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Assessing the impact of climate change on rain‑
fall‑triggered landslides: a case study in Califor‑
nia

Abstract  Landslides are widespread natural hazards which take a 
heavy toll on lives, property, and infrastructure each year. In Janu-
ary 2023 and 2024, widespread landslides occurred in California as 
a result of extreme winter precipitation. Estimating the regional 
evolution of landslide hazard in a changing climate is essential 
for adaptation planning and risk mitigation efforts. The complex 
effects of climate change on landslide hazard, however, are poorly 
understood. Here, we use climate and landslide observations to 
develop a novel data-driven approach for landslide susceptibil-
ity assessment under historical and future climate conditions. 
We apply this framework to investigate the evolution of landslide 
susceptibility in California and its impacts on the roadway system 
based on downscaled climate projections under moderate and high 
greenhouse gas emission scenarios. On average, the results indi-
cate an increase in landslide susceptibility through 2100 in regions 
where historical susceptibility is moderate to very high. Although 
the spatio-temporal variations in landslide susceptibility are sen-
sitive to climate model uncertainties in predicting extreme rain-
fall, the direst impacts are largely circumvented in lower emission 
scenarios.

Keywords  Landslides · Climate change · Climate adaptation · 
Susceptibility mapping · Machine learning

Introduction
In the coastal and mountainous areas of California, environmen-
tal shifts resulting from climate change have led to increased risk 
of several natural hazards—including drought, wildfires, floods, 
and landslides—posing major threats to public safety, property, 
shared infrastructure, and transportation corridors. In particular, 
compounding environmental effects from changes in precipita-
tion patterns and rainfall extremes, more frequent wildfire, and 
the destruction of native vegetation coverage in highly urbanized 
regions make California prone to a dramatic increase in landslide 
hazard. As one example of these compounding effects, a major 
rainstorm in January 2019 led to increased landslide occurrence 
in areas previously burnt by the 2016 San Gabriel Complex fire 
and the 2014 Colby and 2009 Morris fires (Rengers et al. 2020). 
More recently, the California Geologic Survey and U.S. Geologi-
cal Survey inventoried over 700 reported landslides in less than a 
month due to widespread storms in early 2023 (California Depart-
ment of Conservation 2023). Globally, landslide observations sug-
gest increasing risk in many regions due to climate change and 
urbanization (Ozturk et al. 2022; Cendrero et al. 2020). Studies in 
Central Europe (Tichavský et al. 2019) and California (Handwerger 
et al. 2019, 2022) have particularly emphasized the role of shifting 

precipitation patterns, from dry spells and droughts to extreme pre-
cipitation on landslides. Heavy rainfall events and 20-year return 
period amounts for daily precipitation are expected to increase in 
many regions (Easterling et al. 2017).

Despite developments in landslide susceptibility mapping 
and hazard assessment, accurate landslide forecasting is difficult, 
mainly due to the physical complexity of landslide triggering 
mechanisms and insufficient real-time measurements of surface 
conditions, groundwater flow, and soil/rock properties. Moreo-
ver, effects of environmental changes on landslide occurrence are 
nonlinear and uncertain (Gariano and Guzzetti 2022). As a result, 
reliable assessments of the impact of changing climate on future 
landslide hazard are largely lacking (Gariano and Guzzetti 2016; 
Crozier 2010).

In recent years, there has been increasing attention focused 
on connecting environmental changes and future landslide activ-
ity (Araújo et al. 2022; Tyagi et al. 2023; Hürlimann et al. 2022). 
General approaches include the usage of downscaled climate pro-
jections, comparison of historical landslide records with climato-
logical or meteorological variables, and analysis of paleo-evidence, 
as summarized in a review by Gariano and Guzzetti (2016). Some 
studies rely purely on physically based models and climate projec-
tions (Guo et al. 2023; Komori et al. 2018; Alvioli et al. 2018; Lin et al. 
2022), while others apply data-driven techniques (Kirschbaum et al. 
2020; Shou and Yang 2015; Knevels et al. 2023; Pham et al. 2022; Park 
and Lee 2021; Shou and Lin 2020).

In this work, we use a novel data-driven modeling framework 
and a global landslide catalog to develop projections of landslide 
susceptibility under different climate change scenarios. We then 
present a detailed investigation of the temporal evolution of land-
slide susceptibility in California spanning 150 years. The method-
ology combines machine learning with statistically downscaled 
and bias-corrected outputs from Global Climate Models (GCMs), 
along with high-resolution observational datasets. After training a 
prediction model using historical landslide observations and mete-
orological datasets over the 2015–2020 period, we evaluate the capa-
bility of this model to reproduce observed landslide susceptibility 
for the historical baseline period. Subsequently, we derive future 
projections of landslide susceptibility using an ensemble of climate 
projections under different greenhouse gas emissions scenarios.

