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when it comes to deciding where to place WebCuts, which surfaces to sweep, how to preserve key
features, and how to maintain high mesh quality—introducing latency, variability, and scalability
limits for high-consequence simulations (see Figure 1). The fundamental difficulty is not
generating elements inside a known meshable subdomains (a.k.a. blocks) but discovering a valid
decomposition of complex 3D CAD and an action plan that respects sweepability/feature
constraints while maintaining element quality. Hex meshes are especially valued in nonlinear solid
mechanics, hydrodynamics, and aerodynamics for their efficiency (fewer elements and faster
analyses), accuracy, and convergence; in some tasks, hex is the only viable option [1] . Yet even
the best classical methods (mapping, sweeping) are reliable mainly on simpler geometries and
typically require substantial decomposition [2] [3] [4].
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Figure 1 Automating geometry decomposition for hex meshing in Cubit®

Classical hex meshing methods such as mapping and sweeping have long delivered high-quality
hexes on model classes that fit their assumptions, and are widely implemented in commercial
systems; however, they require user preparation (reference blocks/surfaces) and struggle on
arbitrary shapes [2] [3] [4]. Grid-based approaches broaden coverage but face trade-offs: e.g. grid-
based Sculpt scale well but does not resolve sharp boundary features [3] [5]. Similarly, Whisker-
Weaving and Plastering produce good surface structure yet may leave unmeshable interior cavities
[6] [7]. Frame-field and volumetric parameterization yields structured, high-quality elements but
often needs careful feature preparation or user-guided fields [8] [9]. Tet-to-Hex conversion via a
template is simple but can create high node degrees and local quality issues. Comprehensive
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surveys concur that fully automatic, robust all-hex meshing for arbitrary 3D CAD remains an open
challenge [1].

Geometry decomposition is a dominant approach in industry and much of the literature embrace
geometry decomposition followed by map/sub-map/sweep as the most reliable path to high quality
hex meshes. Commercial tools (Cubit®, ICEM CFD, Abaqus) expose powerful geometry
decomposition operations but rely heavily on user-created reference objects and Boolean splits.
Automatic variants detect swept volumes [10] [11] [12] [13] [14], apply medial axis-based
partitioning [15] [16] [17], or use feature recognition and dual/cross-field cutting loops [18] [19];
however, they show success on targeted geometries (e.g. thin-wall solids) but lack universal
robustness. Quadros has published a hex-dominant meshing algorithm using continuous, more
accurate, skeleton called Medial Axis Transform (MAT) as shown in Figure 2 [20] [16] [21] [22].
This approach takes advantage of the mapping from skin (B-Rep) to skeleton (MA) and non-
manifold junctions of the MA (i.e. regions where advancing front cause singularities). MAT is a
theoretically well-defined skeletal representation, but it is hard to extract it on complex CAD parts
in practice. Therefore, the current approach proposes discrete Chordal Axis Transform (CAT)
skeleton; some of the key characteristics of the skeleton such as valency, thickness, number of
loops, etc. are used as features to train the GNN. Skeleton-guided and multi-cube strategies (e.g.,
T-mesh for IGA) further demonstrate the value of an interior “organizing” structure for
decomposition [23] [18] [24].Semi-automatic systems combining medial geometry with geometric
reasoning illustrate strong human—computer teaming, yet still demand expert input [25] [26].

Cutting the arms enables sweeping along the hole axis
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(¢)Tracks in 3D. (d) Mesh cross section

Important features of skeletal representation Proposed decomposition gives all-hex mesh with better quality

