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ABSTRACT
The evolution of the atomic structures of the combinatorial library of Sm-substituted thin film BiFeO3 along the phase transition
boundary from the ferroelectric rhombohedral phase to the non-ferroelectric orthorhombic phase is explored using scanning trans-
mission electron microscopy. Localized properties, including polarization, lattice parameter, and chemical composition, are parame-
terized from atomic-scale imaging, and their causal relationships are reconstructed using a linear non-Gaussian acyclic model. This
approach is further extended to explore the spatial variability of the causal coupling using the sliding window transform method,
which revealed that new causal relationships emerged at both the expected locations, such as domain walls and interfaces, and at addi-
tional regions forming clusters in the vicinity of the walls or spatially distributed features. While the exact physical origins of these
relationships are unclear, they likely represent nanophase-separated regions in the morphotropic phase boundaries. Overall, we posit
that an in-depth understanding of complex disordered materials away from thermodynamic equilibrium necessitates understanding
not only the generative processes that can lead to observed microscopic states but also the causal links between multiple interacting
subsystems.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0284465

Foundational advances in condensed matter physics and mate-
rials science are inseparably linked with developments in character-
ization methods that provide progressively more detailed informa-
tion on the structure and functionality of matter. The introduction
of X-ray scattering methods by Bragg over a century ago enabled
the first determinations of the atomic structure of solids and stim-
ulated the emergence of a physical formalism based on reciprocal
space descriptions, including zone theory, quasiparticles, and order
parameter-based theories. In this case, observables such as struc-
ture factors or inelastic scattering can be directly matched to the
theoretical descriptors. Comparatively, details on how these struc-
tures emerge were of lesser interest, with the connections established

via average defect concentrations and the potential presence and
dynamics of extended defects.

Not surprisingly, this approach was limited for materials
that lacked long-range translational symmetry, including structural,
dipole, and spin glasses.1,2 For these systems, kinetic limitations
during the formation process led to the formation of high defect den-
sities and frustrated bond networks. Interestingly, systems lacking
long-range order also emerge as a result of geometric frustration and
symmetry mismatch between interacting subsystems and, in princi-
ple, correspond to (one of the) highly degenerate potential energy
minima separated by high activation barriers. These materials have
rapidly become one of the central topics of condensed matter physics
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due to both fundamental physical interest and the unique functional
properties they exhibit.3–5 However, studying these materials via
scattering methods has proven to be highly non-trivial and remains
an active area of research.6–8

The emergence of atomically resolved scanning probe micro-
scopy (SPM) over the last two decades of the twentieth century9–11

and especially the rapid progress in aberration-corrected (scanning)
transmission electron microscopy (STEM)12–14 and atom probe
tomography (APT) during the last decade have made the observa-
tion of the atomic structures and compositions of 2D and small-
volume “bulk” materials routine. Consequently, material structures
and chemistries are becoming accessible for examination at the indi-
vidual atom level (APT, tomographic reconstructions in STEM). In
other cases, information on the atomic column positions and com-
positions averaged across the sample thickness is available. However,
advances in visualizing the atomic structures necessitate equivalent
progress in the development of a corresponding descriptive language
that allows both parsimonious descriptions of observed structures
(i.e., local equivalent of a primitive cell) and can be used to build
physical models.

In many cases, descriptions of atomic-level structures have
been accomplished using macroscopic descriptors such as Fourier
transforms, with the amplitude interpreted similarly to scattering
studies and phases used as additional information, such as for geo-
metric phase analysis in (S)TEM.15–24 In several cases, this approach
was adapted to the sliding window transform25–28 to explore vari-
ability within an imaged region. Alternatively, identification of
atomic-level features allows for strategies based on graph theory,
molecular fragments, or other descriptors.29,30 The atomic and
continuous descriptors can be further combined as demonstrated
in Ref. 31. Here, the use of dimensionality reduction methods that
allow for the incorporation of invariance enables parsimonious
descriptions. However, these models invariably build a correlative
model of the solid structure, in which the number of required
descriptors can still be exceedingly large. For example, describing
point defects in solids or potential atomic configurations in solid
solutions far from a phase transition is relatively straightforward,
whereas extended defects or materials in the vicinity of a phase tran-
sition require a significantly larger and potentially divergent number
of descriptors.