Methodology

Data‑driven landslide model
We use XGBoost (eXtreme Gradient Boosting) (Chen and Guestrin 
2016), an ensemble decision tree-based method based on boosting 

http://crossmark.crossref.org/dialog/?doi=10.1007/s10346-024-02428-0&domain=pdf
http://orcid.org/0000-0001-6635-6905
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techniques, as the machine learning algorithm for landslide mod-
eling due to its superior performance in binary classification and 
robustness to correlated features. XGBoost has been shown to 
achieve a better performance in landslide susceptibility assessment 
compared to other machine learning techniques, e.g., random for-
ests, artificial neural networks, and support vector machines (Cao 
et al. 2020). Given the inherent structure of the decision-making 
process, XGBoost is also resilient to correlated input features and 
potential extrapolation problems under future conditions (Han and 
Semnani 2024). This can be attributed to the fact that each decision 
tree performs a split based on a feature being larger or smaller than 
a threshold, using only one of the correlated features which leads 
to an optimal split. The other correlated features are disregarded in 
that particular split; however, may be utilized in subsequent splits. 
In XGBoost, weak learners based on classification and regression 
trees (CART) are continuously trained to fit the residuals of the 
previous prediction. The final prediction value of each sample is 
obtained by summing all the leaf scores in each tree.

The selection of appropriate landslide conditioning factors 
(i.e., input features of the machine learning model) is critical to 
the model’s performance. Despite their importance, climate-related 
factors such as precipitation and temperature have rarely been 
included in data-driven landslide susceptibility models (Korup and 
Stolle 2014; Stanley et al. 2020). Here, we incorporated a variety of 
annual and seasonal precipitation metrics, along with antecedent 
temperature to account for climate-related influences in predicting 
landslides under changing climate conditions. Prior soil conditions, 
such as soil moisture also play a critical role in the susceptibility 
of slopes to failure, for instance, by affecting the amount of rainfall 
required to trigger such events. Due to the lack of reliable GCM 
outputs for soil moisture (with the resolution and measurement 
units consistent with historical data), we instead use antecedent 
rainfall and temperature data as additional model input features. 
To determine the number of accumulation days which adequately 
represent pre-existing soil conditions, we trained and evaluated 
the model using different antecedent day intervals (such as 10- and 
30-day) and found that the antecedent 30-day interval is the most 
effective in predicting landslides.

Twenty-one factors were initially considered as potential inputs 
to the landslide model (Table 1), based on their role in providing 
relevant information on landslide events and pre-disposing ter-
rain to failure, as well as the availability of data at the spatial and 
temporal resolutions. These considered factors fall into two main 
categories: (1) geoenvironmental conditions (slope, lithology, veg-
etation, land cover, soil type, and distance to faults) which have 
been shown to pre-dispose slope to failure (Corominas et al. 2014) 
and (2) climate-related factors (daily, seasonal and annual rainfall, 
as well as antecedent temperature). Using a very large number of 
input features in machine learning can have a negative impact on 
model performance due to the curse of dimensionality and poten-
tial overfitting. Therefore, we reduced the input set to the nine most 
important features using recursive feature elimination.

The down selection of input features was informed by an analy-
sis of feature importance, physics insights, and Pearson correla-
tion across variables. To reduce the input set, we first trained the 
XGBoost classifier using all 21 features. The XGBoost algorithm 
assigns three importance metrics to each feature, namely, weight, 
coverage, and gain. In each iteration, the least important feature is 

dropped according to the value of its feature importance metrics. 
This process is repeated recursively until the algorithm reaches the 
target number of features. Figure 1 shows feature importance met-
rics (weight, cover, and gain) for the final trained model with nine 
selected features.

Landslide catalogs

Data on historical landslide events are necessary to construct 
a comprehensive training dataset. We use NASA’s Global Land-
slide Catalog (GLC) gridded at a 30 arcseconds daily resolu-
tion (Stanley et al. 2021), the largest publicly available global 
landslide inventory. It has been compiled since 2007 from various 
sources (Amatya et al. 2019, 2021; Geoscience Australia 2018; Benz 
and Stanley 2020; Secretaría de Gestión de Riesgos - Escenarios 
2016; Kelkar et al. 2017; Hughes et al. 2019; Juang et al. 2019). Only 
landslide events triggered by rainfall are selected from this data-
base. Since the focus of this work is landslide events which are 
triggered by rainfall, landslide events with unknown triggering 
mechanisms or those triggered by other phenomena (e.g., earth-
quakes, volcano, and construction) were removed from the land-
slide catalog. We note that a similar approach could be applied to 
other types of landslides using a historical landslide catalog with 
known (labeled) landslide type.

We use 5800 global rainfall-triggered landslide events from 
May 5, 2015 to April 30, 2020 with known location/time as posi-
tive samples. For negative samples, we randomly select 1.15 million 
non-landslide points in the same time range. The large number of 
negative samples (here 1.15 million points) allows the dataset to 
cover the wide feature space corresponding to non-landslide events.

Data for the input features for the positive and negative samples 
are collected from the sources listed in Table 2, forming a prelimi-
nary labeled dataset. It is noteworthy that while the case study in 
this work is focused on California, we choose a publicly available 
global dataset to obtain a larger training dataset which captures 
diverse climate conditions. This dataset has inherent biases and 
uncertainties, e.g., uncertainty in time, location, and triggering 
mechanism of each event (Kirschbaum and Stanley 2018). Moreo-
ver, many landslide inventories are biased toward reporting land-
slides in populated areas. Nevertheless, this dataset was selected in 
this work due to the advantages of being a large, publicly available 
dataset which allows us to incorporate diverse global climate condi-
tions into the modeling process.

