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ABSTRACT 

We present an agent-guided approach to CAD geometry decomposition that automates hex/hybrid 

meshing with graph neural networks (GNNs) to accelerate next-generation ModSim workflows.  

Our end-to-end pipeline (i) reduces 3D boundary-representation (B-Rep) models to a 2D chordal-

axis skeleton (CAT) and then to a 1D bipartite graph of surface and curve nodes, (ii) assigns per-

node labels as Cubit® WebCut actions, (iii) trains a multi-action GNN under supervised learning, 

and (iv) predicts five surface-node and three curve-node actions on out-of-distribution test 

geometries. Each graph node carries geometric, topological, and meshing attributes drawn from 

the B-Rep “skin” and CAT “skeleton,” with two-way mappings across 3D↔2D↔1D 

representations to maintain traceability back to 3D CAD. The supervised learning model exhibits 

stable convergence of the binary cross-entropy loss and achieves 98.7% accuracy on unseen lattice 

models. To operationalize decision-making, we rank predicted commands by geometric 

significance and prototyped the agent-guided workflow through the Cubit® Meshing PowerTool 

GUI. As a stretch goal, we explore reinforcement learning (RL) to reduce or remove label 

requirements and to learn policies for action sequences that maximize total reward (e.g., size of 

hex-meshable regions and resulting hex mesh quality). When all-hex meshing is not feasible, the 

agent assists in producing hybrid meshes—prioritizing hex in critical regions and transitioning to 

tetrahedral elements (tets) elsewhere—maintaining fidelity while ensuring robustness. The 

overarching objective is to replace manual, heuristics-based decomposition with data-driven, 

reproducible automation, cutting meshing turnaround time by orders of magnitude. We anticipate 

direct impact on simulation workflows through intelligent, scalable decomposition of complex 

CAD models into hex-meshable subdomains. 

 

1. INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS 

Automated hexahedral meshing for complex CAD remains a critical bottleneck in many modeling 

and simulation (ModSim) workflows.  Mature tools like Cubit® provide robust meshing 

operations and geometry decomposition operations but still depend on expert user’s reasoning 
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when it comes to deciding where to place WebCuts, which surfaces to sweep, how to preserve key 

features, and how to maintain high mesh quality—introducing latency, variability, and scalability 

limits for high-consequence simulations (see Figure 1).  The fundamental difficulty is not 

generating elements inside a known meshable subdomains (a.k.a. blocks) but discovering a valid 

decomposition of complex 3D CAD and an action plan that respects sweepability/feature 

constraints while maintaining element quality.  Hex meshes are especially valued in nonlinear solid 

mechanics, hydrodynamics, and aerodynamics for their efficiency (fewer elements and faster 

analyses), accuracy, and convergence; in some tasks, hex is the only viable option [1] .  Yet even 

the best classical methods (mapping, sweeping) are reliable mainly on simpler geometries and 

typically require substantial decomposition [2] [3] [4]. 

 

Figure 1 Automating geometry decomposition for hex meshing in Cubit®  

Classical hex meshing methods such as mapping and sweeping have long delivered high-quality 

hexes on model classes that fit their assumptions, and are widely implemented in commercial 

systems; however, they require user preparation (reference blocks/surfaces) and struggle on 

arbitrary shapes [2] [3] [4].  Grid-based approaches broaden coverage but face trade-offs: e.g. grid-

based Sculpt scale well but does not resolve sharp boundary features [3] [5].  Similarly, Whisker-

Weaving and Plastering produce good surface structure yet may leave unmeshable interior cavities 

[6] [7].  Frame-field and volumetric parameterization yields structured, high-quality elements but 

often needs careful feature preparation or user-guided fields [8] [9]. Tet-to-Hex conversion via a 

template is simple but can create high node degrees and local quality issues.  Comprehensive 
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surveys concur that fully automatic, robust all-hex meshing for arbitrary 3D CAD remains an open 

challenge [1]. 

 

Geometry decomposition is a dominant approach in industry and much of the literature embrace 

geometry decomposition followed by map/sub-map/sweep as the most reliable path to high quality 

hex meshes. Commercial tools (Cubit®, ICEM CFD, Abaqus) expose powerful geometry 

decomposition operations but rely heavily on user-created reference objects and Boolean splits.  