Figure 2 Skeletal features provide inner complexity of 3D CAD
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Because ground-truth sequences of decomposition actions are expensive and ambiguous to label
at scale, Reinforcement learning (RL) is a natural fit. Quadros in collaboration with Illinois Rocstar
LLC researchers [27] introduced Auto-Hex, combining geometric reasoning and artificial
intelligence for automatic geometric decomposition and robust hexahedral meshing of complex
geometries using a reinforcement-learning loop with the meshing environment Cubit®. Given the
boundary representation (B-Rep) and a chordal-axis skeletal object, prominent geometric features
(e.g., T-junctions, sweep directions, through-holes) are detected. An RL policy then proposes
actions (Cubit® WebCuts) based on B-Rep and skeletal features; rewards from the meshing
environment train the agent to favor decompositions that yield hex or hex-dominant meshes over
time. DiPrete et al. work explored RL loops with geometric predicates inside meshing
environments and demonstrated policy learning on planar shapes [28]. Zhang et al. [29] formulate
3D block decomposition as a sequential decision problem and train a Soft Actor-Critic agent
(bootstrapped via imitation learning) to select reference-face operations (planar, extruded-surface,
revolution-surface, trimmed-surface) in a tree-structured MDP induced by recursive splits. A face-
adjacency graph with discretized surface/curve samples encodes B-Rep state. Trained on ABC and
NIST CAD sets, the policy attains high success and meshable ratios showcasing RL’s strength in
ordering cuts for long-horizon hex objectives [29] [30] [31].

In summary, we built an end-to-end, agent-guided pipeline that reduces 3D B-Rep models through
a 2D chordal-axis skeleton (CAT) to a 1D bipartite graph of surface and curve nodes with
geometric, topological, and meshing attributes, then GNN agent learns to predict multi-action
WebCuts directly on this graph via supervised learning (see Figure 3). A supervised heterogeneous
GNN, trained with binary cross-entropy across five surface and three curve actions per node,
converges smoothly and reaches ~98.7% action accuracy on a synthetic lattice benchmark,
substantially outperforming a valency-only MLP baseline. This proves that supervised learning is
an effective strategy for meshing complex targeted parts/components by training on similar
randomized synthetic data and labels. On a few general CAD graphs, the supervised GNN model
produces ~85% accurate WebCut commands, which significantly outperforms the suggestions
provided by the currently released product Cubit 17.04 [32]. But further work is required to clearly
quantify the accuracy and generality of supervised GNN model. When full all-hex is not feasible,
the risk mitigation strategy is to generate hybrid meshes (hex in critical regions, tets elsewhere
with transition pyramid elements) to meet required fidelity and ensure timely analyses (see Figure
4). Finally, a prototype reinforcement-learning architecture demonstrates promise for label-free
planning and action sequencing toward maximizing hex-meshable volume and downstream mesh
quality, setting the stage for broader deployment across general CAD assemblies. Parallel
advances in deep learning for B-Rep CAD (graph/sequence models and large CAD datasets such
as ABC) further strengthen the foundation for learned geometry understanding and decision-
making [30] [31] [33] [34] [35].
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Figure 4 Hex/Hybrid (Hex-dominant) meshes are required in many use cases

2. DETAILED DESCRIPTION OF RESEARCH AND DEVELOPMENT AND
METHODOLOGY
2.1. Synthetic Training Data Generation

9

To train the supervised heterogeneous GNN agent, we procedurally synthesize CAD “lattice’
solids with internal structures inducing a wide range of curve valencies, junction types, and sweep
patterns. This training/test set is motivated by a mission part that contains lattice-like structure
and is also motivated by the fact that these lattice structures contain polycube type Cartesian axes-
oriented entities [36]. This is just one exemplar and similar class of training set can be generated
for other targeted parts of interest.

Hyperparameters used in creating random lattice training and test data:
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# Number of values in the coordinates vector

# Probability to create a slab at a given location (default = 0.65)
# Probability to create a hole in a slab
# Radius of the cylindrical hole (adjust as desired)
# increase slab thicking by this factor to create length of hole tool
# Maximum number of slabs to create
# Number of lattice files to create
True # Option to unite all slabs into a single volume
# Tolerance for floating-point comparison