The alternative approach for descriptions of solids can be based
on generative models. For example, the description of a (poten-
tially structurally complex) microstructure belonging to the Ising
universality class requires only the knowledge of the correspond-
ing exchange integrals. This approach directly underpins multiple
areas of theoretical condensed matter and statistical physics, where
the lattice models or force fields form the basis for the description.32

Interestingly, while the prediction of the structure and functional-
ity from theoretical models is by now extremely well developed, the
inverse problem of reconstruction of the model parameters from
experimental observations is only at the beginning, with only a few
recent examples of generative model reconstructions.33,34

However, the discovery of a generative model is not always
sufficient to fully understand the material’s physics. For example,
in morphotropic ferroelectrics, the dopants can pin polarization;
however, polarization instabilities can, in turn, drive cation redis-
tribution. Similarly, can we establish whether the average electron
concentration or local chemistry drives distortion patterns in doped

chalcogenides? Such questions can be answered by performing a
macroscopic experiment. For example, the electron concentration
effect and chemical environment can be separated by electrostatic
gating in field-effect devices. Similarly, ferroelectric instability can
be tuned by pressure independent of composition. However, in
many cases, direct experiments are expensive or impossible or are
associated with additional confounding effects. For example, elec-
trostatic gating to change the electron concentration often couples
to chemical changes in a material. Hence, the question is whether
the local observations of multiple spatially resolved degrees of free-
dom in STEM can be used to analyze the causal mechanisms that are
operational in real materials.

Here, we explore causal interactions in cation-substituted mul-
tiferroic materials across the ferroelectric–non-ferroelectric phase
transition boundary from atomically resolved STEM measurements
on the combinatorial library of Sm-doped BiFeO3. A linear non-
Gaussian acyclic model (LiNGAM)35 is used to reconstruct the
causal chain and estimate the linear connections between the
observed variables. This approach is further adapted to explore
the spatial variability and concentration dependence of these
interactions.

To illustrate the concepts involved in causal analysis, Fig. 1
shows the simplified cause-and-effect chain between three variables,
z0, z1, and z2. As an example, z0 can be the partial pressure of a gas,
z1 is the concentration of oxygen vacancies, and z2 is the conduc-
tivity of the material; however, similar examples can be chosen from
any physical subfield. We assume that the relationship between these
parameters is given by

z1 = 3z0 + ϵ1, (1a)

z2 = −6z1 + ϵ2, (1b)

where ϵ1 and ϵ2 are random noise with a uniform distribution on
(−1, 1). We further assume that a set of observables (z0, z1, z2) are
available for observation. When the causal physics of the process
are known, the analysis of the data is straightforward. Regression
of z1 on z0, z1 = z1(z0), yields the dependence of the vacancy con-
centration on gas pressure, whereas regression z2(z1) yields the
dependence of conductivity on vacancy concentration, and z2(z0)
yields the dependence of conductivity on gas pressure. Note that
implicit in this analysis is that there are no other active mechanisms;
for example, the temperature (which can affect both conductivity
and vacancy concentration) is constant, there is no field-effect gating
of the materials, and there are no changes in doping level.