Automatic variants detect swept volumes [10] [11] [12] [13] [14], apply medial axis-based 

partitioning [15] [16] [17], or use feature recognition and dual/cross-field cutting loops [18] [19]; 

however, they show success on targeted geometries (e.g. thin-wall solids) but lack universal 

robustness.  Quadros has published a hex-dominant meshing algorithm using continuous, more 

accurate, skeleton called Medial Axis Transform (MAT) as shown in Figure 2 [20] [16] [21] [22].  

This approach takes advantage of the mapping from skin (B-Rep) to skeleton (MA) and non-

manifold junctions of the MA (i.e. regions where advancing front cause singularities).  MAT is a 

theoretically well-defined skeletal representation, but it is hard to extract it on complex CAD parts 

in practice. Therefore, the current approach proposes discrete Chordal Axis Transform (CAT) 

skeleton; some of the key characteristics of the skeleton such as valency, thickness, number of 

loops, etc. are used as features to train the GNN. Skeleton-guided and multi-cube strategies (e.g., 

T- es   or   A)  urt er de onstrate t e  alue o  an interior “organi ing” stru ture  or 

decomposition [23] [18] [24].Semi-automatic systems combining medial geometry with geometric 

reasoning illustrate strong human–computer teaming, yet still demand expert input [25] [26]. 

 
Figure 2 Skeletal features provide inner complexity of 3D CAD  

 

 alen e

T i kness

 rt ogonalit 

Cutting t e ar s ena les sweeping along t e  ole a is

  portant  eatures o  skeletal representation  roposed de o position gi es all  e  es wit  etter  ualit 



 
 

Because ground-truth sequences of decomposition actions are expensive and ambiguous to label 

at scale, Reinforcement learning (RL) is a natural fit. Quadros in collaboration with Illinois Rocstar 

LLC researchers [27] introduced Auto-Hex, combining geometric reasoning and artificial 

intelligence for automatic geometric decomposition and robust hexahedral meshing of complex 

geometries using a reinforcement-learning loop with the meshing environment Cubit®.  Given the 

boundary representation (B-Rep) and a chordal-axis skeletal object, prominent geometric features 

(e.g., T-junctions, sweep directions, through-holes) are detected.  An RL policy then proposes 

actions (Cubit® WebCuts) based on B-Rep and skeletal features; rewards from the meshing 

environment train the agent to favor decompositions that yield hex or hex-dominant meshes over 

time.  DiPrete et al. work explored RL loops with geometric predicates inside meshing 

environments and demonstrated policy learning on planar shapes [28]. Zhang et al. [29] formulate 

3D block decomposition as a sequential decision problem and train a Soft Actor-Critic agent 

(bootstrapped via imitation learning) to select reference-face operations (planar, extruded-surface, 

revolution-surface, trimmed-surface) in a tree-structured MDP induced by recursive splits. A face-

adjacency graph with discretized surface/curve samples encodes B-Rep state. Trained on ABC and 

NIST CAD sets, the policy attains high success and meshable ratios s ow asing R ’s strengt  in 

ordering cuts for long-horizon hex objectives [29] [30] [31]. 

 

In summary, we built an end-to-end, agent-guided pipeline that reduces 3D B-Rep models through 

a 2D chordal-axis skeleton (CAT) to a 1D bipartite graph of surface and curve nodes with 

geometric, topological, and meshing attributes, then GNN agent learns to predict multi-action 

WebCuts directly on this graph via supervised learning (see Figure 3). A supervised heterogeneous 

GNN, trained with binary cross-entropy across five surface and three curve actions per node, 

converges smoothly and reaches ~98.7% action accuracy on a synthetic lattice benchmark, 

substantially outperforming a valency-only MLP baseline.  This proves that supervised learning is 

an effective strategy for meshing complex targeted parts/components by training on similar 

randomized synthetic data and labels.  On a few general CAD graphs, the supervised GNN model 

produces ~85% accurate WebCut commands, which significantly outperforms the suggestions 

provided by the currently released product Cubit 17.04 [32].  But further work is required to clearly 

quantify the accuracy and generality of supervised GNN model.  When full all-hex is not feasible, 

the risk mitigation strategy is to generate hybrid meshes (hex in critical regions, tets elsewhere 

with transition pyramid elements) to meet required fidelity and ensure timely analyses (see Figure 