True # Generate curved lattice

True #If True, hole axis is always normal to the slab

Each lattice in our exemplar is assembled from slab primitives arranged along Cartesian coordinate
axes using parameter num slab planes; the planes are spaced by an offset distance =
slab length/2.0, SO that neighboring slabs intersect and create meaningful interior junctions
(see Figure 5). Individual slabs are extruded volumes of thickness siab thickness and slab
dimensions along length and width is s1ab 1ength. At each grid location, a probability
creation probability decides whether a slab is instantiated; this mechanism yields sparse-to-
dense configurations within a single parameterization and prevents overly regular training
examples. To introduce inner loops, concave surface curvatures, and through-features, holes are
optionally bored through selected slabs with probability hole probability; the cylindrical tool
USeS hole radius = slab length/8 and is extended along the local normal by a factor
hole axis factor to guarantee complete removal through the volume. When normal holes =
True, the drill axis is constrained to be normal to the slab, eliminating grazing cuts and producing
well-conditioned boundaries.

The generator caps the total number of created slabs at max s1abs to control geometric complexity
and runtime. For each dataset call, it produces w distinct lattice files, thereby sampling different
Bernoulli outcomes for slab and hole creation and diversifying junction layouts. When
unite volumes = True, all slab bodies are united into a single watertight volume (see Figure 6);
this step, combined with a geometric tolerance = 0.001, removes coincident faces and hairline
gaps that would otherwise complicate tetmeshing and skeletonization. To further expand
geometric diversity, the generator can produce curved assemblies by enabling curved lattice =
True, applying a gentle twist of curved lattice rotation ang = 10 degrees (about a
prescribed axis) across the slab stack. This curvature introduces nontrivial surface normals and
oblique intersections, enriching the training/test set to resemble industrial CAD parts.
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Figure 5 Random lattice data set with different num slab planes

Figure 6 Union of random slabs create a lattice structure

2.2. Reducing 3D CAD to 1D Bipartite Graph via Chordal Axis Transform (CAT)

We begin with a contiguous B-Rep CAD model and generate a discrete Delaunay tetrahedral mesh
without seeding any interior points in the volume to ensure that the skeletal structure we extract is
driven by the boundary (see Figure 7) [37]. From this conforming tetmesh, we cut internal
tetrahedral edges at mid points and assemble the resulting chordal vertices into a discrete chordal-
axis complex by grouping across adjacent tetrahedra to form a set of CAT faces composed of
triangles and quads that represents the skeleton. We then trim the chordal axis at convex boundary
edges to remove unwanted branches near highly convex features. This produces a topologically
consistent 2D skeletal surface that aligns with perceived thickness and flow directions inside the
solid (see Figure 8).
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We then establish a two-way mapping between CAT surfaces and curves and B-Rep surfaces and
curves, respectively by traversing tetmesh adjacencies and recording which boundary surfaces
influence each CAT faces. This mapping supports traceability during learning and post-
processing: any action predicted on a skeleton entity can be projected back to an actionable
WebCut commands with BRep IDs. We then take dual graph of the 2D CAT to construct a 1D
heterogeneous bipartite graph whose surface nodes represent CAT surfaces and whose curve nodes
represent the CAT curves (i.e., interface & junction curves between CAT Surfaces). Incidence
relations between CAT surfaces and curves become bidirectional edges in the graph
(surface<>curve). Finally, we expose a Cubit® command, create chordal axis, that writes the graph
to disk as paired CSV files for surfaces, curves, and their edges; these files include the two-way
mapping tables that link graph nodes back to B-Rep entity identifiers and CAT patches for later
visualization, auditing, and command synthesis.

| \\\Attribute:
e g

3DSiAD <€=P 3D TetMesh 2D CAT €=  DDual Graph Detectholes
(Skin) 2-way Map 2-way Map (Skeleton) 2-way Map

Graph node attributes

Attribute: Detect
extremities

~  Attribute:
detect junction

Figure 7 Reduce 3D CAD to 1D graph with attributes via Chordal Axis Transform (CAT)