The dataset considered here is highly imbalanced, where the 
number of instances of the positive (minority) class is significantly 
smaller than the negative (majority) class. This is a common issue 
in binary classification problems due to the relative scarcity of posi-
tive samples (here, landslide events) compared to negative sam-
ples (no landslide), and can bias the learning algorithm toward 
the majority class. To address this problem, we use a combination 
of two undersampling and oversampling techniques to develop a 
balanced dataset by undersampling the negative data samples down 
to 877k and oversampling the positive data points to 877k samples. 
For oversampling, we use synthetic minority over-sampling tech-
nique for nominal and continuous features (SMOTE-NC), a variant 
of synthetic minority oversampling technique (SMOTE) (Chawla 
et al. 2002) which is applicable to both continuous and categorical 
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features. For undersampling, we have developed a new gridded 
hyperspace sampling approach, in which the hyperspace of input 
features is gridded into a specific number of intervals, and one sam-
ple from each interval is selected for inclusion in the final dataset. 
More details regarding the treatment of the imbalanced dataset can 
be found in Han and Semnani (2024).

Model validation

The balanced dataset was divided into training, testing, and valida-
tion sets, with separation ratios of 70%, 15%, and 15%, respectively. 
The training dataset is used for model training, and the test set is 
used for hyperparameter tuning. The validation dataset consists of 
completely unseen data and is used to calculate predictive perfor-
mance metrics. The most commonly used statistical model evalu-
ation metrics include metrics derived from the confusion matrix 
(Eq. 1) which includes true positive (TP), false positive (FP), true 

negative (TN), and false negative (FN) rates. The metrics reported 
here include recall (Eq. 2), specificity (Eq. 3), balanced accuracy 
(Eq. 4), Matthew’s correlation coefficient (MCC) (Eq. 5), area under 
the receiver operating characteristic (AUROC), and area under the 
precision-recall curve (AUPRC).

(1)Confusion Matrix =

[

TN FN

FP TP

]

(2)Recall =
TP

TP + FN

(3)Specificity =
TN

TN + FP

(4)Balanced Accuracy =
1

2
×

(

TP

TP + FN
+

TN

TN + FP

)

Table 1   Variable definitions for twenty-one initial inputs (landslide influencing factors) of the machine learning model. Nine of these features 
are kept in the final model (indicated by a ⋆) after recursive feature elimination

Variable name Definition Kept

Daily rainfall Daily accumulated rainfall

Normalized rainfall Daily rainfall normalized by the 99th percentile rainfall ⋆

Antecedent rain (10-day) Cumulative rainfall of antecedent 10 days

Antecedent rain (30-day) Cumulative rainfall of antecedent 30 days ⋆

Normalized antecedent rain (10-day) Cumulative rainfall of antecedent 10 days normalized by the 99th percentile 
daily rainfall

Normalized antecedent rain (30-day) Cumulative rainfall of antecedent 30 days normalized by the 99th percentile 
daily rainfall

Annual rainfall Annual cumulative rainfall

Wet month Cumulative rainfall of the wettest month of the year ⋆

Dry month Cumulative rainfall of the driest month of the year

Wet season Cumulative rainfall of the wettest season of the year

Dry season Cumulative rainfall of the driest season of the year

Tmin (antecedent 10-day) Averaged daily minimum temperature in the past 10 days

Tmax (antecedent 10-day) Averaged daily maximum temperature in the past 10 days

Tmin (antecedent 30-day) Averaged daily minimum temperature in the past 30 days

Tmax (antecedent 30-day) Averaged daily maximum temperature in the past 30 days ⋆

Distance to faults Distance to closest faults ⋆

Slope Maximum slope angle within each 30 arcsecond grid cell ⋆

Land cover Land cover ⋆

Vegetation Normalized difference vegetation index (NDVI)

Soil type Soil texture classification in terms of water containing capabilities ⋆

Lithology Lithology ⋆
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The above metrics are calculated on the validation dataset to evalu-
ate the model performance, as shown in Table 3. Since we are par-
ticularly interested in the model’s capability to predict landslide 
events, we also calculate the Recall and Specificity on all “real” vali-
dation samples (i.e., the samples that are not generated/removed 
during undersampling and oversampling process), yielding Recall 
= 0.91 and Specificity = 0.99 . The positive samples in this set con-
sist of real landslide events from the landslide catalog which are 
completely unseen by the model during training/hyper-parameter 
tuning, demonstrating the satisfactory performance of the model 
in the prediction of landslide events. Finally, the generated Califor-
nia landslide susceptibility maps (see the “Landslide susceptibility 

(5)MCC =
TP × TN − FP × FN

√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

mapping” section) are compared with historical landslide invento-
ries, as shown in Fig. 2c.

Landslide susceptibility mapping

We develop a data-driven landslide model using XGBoost as the 
machine learning algorithm, as described in the “Data-driven 
landslide model” section. The model is trained on historical data 
and produces a daily estimate of landslide probability at a given 
location based on local site parameters and historical/projected 
meteorological conditions (daily rainfall, antecedent rainfall and 
temperature, and cumulative rainfall of the wettest month of the 
year). We use the trained model to generate landslide susceptibility 
maps of California with a spatial resolution of 0.01 degree (about 

Fig. 1   Feature importance (cover, gain, and weight) given by the model trained with the 9 selected features
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1 km). The specific resolution is chosen based on the available reso-
lution of the input features and downscaled climate variables. For 
each grid cell, the landslide influencing factors are evaluated and 
used as input to the model to obtain daily predictions of landslide 
probability for the given cell.