4).  Finally, a prototype reinforcement-learning architecture demonstrates promise for label-free 

planning and action sequencing toward maximizing hex-meshable volume and downstream mesh 

quality, setting the stage for broader deployment across general CAD assemblies.  Parallel 

advances in deep learning for B-Rep CAD (graph/sequence models and large CAD datasets such 

as ABC) further strengthen the foundation for learned geometry understanding and decision-

making [30] [31] [33] [34] [35]. 



 
 

 
Figure 3 Overview of GNN agent guided decomposition via supervised/reinforcement learning 

 

 
Figure 4 Hex/Hybrid (Hex-dominant) meshes are required in many use cases  

 

2. DETAILED DESCRIPTION OF RESEARCH AND DEVELOPMENT AND 

METHODOLOGY 

2.1. Synthetic Training Data Generation 

To train t e super ised  eterogeneous  NN agent, we pro edurall  s nt esi e CA  “latti e” 

solids with internal structures inducing a wide range of curve valencies, junction types, and sweep 

patterns.  This training/test set is motivated by a mission part that contains lattice-like structure 

and is also motivated by the fact that these lattice structures contain polycube type Cartesian axes-

oriented entities [36].  This is just one exemplar and similar class of training set can be generated 

for other targeted parts of interest.    

Hyperparameters used in creating random lattice training and test data: 
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Each lattice in our exemplar is assembled from slab primitives arranged along Cartesian coordinate 

axes using parameter num_slab_planes; the planes are spaced by an offset_distance = 

slab_length/2.0, so that neighboring slabs intersect and create meaningful interior junctions 

(see Figure 5).  Individual slabs are extruded volumes of thickness slab_thickness and slab 

dimensions along length and width is slab_length.  At each grid location, a probability 

creation_probability decides whether a slab is instantiated; this mechanism yields sparse-to-

dense configurations within a single parameterization and prevents overly regular training 

examples. To introduce inner loops, concave surface curvatures, and through-features, holes are 

optionally bored through selected slabs with probability hole_probability; the cylindrical tool 

uses hole_radius = slab_length/8 and is extended along the local normal by a factor 

hole_axis_factor to guarantee complete removal through the volume.  When normal_holes = 

True, the drill axis is constrained to be normal to the slab, eliminating grazing cuts and producing 

well-conditioned boundaries. 

 

The generator caps the total number of created slabs at max_slabs to control geometric complexity 

and runtime.  For each dataset call, it produces N distinct lattice files, thereby sampling different 

Bernoulli outcomes for slab and hole creation and diversifying junction layouts. When 

unite_volumes = True, all slab bodies are united into a single watertight volume (see Figure 6); 

this step, combined with a geometric tolerance = 0.001, removes coincident faces and hairline 

gaps that would otherwise complicate tetmeshing and skeletonization.  To further expand 

geometric diversity, the generator can produce curved assemblies by enabling curved_lattice = 

True, applying a gentle twist of curved_lattice_rotation_ang = 10 degrees (about a 

prescribed axis) across the slab stack.  This curvature introduces nontrivial surface normals and 

oblique intersections, enriching the training/test set to resemble industrial CAD parts. 



 
 

 

Figure 5 Random lattice data set with different num_slab_planes 

 

 

Figure 6 Union of random slabs create a lattice structure 

2.2. Reducing 3D CAD to 1D Bipartite Graph via Chordal Axis Transform (CAT) 

We begin with a contiguous B-Rep CAD model and generate a discrete Delaunay tetrahedral mesh 

without seeding any interior points in the volume to ensure that the skeletal structure we extract is 

driven by the boundary (see Figure 7) [37].  From this conforming tetmesh, we cut internal 

tetrahedral edges at mid points and assemble the resulting chordal vertices into a discrete chordal-

axis complex by grouping across adjacent tetrahedra to form a set of CAT faces composed of 

triangles and quads that represents the skeleton.  We then trim the chordal axis at convex boundary 

edges to remove unwanted branches near highly convex features.  This produces a topologically 

consistent 2D skeletal surface that aligns with perceived thickness and flow directions inside the 

solid (see Figure 8). 