However, the situation is different when the physics are not
known. Even if it is known that the relationships between the observ-
ables are linear, it is insufficient to establish the correct form of
the functional dependence between them. In other words, any of
the variables z0, z1, z2 can be regressed on the remaining vari-
ables, as illustrated in Figs. 1(a)–1(c). For regression z0 = z0(z1, z2),
z0 depends on z1 according to the inverted Eq. (1a) and does not
depend on z2. However, while numerically correct, this relationship
does not represent the physics of the process (i.e., the partial pressure
of the gas does not depend on vacancy concentration). For regres-
sion z1 = z1(z0, z2), the regression coefficients are close to zero and
do not represent the physical relationship either. Only in the case of
the regression z2 = z2(z0, z1) are the regression coefficients mean-
ingful and close to the ground truth Eqs. (1a) and (1b), as shown in
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FIG. 1. Regression vs causal inference
in a noisy toy model from a system of
linear Eqs. (1a) and (1b). Shown are
the causal chain and regression coeffi-
cients for regression of (a) z0(z1, z2), (b)
z1(z0, z2), and (c) z2(z0, z1). In compar-
ison, LiNGAM reconstruction using (d)
a direct fit or (e) bootstrapping allows
reconstruction of the causal chain from
observational data (z0, z1, z2).

Fig. 1(c). However, even in this case, based on the regression anal-
ysis only, we cannot answer questions such as “To what degree will
the change of gas pressure affect the conductivity?” More fundamen-
tally, from the data only, it is not clear which of the cases (a)–(c)
should be chosen.

This behavior is well understood in statistics and illustrates
the pitfalls of statistical analysis of data without a physical model,
even for relatively trivial cases.36,37 This situation can be much
more complicated for a larger number of variables, in cases where
the relationships between the variables are more complex, that
is, the causal graph has a more complex structure, potentially
including loops, non-linear relationships between variables, and
external non-observed variables (confounders) that affect several of
the observed variables. These considerations have stimulated the
development of statistical methods for the analysis of causal struc-
ture in observational data, including the structure of the causal
graph, the directionality of the causal effects, the presence of
confounders, and the linear and non-linear relationships between
the variables. A recent overview of these methods is given by
Mooji et al.38

Here, we adopt the linear non-Gaussian acyclic model
(LiNGAM) proposed by Shimizu for the analysis of time series
data,35,39–43 building upon the independent component analysis
(ICA) by Oja.44,45 LiNGAM specifically assumes that the relation-
ships between the observed variables are linear, there are no external

confounders, and the external influences are non-Gaussian, that is,
the observations can be represented as

z = Az + ϵ, (2)

where z is the vector of observations, A is the adjacency matrix
establishing the relationships between them, and ϵ is the noise vec-
tor. Under the assumption of the directed causal graph, the matrix,
A, has a lower diagonal shape. Correspondingly, LiNGAM seeks to
find the linear decomposition of data via the ICA approach and
then seeks to find the optimal representation of the link matrix via
permutations.

For the toy model Eqs. 1(a) and 1(b), LiNGAM allows
for the reconstruction of the causal graph between the vari-
ables. The reconstruction is shown in Figs. 1(d) and 1(e) for
the bootstrapped and direct solution, respectively. Note that the
algorithm established the causal graph and linear relationship
coefficients between the variables based on observational data
only.

We further explore the causal relationships in the
(SmxBi1−x)FeO3 (Sm-BFO) epitaxial thin-film system grown
via a combinatorial spread method via LiNGAM, extending the
previously reported pairwise causal analysis approach.46 The growth
details, preparation of the samples for STEM imaging, and initial
data analysis and quantification are described in our previous

FIG. 2. STEM images and a partial set of
order parameter maps for three Sm-BFO
compositions explored: (a) x = 0, (b) x
= 0.07, and (c) x = 0.2, corresponding to
rhombohedral ferroelectric BiFeO3, com-
position close to the morphotropic phase
boundary, and orthorhombic antiferro-
electric composition, respectively.
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publications.46–48 The full dataset is available as a part of the
provided Jupyter notebook.