To produce susceptibility maps, we first define an aggregate sus-
ceptibility index in each grid cell. A collection of probabilities over 
multiple days in a year (here 30 days) are obtained and averaged 
to determine the susceptibility index of each grid cell to reduce 
the effects of machine learning model uncertainty and random 
daily variability in dynamic precipitation and temperature data. 
The susceptibility index of each grid cell is calculated by averaging 

the predicted probabilities of 30 days in a given year with the high-
est probabilities and then averaging yearly values in a given time 
period of interest (e.g., 1990–2020).

The resulting susceptibility indices are then used to classify grid 
cells into one of five susceptibility categories (from “very low” to 
“very high” susceptibility). Different zoning techniques have been 
used in the literature to classify landslide maps into categories, for 
example, geometric interval method (Wang et al. 2023), quantile 
classification, natural breaks (Jenks) method, equal interval clas-
sification, and standard deviation-based classification (Ayalew et al. 
2004). In this work, after obtaining the continuous susceptibility 
maps, we categorize the susceptibility values into categories using 
equal intervals as follows: 0 −0.2 (very low); 0.2−0.4 (low); 0.4−0.6 
(medium); 0.6−0.8 (high); and 0.8–1 (very high).

As explained in the “Model validation” section, the landslide 
prediction model is quantitatively validated using a validation 
dataset composed of 15% of the original catalog, demonstrating 
excellent performance metrics (Table 3). As an additional test, 
the model is used to produce a 30-year susceptibility map for 
California over the 1990–2020 period (Fig. 2a) using climatologi-
cal data derived from CNRM-CM5 simulations as inputs. The 
histogram in Fig. 2c shows the number of California histori-
cally observed rainfall-triggered landslide events from the data-
set which fall in each susceptibility category, obtained from the 
historical landslide susceptibility map of 1990–2020 time period. 
As expected, most of the landslide events fall in areas with very 
high landslide susceptibility, and the number of landslides in 

Table 2   Dataset information

Dataset Spatial Temporal Unit

resolution resolution

Slope (de Ferranti 2015) 30 arcseconds – Degree

Distance to faults 30 arcseconds – Km

 (Styron and Pagani 2020)

Soil texture (Webb et al. 2000) 1/30 degree – –

Lithology 0.5 degree – –

 (Hartmann and Moosdorf 2012)

Land cover 1 arcsecond – –

 (European Space Agency 2017)

Precipitation (observations) 0.1 degree Daily Millimeter

 (Huffman et al. 2019)

Precipitation (climate projections) 0.0625 degree Daily Kg∕m2∕s

 (Pierce et al. 2018)

Temperature (observations) 0.5 degree Daily Celsius degree

 (NOAA PSL 2021)

Temperature (climate projections) 0.0625 degree Daily Kelvin

 (Pierce et al. 2018)

Table 3   Model performance metrics of the final trained model calcu-
lated on the validation dataset

Info/metric

Recall 0.952

Specificity 0.965

Balanced accuracy 0.959

MCC 0.917

AUROC 0.99

AUPRC 0.99
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each category decreases with the degree of susceptibility. It is 
observed that the model reliably identifies higher-susceptibility 
regions consistent with the historical record.

For comparison, a deep-seated landslide susceptibility map 
developed by California Geological Survey (CGS) is shown in 
Fig. 2b. We note that the CGS map is determined based on slope 
and lithological strength alone, and does not include any climate 
information like precipitation metrics. The CGS map is developed 
for deep-seated landslides, while the present model accounts for 
all landslide types contained in the training catalog. The regions 
identified as “very high” to “high” susceptibility in our model are 
generally predisposed to deep-seated landslides. Overall, the model 
results are spatially consistent with the CGS map. Major differences 
are observed, however, in the inland desert region to the southeast 
of the state. While this region includes areas with large slopes and/
or weak rocks, the lack of heavy precipitation results in very low 
susceptibility to landslides.

Climate projections

California’s topography includes extensive mountainous regions 
as well as areas of flatter terrain. Its climate is mainly Mediterra-
nean, marked by a dry and a wet season, modulated by year-to-year 
variability and extreme weather events. Its temperatures are milder 
along the coast and with greater seasonal contrast inland. Due to 
its higher latitude and elevation, the northern part of California 
receives more rainfall through winter storms and atmospheric 
rivers and possesses some of the rainiest areas and steep slopes. 
Estimating the implications of climate change in such a climatically 
and topographically complex region is challenging.