                                                      

                                                      



 
 

We then establish a two-way mapping between CAT surfaces and curves and B-Rep surfaces and 

curves, respectively by traversing tetmesh adjacencies and recording which boundary surfaces 

influence each CAT faces.  This mapping supports traceability during learning and post-

processing: any action predicted on a skeleton entity can be projected back to an actionable 

WebCut commands with BRep IDs.  We then take dual graph of the 2D CAT to construct a 1D 

heterogeneous bipartite graph whose surface nodes represent CAT surfaces and whose curve nodes 

represent the CAT curves (i.e., interface & junction curves between CAT Surfaces).  Incidence 

relations between CAT surfaces and curves become bidirectional edges in the graph 

(surface↔curve).  Finally, we expose a Cubit® command, create chordal axis, that writes the graph 

to disk as paired CSV files for surfaces, curves, and their edges; these files include the two-way 

mapping tables that link graph nodes back to B-Rep entity identifiers and CAT patches for later 

visualization, auditing, and command synthesis.  

 
Figure 7 Reduce 3D CAD to 1D graph with attributes via Chordal Axis Transform (CAT) 

 

 
Figure 8 2D Chordal Axis of a random 3D lattice model  

 

2.3. Feature Engineering and Action Labeling 

Table 1 and Table 2 tabulate the graph surface and curve node features, respectively to capture 

geometric, topological, mapping, and meshing characteristics of a 3D CAD.  Using the Cubit® 

API, we compute node attributes related to the B-Rep and CAT entities so that each graph node 

carries both outer-skin and inner-skeleton characteristics.  Table 1 tabulates surface node attributes 

such as centroid coordinates; area; estimated thickness; principal radial, axial, and circumferential 
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sweep directions and their directional cosines; planarity flags; average dihedral angle across the 

CAT patch; orthogonality measures between principal directions; the number of interior loops; 

and counts/summaries of incident curves and neighboring surfaces.  Table 2 tabulates curve node 

attributes such as start/end vertex coordinates; curve length; linearity flags; curvature proxies; 

valency; identifiers of incident surfaces (stored as invariants); and local direction vectors from start 

to end.  Both node types include additional meshing cues such as sweepability indicators and 

neighborhood thickness/angle summaries. In our implementation, each node type contributes more 

than fifty scalar features after normalization, providing a rich yet compact geometric and 

topological description suitable for message passing.  Figure 9 shows that valence at a curve node 

and surfaces node identifies junctions and extremities, respectively.  Figure 10 shows the three 

principal sweeping directions at a surface node.  Figure 11 shows geometric characteristics of a 

3D solid such as average thickness, area, and presence of holes via surface node features.  

Table 1 Graph Surface Node Features  

Category Feature Use 

Geometric  
cencentroid_{x,y,z}, area, thickness, 

angle, is_planar Capture geometric characteristics 

Topological  valValence, num_of_loops Capture topological 

characteristics 

Map 
BRep Parent IDs; Spatial Info of 

Parent IDs (e.g., centroid_{x,y,z})   IDs are used in Actions 

Meshing 
Radial, Axial, Circum sweeping 

direction vectors (spatial info); 

corresponding B-Rep ID spatial info 

Direction vectors convey 

sweepability; IDs used to bind 

WebCut actions/commands 

Table 2 Graph Curve Node Features 

Category Feature Use 

Geometric  start_{x,y,z}, end_{x,y,z}, length, is_linear 
Geometric descriptors 

of CA curves 

Topological  valence Junction descriptor  

Map 
Parent Curve IDs for Actions 1–3 (stored as 

flags); Spatial info from B-Rep: 

start_{x,y,z}, end_{x,y,z} 
IDs  used in Actions 

Meshing  

Parent curves’ start/end vertex IDs for 

Actions 1 & 2 (flags); Parent1 curve end 

surfaces spatial info; Parent1 curve end 

surfaces B-Rep IDs for Action 3 

Used to resolve plane-

normal and sweep 

targets 



 
 

 

Figure 9 Valence at Curve and Surface nodes identifies junctions and extremities, respectively 