Figure 8 2D Chordal Axis of a random 3D lattice model

2.3. Feature Engineering and Action Labeling

Table 1 and Table 2 tabulate the graph surface and curve node features, respectively to capture
geometric, topological, mapping, and meshing characteristics of a 3D CAD. Using the Cubit®
API, we compute node attributes related to the B-Rep and CAT entities so that each graph node
carries both outer-skin and inner-skeleton characteristics. Table 1 tabulates surface node attributes
such as centroid coordinates; area; estimated thickness; principal radial, axial, and circumferential
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sweep directions and their directional cosines; planarity flags; average dihedral angle across the
CAT patch; orthogonality measures between principal directions; the number of interior loops;
and counts/summaries of incident curves and neighboring surfaces. Table 2 tabulates curve node
attributes such as start/end vertex coordinates; curve length; linearity flags; curvature proxies;
valency; identifiers of incident surfaces (stored as invariants); and local direction vectors from start
to end. Both node types include additional meshing cues such as sweepability indicators and
neighborhood thickness/angle summaries. In our implementation, each node type contributes more
than fifty scalar features after normalization, providing a rich yet compact geometric and
topological description suitable for message passing. Figure 9 shows that valence at a curve node
and surfaces node identifies junctions and extremities, respectively. Figure 10 shows the three
principal sweeping directions at a surface node. Figure 11 shows geometric characteristics of a
3D solid such as average thickness, area, and presence of holes via surface node features.

Table 1 Graph Surface Node Features

| Category H Feature H Use

cencentroid {x,y,z}, area, thickness,
angle, is planar

Geometric Capture geometric characteristics

Capture topological

Topological |[valvalence, num of loops or
poto9 -~ characteristics

BRep Parent IDs; Spatial Info of

Map Parent IDs (e.g., centroid {x,y,z}) IDs are used in Actions
Radial, Axial, Circum sweeping Dhecﬂonvecuwsconvey
hﬂeshhqg direction vectors (spatial info); gNeepab“ﬁy;|D5L5edt0[ﬂnd
corresponding B-Rep ID spatial info WebCut actions/commands
Table 2 Graph Curve Node Features
| Category | Feature lUse |

Geometric descriptors
of CA curves

Junction descriptor |

Geometric |start {x,y,z}, end {x,y,z}, length, is linear

Topological |[valence

Parent Curve IDs for Actions 1-3 (stored as

Map flags); Spatial info from B-Rep: IDs used in Actions
start {x,y,z}, end {x,y,z}

Pargnt curves’ start/end vertex IDs for Usedtore&ﬂve;ﬂane-
Actions 1 & 2 (flags); Parentl curve end | and
surfaces spatial info; Parentl curve end normal and sweep
surfaces B-Rep IDs for Action 3 targets

Meshing
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Figure 9 Valence at Curve and Surface nodes identifies junctions and extremities, respectively
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Figure 10 Surface node feature includes three principal sweeping directions
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& Thickness
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Figure 11 Surface node features include area, average thickness, and number of loops
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Before training the GNN agent, we sanitize features to prevent overfitting to dataset-specific
naming schemes. Wherever the graph stores a B-Rep or CAT identifier for source/target surfaces,
linking curves, parent curves, and related entities, we replace raw I1Ds with binary presence flags
and zero-fill any coordinates or direction vectors tied to missing entities. As we normalize all
principal sweeping direction vectors to unit length, they reflect orientation without encoding scale.

We then attach multi-action labels to each node by applying rule-based geometric predicates
derived from the CAT and B-Rep mapping: five action bits are defined on surface nodes (i.e.,
Action 1&2: sheet-extended from top and bottom parent surfaces; Action 3,4,&5: sweep along a
linking curve in a specified principal direction), and three action bits are defined on curve nodes
(i.e., Action 1&2: plane normal to parent curve at start and end vertex; Action 3: sweep end-surface
along the parent curve). Each bit is set to 1 when the required availability of B-Rep references
(e.g., parent surfaces, linking curves, endpoints) and local geometric thresholds (planarity, angle,
and sweepability) are satisfied; otherwise, it is 0. This procedure yields feature and label tables
for supervised learning that are invariant to arbitrary ID permutations while preserving all
geometry, topology, and meshing characteristics that matter in geometry decomposition.