In this work, we leverage the Coupled Model Intercomparison 
Project Phase 5 (CMIP5) daily climate projections. Since most 
GCMs have a spatial resolution of about 100 km, which is too 
coarse to capture California’s diverse topography and complex 
climate, we need to rely instead on statistically downscaled and 
bias-corrected outputs (e.g., temperature, precipitation, humid-
ity, or wind speed), to better account for topographical effects. To 

reach this goal, the California Department of Water Resources 
(DWR) Climate Change Technical Advisory Group (Lynn et al. 
2015) evaluated thirty-two CMIP5 GCMs and selected a subset of 
ten models which have the best performance for simulating the 
historical climate of California. Climate projections from these 
ten GCMs were bias-corrected and downscaled to a spatial resolu-
tion of 0.0625 degrees (about 6 km) using Localized Constructed 
Analogs (LOCA). Compared to previous statistical downscaling 
methods applied to refine California’s climate, LOCA has been rec-
ognized to better represent extreme weather conditions (such as 
heatwave or extreme precipitation events) (Pierce et al. 2018, 2013). 
The publicly available dataset provides daily precipitation and 
temperature data over California, from 1950 to 2005 for the histor-
ical period, and projections from 2006 to 2100 (Pierce et al. 2018). 
This dataset includes a total of two different emission scenarios, 
namely, the Representative Concentration Pathways 4.5 (RCP4.5) 
representing a medium emission scenario with stabilization, and 
RCP8.5 representing a high baseline scenario in which the emis-
sions continue to increase through this century (Van Vuuren et al. 
2011). In support of California’s Fourth Climate Change Assess-
ment sponsored by the California Energy Commission, Pierce 
et al. (2018) further assessed the downscaled outputs from these 
ten California GCMs. The authors recommended a narrower selec-
tion of four climate models based on their ability to reliably simu-
late California’s historical climate, while still capturing similar 
inter-model variability seen in larger ensembles and providing a 
range of plausible climate projections. These four are HadGEM2-
ES (a “warm/dry” model), CanESM2 (an “average” model), CNRM-
CM5 (a “cool/wet” model), and MIROC5 (most unlike the first 
three). To reduce the computational costs associated with con-
ducting this study at high resolution (1 km), we utilize these four 
climate models which are able the capture inter-model variability 
across temperature, precipitation, and extreme rainfall projec-
tions (Pierce et al. 2018). To illustrate this, we compare daily and 
antecedent rainfall trends obtained from the four-model ensemble 
with the ensemble of 10 models selected by DWR, as explained 
below. While larger ensembles are preferable, we observe that the 

Fig. 2   a Categorized landslide susceptibility map for 1990–2020 (using CNRM-CM5 simulations as inputs), compared with b the California 
Geological Survey (CGS) deep-seated landslide susceptibility map. The CGS map is modified from Wills et al. (2011) with permission from the 
California Geological Survey, where landslide susceptibility classes (0 to 10, low to high) are grouped as shown. c Histogram of historical land-
slides located in each classification region in the map (a)
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four selected models strike a balance between capturing inter-
model variability and modeling practicality.

Trend analyses of precipitation are commonly used in climate 
change studies (Mudelsee 2019). Here, we obtain daily rainfall trend 
maps shown in Figs. 3 and 4 to compare different climate models. 
The procedure for obtaining these daily rainfall trend maps is as 
follows. For any given grid cell, 30 days with the highest landslide 
susceptibility in any given year are determined. For these 30 days, 
the daily rainfall values are calculated and averaged. These values 
are plotted over the years from 1950 to 2100 and a regression line 
is fit to the data to obtain the trend for any given grid cell. Results 
are plotted for all grid cells to form the trend maps.

Figure 3 shows the daily precipitation trends over 1950–2100 
from the ten California GCMs, including the four GCMs selected 
by Pierce et al. (2018), as marked. There is significant inter-model 
variability, with CanESM2, CNRM-CM5, and CESM1-BGC show-
ing the largest increase in precipitation trend. Figure 4 shows the 

1950–2100 trend maps of daily rainfall and antecedent 30-day rain-
fall obtained from averaging the ten models chosen by DWR and 
the four down-selected models, along with their respective inter-
model variability map. For both indices, the average trend maps are 
not very sensitive to the number of climate models employed. In the 
RCP4.5 case, both the average and variability maps derived from the 
ten models are closely captured by the four models. In RCP8.5, there 
is a slightly larger average and variability in the ten-model case 
compared to the four-model case. Overall, these results corroborate 
the findings of Pierce et al. (2018) showing that the selected four 
climate models are sufficiently representative of climate variability 
in California. We adopt these four models to investigate the effects 
of climate change conditions on landslide susceptibility.

According to Pierce et al. (2018) and based on the results of ten 
models, the average annual temperature over California will increase 
through the century in both RCP scenarios, with a clear separation 
occurring around 2050. The precipitation projections show that, 

Fig. 3   Daily rainfall trend obtained from 10 climate models under RCP4.5 and RCP8.5 scenarios over 1950–2100. The models used in the land-
slide study are marked
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despite relatively small mean changes, there is a projected increase 
in year-to-year variability due to fewer rainy days but more intense 
wet days. A seasonal change in precipitation is also expected with 
increasingly wetter winters and drier springs. Through this century, 
the wettest day is projected to increase, with increases of 20 − 35% 
in the coastal ranges under RCP8.5 (Pierce et al. 2018). Other studies 

indicate that both the magnitude and frequency of extreme rainfall 
events will increase in response to climate change (Gründemann et al. 
2022; Prein et al. 2017). Overall, these seasonal changes, their varia-
tions across California, and the more frequent extreme precipitation 
events are expected to have important implications for susceptibility 
to landslides.