 

Figure 10 Surface node feature includes three principal sweeping directions 

  
Surface Node Feature: Number of Loops Surface Node Features: Area & Thickness 

Figure 11 Surface node features include area, average thickness, and number of loops 
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Before training the GNN agent, we sanitize features to prevent overfitting to dataset-specific 

naming schemes.  Wherever the graph stores a B-Rep or CAT identifier for source/target surfaces, 

linking curves, parent curves, and related entities, we replace raw IDs with binary presence flags 

and zero-fill any coordinates or direction vectors tied to missing entities. As we normalize all 

principal sweeping direction vectors to unit length, they reflect orientation without encoding scale.   

We then attach multi-action labels to each node by applying rule-based geometric predicates 

derived from the CAT and B-Rep mapping: five action bits are defined on surface nodes (i.e., 

Action 1&2: sheet-extended from top and bottom parent surfaces; Action 3,4,&5: sweep along a 

linking curve in a specified principal direction), and three action bits are defined on curve nodes 

(i.e., Action 1&2: plane normal to parent curve at start and end vertex; Action 3: sweep end-surface 

along the parent curve). Each bit is set to 1 when the required availability of B-Rep references 

(e.g., parent surfaces, linking curves, endpoints) and local geometric thresholds (planarity, angle, 

and sweepability) are satisfied; otherwise, it is 0.  This procedure yields feature and label tables 

for supervised learning that are invariant to arbitrary ID permutations while preserving all 

geometry, topology, and meshing characteristics that matter in geometry decomposition. 

2.4. Supervised Training of Heterogeneous GNN 

We cast geometry decomposition as multi-label node classification on a bipartite graph.  The 

network is a heterogeneous GNN implemented using Pytorch Geometric library with message 

passing on the bidirectional edges connecting surface and curve nodes.  Unlike traditional neural 

networks (which work on fixed size data/images), GNNs can be applied to data stored in graphs 

with arbitrary connectivity (Figure 12).  K-level compute graphs and aggregation via message 

passing captures the global landscape/complexity of graph (derived from 3D CAD) through 

multiple message-passing iterations.  We can predict WebCut actions (i.e. labels) at nodes using 

binary cross entropy (BCE) loss function. 

 

Figure 12 GNN enables message passing on k-level compute graph in a heterogeneous graph 

                                                                                                                          
                                                                                                                          
                                                                                                          

                        

                        

         
          

                                  

                                                     



 
 

The architecture includes surface and curve node types whose features are processed by a stack of 

three message passing layers (GraphSAGE/GCN variants) [38] using maximum aggregation, 

followed by rectified linear (ReLU) activation functions, and culminates in two independent heads: 

a surface head that outputs five logits and a curve head that outputs three logits (see Figure 13).  

Sigmoid activations convert logits to probabilities for node classification. 

During training, the binary cross-entropy objective is summed across all action channels and both 

node types (five surface and three curve outputs) and minimized end-to-end.  We use a random 

80/20 train/test split, train for 2000 epochs with a batch size of 10 graphs for each training step, 

and optimize with Adam plus weight decay.  Learning rates are gradually reduced using an 

exponential decay schedule until a minimum learning rate is reached, at which point the learning 

rate remains constant for the remainder of training.  We log per-head (surface, curve) and aggregate 

losses, export TensorBoard traces, and automatically generate loss plots. The observed monotonic 

decline and stabilization of both per-head and aggregate BCE plots indicate stable learning 

dynamics and adequate capacity for the task as the training data set size increases (i.e. 10, 100, and 

300 lattice CAD models with associated CSV files).   