2.4. Supervised Training of Heterogeneous GNN

We cast geometry decomposition as multi-label node classification on a bipartite graph. The
network is a heterogeneous GNN implemented using Pytorch Geometric library with message
passing on the bidirectional edges connecting surface and curve nodes. Unlike traditional neural
networks (which work on fixed size data/images), GNNs can be applied to data stored in graphs
with arbitrary connectivity (Figure 12). K-level compute graphs and aggregation via message
passing captures the global landscape/complexity of graph (derived from 3D CAD) through
multiple message-passing iterations. We can predict WebCut actions (i.e. labels) at nodes using
binary cross entropy (BCE) loss function.

7

L~

@
1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Figure 12 GNN enables message passing on k-level compute graph in a heterogeneous graph
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The architecture includes surface and curve node types whose features are processed by a stack of
three message passing layers (GraphSAGE/GCN variants) [38] using maximum aggregation,
followed by rectified linear (ReLU) activation functions, and culminates in two independent heads:
a surface head that outputs five logits and a curve head that outputs three logits (see Figure 13).
Sigmoid activations convert logits to probabilities for node classification.

During training, the binary cross-entropy objective is summed across all action channels and both
node types (five surface and three curve outputs) and minimized end-to-end. We use a random
80/20 train/test split, train for 2000 epochs with a batch size of 10 graphs for each training step,
and optimize with Adam plus weight decay. Learning rates are gradually reduced using an
exponential decay schedule until a minimum learning rate is reached, at which point the learning
rate remains constant for the remainder of training. We log per-head (surface, curve) and aggregate
losses, export TensorBoard traces, and automatically generate loss plots. The observed monotonic
decline and stabilization of both per-head and aggregate BCE plots indicate stable learning
dynamics and adequate capacity for the task as the training data set size increases (i.e. 10, 100, and
300 lattice CAD models with associated CSV files).

Surface node features Curve node features
xs € R% Xc € R

/

GraphSAGE/GCN Variant:
3 Message Passing layers
+ Max Aggregation

— T~

Surface head Curve head
MLP - 5 logits MLP - 3 logits
v v
Sigmoid - ys €10, 11° '| Sigmoid - y. €[0,1]3

\ Training loss: /

BCE();S, ¥s) + BCE();C: Ye)

Figure 13 Heterogeneous GNN architecture for multi-label node classification
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Figure 14 Binary cross entropy (BCE) training loss on 10/100/300 training data

PyTorch-Geometric pseudocode of the core loop:

data = HeteroData(...) # surfaces.x, curves.x,

edge_index[ ('surfaces',6 'sc','curves')]...

model = BipartiteGNN(in_s=SURF DIM, in_ c=CURVE DIM, hidden=H, out_s=5, out_c=3)
opt torch.optim.Adam (model.parameters(), lr=2.5e-3, weight decay=5e-4)

for epoch in range(2000) :

model. train()

opt.zero_grad()

out_s, out_c = model (data.x_dict, data.edge_index_dict) # logits

loss = BCEWithLogits(out_s, y s).mean() + BCEWithLogits(out c, y_c).mean()
loss.backward()

torch.nn.utils.clip grad norm_(model.parameters(), 1.0)

opt.step()

# eval on held-out graphs; log BCE_s, BCE_c, BCE_total; save checkpoints

2.5. Predicting WebCuts on Test Set

At inference, we first load the trained checkpoint, call Cubit®’s create chordal axis command to
export graph in *.csv, and forward once to obtain surface and curve node actions in the new
* predict.csv file as shown in Figure 14. The pipeline achieves 98.7% action accuracy on our
lattice test set, with all five surface actions and three curve actions correctly recovered in most
cases as shown in Figure 19.