Fig. 4   Daily rainfall and antecedent 30-day rainfall trends obtained from the average of 4 and 10 climate models under RCP4.5 and RCP8.5 
scenarios over 1950–2100. Standard deviations across models in each case are also shown
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Results

Landslide susceptibility in a changing climate
After validating the performance of the model using historical data, 
we derive landslide susceptibility maps in response to projected 
climate. For this purpose, we take climate input features from the 
downscaled and bias-corrected daily precipitation and tempera-
ture data obtained from the selected climate models and the two 
RCP emission scenarios (see the “Climate projections” section), 

and use them to predict daily landslide probabilities for all loca-
tions across the state and calculate the susceptibility indices. Four 
climate models are used for this purpose: HadGEM2-ES (warm/
dry model), CanESM2 (average model), CNRM-CM5 (cool/wet 
model), and MIROC5 (most unlike the first three). To obtain sus-
ceptibility, for each grid cell, we select 30 days with the highest 
landslide probability in any given year and average the results over 
30-year time periods. We adopt a non-overlapping 30-year sliding 
window approach to capture slowly evolving changes in climate 

Fig. 5   Landslide susceptibility changes compared to 1950–1980 obtained from four climate models under RCP4.5, along with the daily rain-
fall trend maps for 1950–2100 under RCP4.5
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conditions (rather than changes induced by year-to-year internal 
climate variability), which is a standard method in climate research 
(e.g., Hulme et al. 1999). We have selected 5 non-overlapping slid-
ing time windows in this study: 1950–1980, 1980–2010, 2010–2040, 
2040–2070, and 2070–2100. We select the period of 1950–1980 as 
a reference to show evolving susceptibility changes. This choice 
of baseline period effectively optimizes the use of the downscaled 
datasets starting from 1950. Although we did not specifically test the 

sensitivity of our susceptibility results to variations in the baseline 
period, Pierce et al. (2018) investigated the sensitivity of tempera-
ture and precipitation changes to the baseline period (1976–2005 
versus 1961–1990) and found about +0.3 °C difference in daily mini-
mum and maximum temperatures (i.e., aligning reasonably with 
climate change expectation), and very small difference in precipi-
tation. Based on these results, we believe that the baseline selec-
tion would not fundamentally alter our results or conclusions, nor 

Fig. 6   Landslide susceptibility changes relative to the 1950–1980 reference period obtained from four climate models under RCP8.5, along 
with the daily rainfall trend maps over the entire 1950–2100 period under RCP8.5
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impact the interpretation of the different 30-year sliding windows, 
analyzed side by side.

Figures 5 and 6 show evolving susceptibility changes at 1 km 
resolution under RCP4.5 and RCP8.5, respectively, for differ-
ent time frames relative to the reference period of 1950–1980. 
The continuous susceptibility values produced by the model, 
ranging between 0 and 1, are used to compute susceptibility 
changes from the baseline period. Increasing values indicate 
increasing susceptibility. Results are shown for the individual 
climate models and for the multi-model average (MMA), along 
with trend maps of extreme daily rainfall (the most important 
input feature) calculated between 1950 and 2100 for reference. 
Each individual model produces similar spatial landslide sus-
ceptibility and rainfall trend patterns under RCP4.5 and RCP8.5 
emission scenarios, but with higher intensity in the RCP8.5 case. 
The maps show an increase in landslide susceptibility using the 

CNRM-CM5 and CanESM2 models, particularly in the Sierra 
Nevada, North Coast, and Central Coast regions. Landslide sus-
ceptibility estimates using the HadGEM2-ES and the MIROC5 
models show a positive trend in some regions, and a negative 
trend in other areas. Overall, susceptibility trends are strongly 
linked to the precipitation trends seen in each GCM, as directly 
observed from Figs. 5 and 6.

Figure 7 shows the same results, but employing the discrete 
classification system with five susceptibility categories. These 
categorical MMA susceptibility maps show very high and high 
susceptibility in the Sierra Nevada and the coastal ranges. To 
better identify the areas subject to a change in susceptibility cat-
egory as a result of climate change, we select the susceptibility 
map corresponding the time period of 1950–1980 as a baseline. 
Subsequently, we obtain the category difference maps by sub-
tracting the baseline map from maps corresponding to later time 

Fig. 7   Categorized landslide susceptibility maps over 30-year time periods and changes in landslide susceptibility categories compared 
to the 1950–1980 reference period obtained from the average of four climate models under RCP4.5 and RCP8.5
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periods (Fig. 7). Figures 8 and 9 show the mapped changes in 
susceptibility categories for each of the four individual climate 
models. The category difference maps in Figs. 7, 8, and 9 provide 
a visual representation of areas in which landslide susceptibil-
ity will increase ( +1 ) or decrease ( −1 ) by one category. Areas in 
which no change in the susceptibility category is observed are 
shown as 0. The difference MMA maps in Fig. 7 indicate that the 
susceptibility of a significant portion of the state is increasing by 
one level through the end of this century, according to the average 
of climate models. Difference maps of the individual models in 
Figs. 8 and 9 show that some models (MIROC5 and HadGEM2-
ES) predict one level of reduction in the landslide susceptibility 
level in the southern half of California, while other parts show 

one level of increase. Using CNRM-CM5 and CanESM2 models, 
predicted changes primarily indicate one level of increase in sus-
ceptibility category rather than decrease.