 

 

Figure 13 Heterogeneous GNN architecture for multi-label node classification 

                      
                        

                



 
 

   

Figure 14 Binary cross entropy (BCE) training loss on 10/100/300 training data 

PyTorch-Geometric pseudocode of the core loop: 

data = HeteroData(...)                # surfaces.x, curves.x, 

edge_index[('surfaces','sc','curves')]... 

model = BipartiteGNN(in_s=SURF_DIM, in_c=CURVE_DIM, hidden=H, out_s=5, out_c=3) 

opt   = torch.optim.Adam(model.parameters(), lr=2.5e-3, weight_decay=5e-4) 

 

for epoch in range(2000): 

model.train() 

opt.zero_grad() 

out_s, out_c = model(data.x_dict, data.edge_index_dict)   # logits 

loss  = BCEWithLogits(out_s, y_s).mean() + BCEWithLogits(out_c, y_c).mean() 

loss.backward() 

torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) 

opt.step() 

# eval on held-out graphs; log BCE_s, BCE_c, BCE_total; save checkpoints 

 

 

2.5. Predicting WebCuts on Test Set 

At inference, we first load the trained checkpoint,  all Cu it ’s create chordal axis command to 

export graph in *.csv, and forward once to obtain surface and curve node actions in the new 

*_predict.csv file as shown in Figure 14. The pipeline achieves 98.7% action accuracy on our 

lattice test set, with all five surface actions and three curve actions correctly recovered in most 

cases as shown in Figure 19. 

Figure 16 shows a deep dive on curve node C33 and action 3 (i.e. sweep the end surface along the 

parent curve), which relies on correct identification of the end surface, reliable orientation of the 

parent  ur e tangent, and ade uate lo al t i kness; t e  odel’s pre ision re ains  ig  e en near 

multi-valent junctions where curve orientation is ambiguous.  



 
 

 

Figure 15 Workflow for predicting WebCut solutions using GNN model 

 

 
 

Figure 16 Deep dive at Curve node C33 with GNN predicted action 

 

For transparency, the test script writes surface and curve prediction tables to CSV, with columns 

for true action bits, predicted bits, probabilities, and the corresponding global IDs that tie back to 

the B-Rep skin; this enables straightforward reproduction of the previews and rapid triage of any 

mispredictions. 
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2.6. Integrate Agent-Guided Solutions in Cubit® Meshing PowerTool GUI 

To productionize the workflow, we propose integrating the trained  NN’s predi tions as a ranked, 

constraint-checked command plan inside the Cubit® Meshing PowerTool (see Figure 17).  The 

GUI loads the per-node CSVs, restores the local↔global mapping, and renders a prioritized action 

list, i.e., the agent-suggested WebCut commands under “ ossi le  olutions” (e.g., sheet-extend 

from a parent surface, plane-normal-to-curve at a specific endpoint, sweep-surface-along-curve).  

The user may accept or skip any solution; the powertool repopulates a new set of solutions after 

executing current selected solution.  Because every action originates from the graph with preserved 

two-way mappings, any generated script is auditable and can be tied back to both the CAT skeleton 

and the original B-Rep. This integration closes the loop from graph reasoning to executable all-

hex decomposition without requiring users to memorize command syntax or manage the ordering 

constraints manually.  

We experimented with a ranking scheme based on geometric significance: larger surface area or 

curve length yield higher priority. This can be formalized via a small reinforcement learning value 

network to sort candidate commands based on accumulated reward (e.g. faster mesh convergence, 

fewer manual overrides). 

 
 

Figure 17 Prototype of proposed decomposition workflow in Cubit® Meshing Powertool 

 



 
 

3. EXTENSION TO REINFORCEMENT LEARNING 

To move beyond per-node action prediction and learn action ordering on general CAD, we cast 

geometry decomposition as a sequential decision process and train an RL agent in the same 

environment used for supervised learning. The state is the bipartite surface↔curve graph (CAT-

derived skeleton plus B-Rep “skin”) wit  t e identi al  eature set used in   ; we  aintain t e 

local↔global maps so every decision targets a concrete B-Rep face/curve. The action space 

comprises parameterized WebCut operations anchored at graph nodes (e.g., radial/axial/circum 

sweeps on surfaces; cut/sweep actions at curves). At each step, the agent proposes a distribution 

over valid WebCuts; we mask infeasible actions using geometric predicates and sample a valid 

command, apply it in Cubit®, and update the graph/state. The reward combines (i) the incremental 

increase in hex-meshable volume percentage and (ii) downstream mesh quality proxies (e.g., 

sweepability, Jacobian/angle surrogates), with penalties for non-manifold cuts, degraded quality, 

or dead-end decompositions; a small step penalty encourages shorter plans. Episodes terminate 

when no further improvement is possible or a hex-meshability threshold is met. We train with 

modern policy optimization (e.g., PPO/SAC) and warm-start the policy from the supervised model 

(behavior cloning on our synthetic lattice training set and the held-out test cases), which stabilizes 

exploration and accelerates convergence. This RL extension preserves data, features, and 

instrumentation from SL, but adds the closed loop—propose →  alidate → appl  →  es  → 

reward—that lets the agent learn the sequence of WebCuts required to achieve all-hex, high-

quality decompositions on previously unseen, complex CAD models. 