Figure 16 shows a deep dive on curve node C33 and action 3 (i.e. sweep the end surface along the
parent curve), which relies on correct identification of the end surface, reliable orientation of the
parent curve tangent, and adequate local thickness; the model’s precision remains high even near
multi-valent junctions where curve orientation is ambiguous.

Validation

2000
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Figure 15 Workflow for predicting WebCut solutions using GNN model
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Figure 16 Deep dive at Curve node C33 with GNN predicted action

For transparency, the test script writes surface and curve prediction tables to CSV, with columns
for true action bits, predicted bits, probabilities, and the corresponding global IDs that tie back to
the B-Rep skin; this enables straightforward reproduction of the previews and rapid triage of any
mispredictions.
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2.6. Integrate Agent-Guided Solutions in Cubit® Meshing PowerTool GUI

To productionize the workflow, we propose integrating the trained GNN’s predictions as a ranked,
constraint-checked command plan inside the Cubit® Meshing PowerTool (see Figure 17). The
GUI loads the per-node CSVs, restores the local<»global mapping, and renders a prioritized action
list, i.e., the agent-suggested WebCut commands under “Possible Solutions” (e.g., sheet-extend
from a parent surface, plane-normal-to-curve at a specific endpoint, sweep-surface-along-curve).
The user may accept or skip any solution; the powertool repopulates a new set of solutions after
executing current selected solution. Because every action originates from the graph with preserved
two-way mappings, any generated script is auditable and can be tied back to both the CAT skeleton
and the original B-Rep. This integration closes the loop from graph reasoning to executable all-
hex decomposition without requiring users to memorize command syntax or manage the ordering
constraints manually.

We experimented with a ranking scheme based on geometric significance: larger surface area or
curve length yield higher priority. This can be formalized via a small reinforcement learning value
network to sort candidate commands based on accumulated reward (e.g. faster mesh convergence,
fewer manual overrides).

DBDECC ORRO, /K« 3PP AR O A/ EIIZ®ERE 2SN ° —~HOL LOd~

« ce
considering face pair 34 42
considering face pair 35 41
considering face pair 37 39

Mesh deleted and propagated on:
Volume 1

n

Figure 17 Prototype of proposed decomposition workflow in Cubit® Meshing Powertool
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3. EXTENSION TO REINFORCEMENT LEARNING

To move beyond per-node action prediction and learn action ordering on general CAD, we cast
geometry decomposition as a sequential decision process and train an RL agent in the same
environment used for supervised learning. The state is the bipartite surface<>curve graph (CAT-
derived skeleton plus B-Rep “skin”) with the identical feature set used in SL; we maintain the
local<—global maps so every decision targets a concrete B-Rep face/curve. The action space
comprises parameterized WebCut operations anchored at graph nodes (e.g., radial/axial/circum
sweeps on surfaces; cut/sweep actions at curves). At each step, the agent proposes a distribution
over valid WebCuts; we mask infeasible actions using geometric predicates and sample a valid
command, apply it in Cubit®, and update the graph/state. The reward combines (i) the incremental
increase in hex-meshable volume percentage and (ii) downstream mesh quality proxies (e.g.,
sweepability, Jacobian/angle surrogates), with penalties for non-manifold cuts, degraded quality,
or dead-end decompositions; a small step penalty encourages shorter plans. Episodes terminate
when no further improvement is possible or a hex-meshability threshold is met. We train with
modern policy optimization (e.g., PPO/SAC) and warm-start the policy from the supervised model
(behavior cloning on our synthetic lattice training set and the held-out test cases), which stabilizes
exploration and accelerates convergence. This RL extension preserves data, features, and
instrumentation from SL, but adds the closed loop—propose — validate — apply — mesh —
reward—that lets the agent learn the sequence of WebCuts required to achieve all-hex, high-
quality decompositions on previously unseen, complex CAD models.
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Input CAD . .
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n m Features
/ ao-oooou \
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Propose
Reward e SampleaVahd Predict Valid
- Probabilities | =g Webcut e
for Webcuts