Figures 5 and 6 indicate that the susceptibility to landslides 
can increase by approximately 15% and 20% in some regions, as 
simulated by the CNRM-CM5 model under the RCP4.5 and RCP8.5 
emission scenarios, respectively. In addition, the increase in suscep-
tibility becomes more pronounced in the mid-century (2040–2070) 
and in the late century (2070–2100) in response to the increasing 
forcing. Driven by its simulated drying climate conditions, the 
results obtained from the HadGEM2-ES (warm-dry) model show 
a smaller increase in landslide susceptibility compared to CNRM-
CM5 (cool-wet) model or the CanESM2 (average) model. Under the 

Fig. 8   Changes in landslide susceptibility categories compared to the reference time period of 1950–1980 obtained from 4 climate models 
under RCP4.5
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RCP8.5 scenario, landslide susceptibility simulated by HadGEM2-ES 
increases up to 10% (Fig. 6, time period 2070–2100), but this occurs 
in a much smaller portion of the state compared to CNRM-CM5, 
while landslide susceptibility decreases over a significant portion 
of the state.

Under the RCP8.5 scenario, the variability across the four 
models is large. As observed in Figs. 8 and 9, CNRM-CM5 and 
CanESM2 models both indicate that a large portion of California 
will increase one category in susceptibility (e.g., from moderate 
to high and from high to very high). The HadGEM2-ES model 
also indicates an increase in susceptibility category in 2070–2100, 
but only after a period of decrease in landslide susceptibility 
(2040–2070). In contrast, MIROC5 indicates a slow but steady 

increase in susceptibility over the northern part of the state but 
a steady decrease in its southern part. Most of these results are 
directly driven by the projected changes in extreme daily rain-
fall and antecedent rainfall, themselves subject to a large vari-
ability across decades and across models. These interdecadal 
fluctuations could be a simple manifestation of internal climate 
variability, or result from model uncertainties in projecting 
rainfall changes in response to human activities. In analyzing 
the sign agreement of the changes in mean precipitation aver-
aged over the winter season, Neelin et al. (2013) showed that 90% 
of all CMIP5 models display an increase in precipitation north 
of approximately 40◦ N, and 80% agree on the reduction of the 
precipitation farther southward, over much of the subtropical 

Fig. 9   Changes in landslide susceptibility categories compared to the reference time period of 1950–1980 obtained from 4 climate models 
under RCP8.5
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regions, with some uncertainties on the location of the boundary 
between two features.

Despite a visible and significant inter-decadal and inter-model 
variability, the MMA results depict an underlying forced compo-
nent indicating a slowly evolving but clear increase in landslide 
susceptibility, especially in California’s northern parts and in the 
slopes of the Sierra Nevada. Results of Figs. 7, 8, and 9 also highlight 
that changes in landslide susceptibility vary from one location to 
another, and it is not advisable to average changes across the entire 
state.

Impact on roadways

We investigate the vulnerability of California’s roadway system 
by overlaying the highway network on landslide susceptibility 
maps obtained from our model for all time periods. We use the 
2019 roadway dataset from the U.S. Census Bureau, Department of 
Commerce (2019), which includes primary and secondary roads. 
To obtain roadway susceptibility maps, the roadway network is 
overlaid on the susceptibility maps, and each roadway segment is 
labeled according to the susceptibility of the grid cell in which it is 
located. For example, Fig. 10(left) shows this process for the MMA 
under the RCP8.5 emission scenario in 2070–2100 time period. We 
use the landslide susceptibility maps developed under different 
climate scenarios to identify California’s roadways located in the 
regions with increased and/or significant landslide potential. These 
maps are compared with the current susceptibility maps to provide 
crucial information about potential changes in vulnerability.

Figure 10 shows the vulnerability of the roadway system based 
on the five-category classification, using the MMA and the RCP8.5 
scenario during the 2070–2100 period. Roadway segments with 
vulnerability of very high are identified, including regions around 
the northern coast ranges, San Francisco, Los Angeles, San Diego, 
and the east side of the Central Valley. We also study the change in 

roadway mileage and state area in each susceptibility category. For 
Department of Transportation District 2, Fig. 10(right) shows an 
increasing trend for the roadways with high and very high suscep-
tibility in 2070–2100 under MMA RCP8.5. Figure S6 shows that the 
portion of very high and high susceptibility areas and roadways 
generally increase with time according to CNRM-CM5, CanESM2, 
and the MMA, while HadGEM2-ES and MIROC5 show greater tem-
poral fluctuations.

Discussion
Complex outcomes of global climate change have affected precipi-
tation patterns and have led to increased rainfall intensity and wild-
fires in various areas, which can lead to increased risk of landslides. 
To date, a significant gap exists in our quantitative understanding of 
the connections between evolving climate and landslide suscepti-
bility. To address this gap, we have developed a susceptibility assess-
ment framework and applied it to estimate the future vulnerability 
of California districts and transportation infrastructure under dif-
ferent climate scenarios, with the following key conclusions.