 

Figure 18 Training workflow for Reinforcement Learning agent  

                                         



 
 

4. RESULTS AND DISCUSSION 

The prediction pipeline was tested on a hold-out dataset consisting of 20% of the available CAD 

files that were not seen during training. The predicted WebCut commands were structurally viable, 

had correct syntax, and aligned functionally with true labels as shown in Figure 19.  A very small 

percentage of discrepancies arose due to label noise or previously unseen geometric 

configurations.  To improve, we scaled training data up to 500+ randomly synthesized CAD 

models and o ser ed ~  –5% accuracy gains.  More enhanced features, larger hidden dimensions, 

and more message-passing layers could further help improve the accuracy and robustness of 

predicted WebCut commands.    

 

We benchmarked workflow speed, i.e., a typical CAD graph of ~100 nodes take ~0.1s for feature 

read and in eren e, and ~ .   s to generate  o  ands.  The end-to-end prediction significantly 

reduces manual modeling effort, i.e., significantly reduces trial-and-error decomposition efforts.  

Most mesh automation methods rely on heuristics or human supervision. Our agent-guided 

approach enables generalized, learned decision-making from data across different targeted CAD 

geometries via supervised learning, with better adaptability to new geometries via reinforcement 

learning. 

 

 
 

Figure 19 WebCut previews highlighting five surface actions and three curve actions. 

 

We further validated the supervised learning approach on general 3D CAD models Browell, 

PlumbingFixture, and JetBlade by previewing the predicted WebCuts in Cubit®.  The model 

produces sensible decomposition WebCut commands as shown in Figure 20 to Figure 22 with 

greater than 85% accuracy.  

                                           

we  ut  olu e  wit  s eet e tended  ro  sur a e    

                                            

we  ut  olu e   sweep sur a e     along  ur e   
                                             

we  ut  olu e   sweep sur a e    along  ur e    

                                               

we  ut  olu e   wit  plane nor al to  ur e   lose to  erte   

                                                 

we  ut  olu e   sweep sur a e     along  ur e   



 
 

  

(a) Tetmesh with no interior points (b) Reduced 2D CAT and 1D Graph 

  
(c) GNN predicted action at surface node (d) GNN predicted action at surface node 

  
(e) GNN predicted action at surface node (f) GNN predicted action at curve node 

  

(g) Hex meshable subdomains (h) Hex mesh 

 

Figure 20 Agent-guided WebCuts and hex mesh on Browell  



 
 

 

 

(a) Tetmesh with no interior points (b) Reduced 2D CAT 

  

(c) GNN predicted action at surface node (d) GNN predicted action at surface node 

  

(e) GNN predicted action at surface node (f) Hybrid mesh 

 
 

(g) Scaled Jacobian of hybrid mesh (h) Cross-section of hybrid mesh 

Figure 21 Agent-guided WebCuts and hybrid mesh on PlumbingFixture 



 
 

  

(a) Input 3D CAD (b) Tetmesh with no interior points 

  

(c) Reduced 2D CAT (d) GNN predicted action at surface node 

 
 

(e) GNN predicted action at surface node (f) Decomposed subdomains 

 

Figure 22 Agent predicted WebCut actions on JetBlade 

 

 



 
 

5. ANTICIPATED OUTCOMES AND IMPACTS 

This research is expected to materially reduce mesh-preparation time in multiple ModSim 

workflows from months/weeks of manual intervention to hours/minutes of agent-guided, 

automated preprocessing by suggesting intelligent decomposition choices into reproducible, 

executable command plans.  Because the pipeline operates on a CAD-agnosti    →  →   

reduction with invariant features, it is designed to scale and transfer across CAD architectures and 

to integrate into broader meshing workflows, including future adaptive simulation loops in which 

decomposition and meshing respond to solution feedback.  Our strategy is to fallback to hybrid 

meshing if all-hex meshing cannot be achieved by the agent, i.e., some workflows prefer hex 

meshes in critical regions of interest and tet meshing in the remainder of the domain.  