I
I
Apply Webcut ||
I
I
I

” Compute % ” |
Hex-Meshable _———

Figure 18 Training workflow for Reinforcement Learning agent
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4. RESULTS AND DISCUSSION

The prediction pipeline was tested on a hold-out dataset consisting of 20% of the available CAD
files that were not seen during training. The predicted WebCut commands were structurally viable,
had correct syntax, and aligned functionally with true labels as shown in Figure 19. A very small
percentage of discrepancies arose due to label noise or previously unseen geometric
configurations. To improve, we scaled training data up to 500+ randomly synthesized CAD
models and observed ~ 3-5% accuracy gains. More enhanced features, larger hidden dimensions,
and more message-passing layers could further help improve the accuracy and robustness of
predicted WebCut commands.

We benchmarked workflow speed, i.e., a typical CAD graph of ~100 nodes take ~0.1s for feature
read and inference, and ~0.05 s to generate commands. The end-to-end prediction significantly
reduces manual modeling effort, i.e., significantly reduces trial-and-error decomposition efforts.
Most mesh automation methods rely on heuristics or human supervision. Our agent-guided
approach enables generalized, learned decision-making from data across different targeted CAD
geometries via supervised learning, with better adaptability to new geometries via reinforcement
learning.

SL ¥ $

Surf Action 1&2 (ParentSurf Sheet Extended): Surf Action 3 (Sweep ParentSurfin Radial Dir): Surf Action 4 (Sweep LikingSurf in Axial Dir):
webcut volume 1 with sheet extended from surface 161 webcut volume 1 sweep surface 99 along curve 183 webcut volume 1 sweep surface 120 along curve 52
Curve Action 1 &2 (Plane Normal to ParentCurve): Curve Action 3 (Sweep EndSurface along ParentCurve):
webcut volume 1 with plane normal to curve 3 close_to vertex 2 webcut volume 1 sweep surface 120 along curve 71

Figure 19 WebCut previews highlighting five surface actions and three curve actions.

We further validated the supervised learning approach on general 3D CAD models Browell,
PlumbingFixture, and JetBlade by previewing the predicted WebCuts in Cubit®. The model
produces sensible decomposition WebCut commands as shown in Figure 20 to Figure 22 with
greater than 85% accuracy.
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(@) Tetmesh with no interior points (b) Reduced 2D CAT and 1D Graph
(c) GNN predicted action at surface node (d) GNN predicted ac{tion at surface node
(e) GNN predicted ac;ion at surface node (f) GNN predicted action at curve node

(9) Hex meshable subdomains (h) Hex mesh

Figure 20 Agent-guided WebCuts and hex mesh on Browell
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(a) Tetmesh with no interior points (b) Reduced 2D CAT

(c) GNN predicted action at surface node (d) GNN predicted action at surface node
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(e) GNN predicted action at surface node (f) Hybrid mesh
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(g) Scaled Jacobian of hybrid mesh | (h) Cross-section of hybrid mesh
Figure 21 Agent-guided WebCuts and hybrid mesh on PlumbingFixture



LABORATORY DIRECTED

RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

-

(@) Input 3D CAD (b) Tetmesh with no interior points
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(c) Reduced 2D CAT (d) GNN predicted action at surface node
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(e) GNN predicted action at surface node (f) Decomposed subdomains

Figure 22 Agent predicted WebCut actions on JetBlade
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5. ANTICIPATED OUTCOMES AND IMPACTS

This research is expected to materially reduce mesh-preparation time in multiple ModSim
workflows from months/weeks of manual intervention to hours/minutes of agent-guided,
automated preprocessing by suggesting intelligent decomposition choices into reproducible,
executable command plans. Because the pipeline operates on a CAD-agnostic 3D—2D—1D
reduction with invariant features, it is designed to scale and transfer across CAD architectures and
to integrate into broader meshing workflows, including future adaptive simulation loops in which
decomposition and meshing respond to solution feedback. Our strategy is to fallback to hybrid
meshing if all-hex meshing cannot be achieved by the agent, i.e., some workflows prefer hex
meshes in critical regions of interest and tet meshing in the remainder of the domain.