The ensemble of models indicates an increase in landslide sus-
ceptibility through the 2100 time frame, in regions with a histori-
cal susceptibility classified as moderate to very high. The results, 
however, show that the conclusions regarding the changes in land-
slide susceptibility and roadway segments with high and very 
high vulnerability are sensitive to the choice of the climate model 
and emission scenario. A range of emissions scenarios therefore 
needs to be considered. The CNRM-CM5 (cool/wet) climate model 
shows a continuing increase in susceptibility through 2100, while 
the HadGEM2-ES (warm/dry) model shows a decreasing trend in 
susceptibility in 2040–2070 time period followed by a subsequent 
increase in 2070–2100 (Fig. 6). This result is expected because the 
cool-wet model generally predicts larger precipitations compared 
to the warm-dry model (Fig. 3). Although the spatio-temporal var-
iations in landslide susceptibility are sensitive to climate model 

Fig. 10   Left: Landslide susceptibility category maps of California roadways corresponding to the average of all four climate models under 
RCP8.5 in 2070–2100. The inset shows the region corresponding to District 2. Right: Time evolution of percentage roadways of California 
District 2 corresponding to susceptibility categories of very low to moderate, high, and very high obtained from four climate models under 
RCP4.5 and RCP8.5
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uncertainties in predicting extreme rainfall, the direst impacts are 
largely circumvented in lower emission scenarios.

The results of this study indicate an increase of up to approxi-
mately 10% in state-wide landslide susceptibility (according to 
the CNRM-CM5 and CanESM2 models) by 2070 under the RCP4.5 
mild emission scenario (Fig. 5), and by 2040 under the RCP8.5 
high emission scenario (Fig. 6). Using the HadGEM2-ES model, no 
increase in the state-wide percentage of area and roadways with 
very high susceptibility is projected. However, there are various 
locations with changes of ±15% in susceptibility by 2100 under 
both emission scenarios. These observations highlight the impor-
tance of considering geospatial variations in landslide suscepti-
bility in addition to the total changes in the state, as large-scale 
spatial averaging may mask localized effects.

Roadway segments with very high vulnerability increase with 
time. The results obtained for time evolution of percentage area and 
lengths of roadway segments with the vulnerability of very high 

within California show variations from district to district, with an 
overall increase in vulnerability expected in some districts (e.g., 
District 2, see Fig. 11).

The impact of climate change on landslides has not been 
addressed in previous California’s Climate Change Assessments. 
The results of this study can inform ongoing climate change impact 
assessment efforts, e.g., California’s Fifth Climate Change Assess-
ment initiative which investigates the climate-related vulnerability 
in California. Moreover, this study demonstrates a methodology 
which can be beneficial for prioritizing and guiding investments 
to mitigate the effects of climate change on the vulnerability of 
roadways and transportation system.

Limitations and future work
The focus of this work is landslide events which are triggered by 
rainfall. Therefore, landslide events with unknown triggering mech-
anisms or those triggered by other phenomena (e.g., earthquakes, 

Fig. 11   Time evolution of percentage area and roadways of California District 2 corresponding to each susceptibility categories of very low to 
moderate, high, and very high obtained from 4 climate models under RCP4.5 and RCP8.5
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volcano, and construction) were removed from the landslide data-
set. Nevertheless, a similar technique can be applied to other types 
of landslides. In addition, due to lack of reliable downscaled climate 
projection data on snow mass and snowmelt, landslides triggered 
by snowmelt were also excluded from the dataset. Investigation 
of more complex triggering mechanisms (such as snowmelt) on 
landslide susceptibility is left for future work. Prioritizing research 
on the development of downscaled and bias-corrected climate pro-
jection data for snow mass and snowmelt would enhance our abil-
ity to assess landslide susceptibility triggered by snowmelt events. 
Moreover, the present work focuses on landslide types including 
debris flow and deep-seated landslides. Other landslide types (e.g., 
rockfall, topple) or unknown types were removed from the dataset 
to improve model robustness.

As discussed in the “Landslide catalogs” section, in general, 
scarcity of publicly available landslide data, uncertainty in loca-
tions, time and triggering mechanisms of landslide events, and 
bias in the datasets are perennial issues in landslide susceptibility 
assessment efforts. Despite the inherent biases and uncertainties 
reported in NASA GLC dataset (Kirschbaum and Stanley 2018), 
this dataset has been adopted in this study since it is a large, 
publicly available dataset which allows us to incorporate diverse 
global climate conditions into the modeling process. Consider-
ing the critical role of landslide data on model quality, improve-
ment of landslide data quality is an important avenue for future 
work (Mirus et al. 2020).

We also note the importance of variability in climate model pre-
dictions. The four climate models used in this work were selected 
by Pierce et al. (2018) to strike a balance between capturing similar 
inter-model variability seen in larger ensembles and computational 
costs. Nevertheless, using a larger ensemble of climate models in 
future work would better inform the forced and unforced compo-
nents governing the future changes in landslides, and would help 
to more accurately assess the role of climate model uncertainty on 
landslide susceptibility.

The pixel resolution of 1 km was selected in this work due 
to the large study area and limited resolution of the precipita-
tion datasets. In high risk regions, more detailed site charac-
terization, risk assessment, and resilience planning is required. 
An example includes identifying regions/roadways of high/
increased susceptibility for mapping at a higher resolution, e.g., 
at the slope scale.

This work provides a novel data-driven method for quantitative 
assessment of the impacts of climate change on landslide suscepti-
bility through this century, and identifying regions and roadways 
with high and/or increased susceptibility. Despite the aforemen-
tioned limitations, the use of machine learning and projections 
from global climate models shows promising results for landslide 
susceptibility assessment. The results of this work can provide a 
guide to prioritize more detailed risk mitigation studies and infra-
structure investment decisions.
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