 

With regard to publishing, we have presented 3D CAD to 1D graph reduction at USNCCM-18, 

July 20-24, 2025 [39] and we will submit a full paper on agent guided geometry decomposition 

via supervised learning on targeted geometries to SIAM International Meshing Roundtable 

Workshop (IMR) on or before Oct 1, 2025.  We are also planning to present architecture and early 

results of reinforcement learning as a Research Notes to IMR before Dec 21, 2025.  We have also 

submitted a tri-lab proposal on agent-guided hex meshing using SL/RL to ASC/AI4NS call.  

 

Our future work and R&D roadmap focus on production robustness and extensions of current ML 

framework.  For training data, we will expand the synthetic generator to reflect other Sandia 

specific parts.   n CAT, we will  arden t e “ reate   ordal a is” e port so t at t e CAT grap  

and its mappings are reliable across edge cases.  For graph features, we will normalize geometry 

by scaling the bounding box to a parametric space (so centroids, lengths, and thicknesses are 

comparable across models); add thickness statistics (min/mean/max) to distinguish tapered from 

constant-section slabs; record principal sweeping directional cosines explicitly; compute surface-

node valency as the number of incident interface/junction curves; and explore a B-Rep–first graph 

augmented with CAT cues to reduce reliance on skeleton extraction.  For actions, we will address 

the failure of the surface-node radial sweep on curved slabs by introducing a loft-based operation 

that uses the top and bottom parent surfaces as tools; extend the curve-node action set (actions 4–

8) to include sweep-curve WebCuts between parent curves; and broaden both supervised and 

reinforcement-learning coverage to additional Cubit® WebCut commands. In reward shaping, we 

will penalize WebCuts that introduce sharp angles or otherwise degrade downstream mesh quality. 

In the GUI, we will integrate the GNN-predicted solutions into the Cubit® Meshing PowerTool 

for interactive review, constraint checks, and one-click execution. For reinforcement learning, we 

will train on general CAD models (e.g., curated ABC subsets) without action labels, using 

imitation warm starts from the supervised model where appropriate.  

As mentioned in Figure 1, this LDRD focuses on addressing only the geometry decomposition 

task for hex meshing; however, geometry preparation, mesh generation, and post-meshing shown 

in Figure 23 is an iterative process.  In the future, we need an orchestration agent to manage the 

input and output of various steps shown in Figure 23 



 
 

 
Figure 23 Orchestration agent is required for geometry processing, meshing, and post-meshing 

  

6. CONCLUSION  

We present a novel, end-to-end pipeline for agent-guided geometry decomposition using a reduced 

bi-partite graph representation of 3D CAD and a multi-action Graph Neural Network.  By encoding 

CAD-derived surface and curve features into a bi-partite graph via Chordal Axis Transform and 

training a multi-action heterogeneous GNN, our system learns to predict WebCut actions that 

historically required domain expert intervention.  Training on hundreds of synthetic 3D CAD 

models of lattice structure with labels, we observe very high WebCut action prediction accuracy 

(98.7% on unseen lattice test data set and greater than 85% on general CAD models) and rapid 

inference.  We prototyped integrating Cubit® WebCut commands into Cubit® Meshing Powertool 

GUI for early productionization, user testing, and distribution in the future. 

 

Our pipeline not only reduces manual meshing effort but also enhances consistency and scalability 

in simulation workflows.  While initial results are promising, future enhancements such as learned 

ranking, reinforcement learning for command ordering, data augmentation, and developing a new 

orchestration agent for geometry preparation, meshing, and post-meshing will further improve the 

system's utility. 

 

This work sets the foundation for replacing manual geometric reasoning with learned, data-driven 

strategies embedded in simulation workflows. We expect that continued development and 

deployment will significantly accelerate mission-critical CAD model preparation and offer a new 

AI-enabled CAD decomposition for hex and hybrid meshing to accelerate ModSim workflows 

across different disciplines for various missions.  
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