With regard to publishing, we have presented 3D CAD to 1D graph reduction at USNCCM-18,
July 20-24, 2025 [39] and we will submit a full paper on agent guided geometry decomposition
via supervised learning on targeted geometries to SIAM International Meshing Roundtable
Workshop (IMR) on or before Oct 1, 2025. We are also planning to present architecture and early
results of reinforcement learning as a Research Notes to IMR before Dec 21, 2025. We have also
submitted a tri-lab proposal on agent-guided hex meshing using SL/RL to ASC/AI4NS call.

Our future work and R&D roadmap focus on production robustness and extensions of current ML
framework. For training data, we will expand the synthetic generator to reflect other Sandia
specific parts. On CAT, we will harden the “create chordal axis” export so that the CAT graph
and its mappings are reliable across edge cases. For graph features, we will normalize geometry
by scaling the bounding box to a parametric space (so centroids, lengths, and thicknesses are
comparable across models); add thickness statistics (min/mean/max) to distinguish tapered from
constant-section slabs; record principal sweeping directional cosines explicitly; compute surface-
node valency as the number of incident interface/junction curves; and explore a B-Rep—first graph
augmented with CAT cues to reduce reliance on skeleton extraction. For actions, we will address
the failure of the surface-node radial sweep on curved slabs by introducing a loft-based operation
that uses the top and bottom parent surfaces as tools; extend the curve-node action set (actions 4—
8) to include sweep-curve WebCuts between parent curves; and broaden both supervised and
reinforcement-learning coverage to additional Cubit® WebCut commands. In reward shaping, we
will penalize WebCuts that introduce sharp angles or otherwise degrade downstream mesh quality.
In the GUI, we will integrate the GNN-predicted solutions into the Cubit® Meshing PowerTool
for interactive review, constraint checks, and one-click execution. For reinforcement learning, we
will train on general CAD models (e.g., curated ABC subsets) without action labels, using
imitation warm starts from the supervised model where appropriate.

As mentioned in Figure 1, this LDRD focuses on addressing only the geometry decomposition
task for hex meshing; however, geometry preparation, mesh generation, and post-meshing shown
in Figure 23 is an iterative process. In the future, we need an orchestration agent to manage the
input and output of various steps shown in Figure 23
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Figure 23 Orchestration agent is required for geometry processing, meshing, and post-meshing

6. CONCLUSION

We present a novel, end-to-end pipeline for agent-guided geometry decomposition using a reduced
bi-partite graph representation of 3D CAD and a multi-action Graph Neural Network. By encoding
CAD-derived surface and curve features into a bi-partite graph via Chordal Axis Transform and
training a multi-action heterogeneous GNN, our system learns to predict WebCut actions that
historically required domain expert intervention. Training on hundreds of synthetic 3D CAD
models of lattice structure with labels, we observe very high WebCut action prediction accuracy
(98.7% on unseen lattice test data set and greater than 85% on general CAD models) and rapid
inference. We prototyped integrating Cubit® WebCut commands into Cubit® Meshing Powertool
GUI for early productionization, user testing, and distribution in the future.

Our pipeline not only reduces manual meshing effort but also enhances consistency and scalability
in simulation workflows. While initial results are promising, future enhancements such as learned
ranking, reinforcement learning for command ordering, data augmentation, and developing a new
orchestration agent for geometry preparation, meshing, and post-meshing will further improve the
system's utility.

This work sets the foundation for replacing manual geometric reasoning with learned, data-driven
strategies embedded in simulation workflows. We expect that continued development and
deployment will significantly accelerate mission-critical CAD model preparation and offer a new
Al-enabled CAD decomposition for hex and hybrid meshing to accelerate ModSim workflows
across different disciplines for various missions.
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