Here, we analyze the dependence of localized nominal physi-
cal properties such as polarization, lattice parameter, and chemical
composition from the parameterization of atomic-scale HAADF-
STEM images. For basic descriptors, we choose parameters from the
5-cation local neighborhood that are sensitive to cation composi-
tion: the total intensity of A-cation columns (Bi, Sm), I14; intensity
of B-site columns (Fe), I5; to the structure: lattice parameters, a
and b; unit-cell angle, α; and projected unit-cell volume, Vol; and
to electrical polarization, components Px and Py, derived from non-
centrosymmetry between the A and B sublattices. This vector (I14,
I5, a, b, α, Vol, Px, Py) is defined for each unit cell within the field
of view. The required conditions and preprocessing of the input
STEM data used to ensure reliable parameterization are detailed in
the supplementary material.

Shown in Fig. 2 are STEM images and a partial set of the order
parameter maps for three compositions of the Sm-BFO chosen in
Fig. 2(a), the ferroelectric region; Fig. 2(b), at the morphotropic
phase boundary; and in Fig. 2(c), the orthorhombic phase. We
note that the STEM images contain clearly visible spatial features,
including ferroelectric and substrate regions and domain walls. In
addition, more subtle variations in contrast due to second-phase
inclusions, nanodomains, and surface preparation damage can be
detected. Here, we aim to explore the causal relationship between
the observables and further extend it for the analysis of spatially
resolved features using the LiNGAM methods and codes developed
by Shimizu.49

The LiNGAM method allows for the incorporation of prior
knowledge in the form of defined causal relationships. Here, we
postulate that the column intensities I14 and I5 are indepen-
dent variables, representing the combined effect of the sample

FIG. 3. Causal graphs and adjacency matrices for (a) and (b) ferroelectric, x = 0; (c) and (d) morphotropic, x = 0.07; and (e) and (f) orthorhombic, x = 0.2 compositions.
Note: color encodes effect size (∣βi → j∣) of each directed link (dark blue = 0, brighter = stronger).
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thickness and the assumption of a frozen cation composition. With
this approximation, the causal graph depicting the relationship
between the variables for three representative compositions is shown
in Fig. 3.

From the data shown in Fig. 3, the I14 variable does not causally
affect any other variables. For the ferroelectric composition, x = 0,
the control variables are Py and b, which control Px and α, respec-
tively, which in turn control the projected unit-cell volume, Vol.
The graphs for the non-ferroelectric compositions are almost iden-
tical, with the lattice parameters and polarization components being
independent variables, and a and Vol being controlled. For the com-
positions at the morphotropic boundary and in the orthorhombic
region, the causal graphs are almost identical, with the polarization
and unit-cell parameters affected by the chemical variable and, in
turn, controlling the unit-cell Vol and a. The corresponding linear
regression coefficients in the form of adjacency matrices are shown
in Figs. 3(b), 3(d), and 3(f). For comparison, all maps are shown
at the same scale. Note the strong similarity between the elements,
with the dominant coupling associated with the projected unit-cell
volume, Vol.

We further extend this approach to explore the spatial vari-
ability in the thin films. To implement this approach, we extend
the sliding window approach previously used in conjunction with
Fourier or Radon transform/linear unmixing transformations.25–27

Here, the image plane is subdivided into square tiles, and the
LiNGAM analysis is performed within each tile. For convenience,

we chose the stride of the tiles to be half of the tile size so that adja-
cent regions overlapped by 50%. Similar to the analysis of the whole
image, the input is the (I14, I5, a, b, α, Vol, Px, Py) vector within the
tile, and the outputs are the 8 × 8 adjacency matrices of the causal
graph and the probability matrix.

The sliding analysis of the Sm-BFO composition is shown in
Fig. 4. A simple examination of the images corresponding to the
individual elements of the adjacency matrix illustrates that slightly
over 50% are zero, corresponding to the absence of a local causal
link between them. For several of the elements, including Vol ← a,
Vol ← b, and α← b, the maps are almost uniform, without clearly
visible structural elements. However, several of the maps exhibit vis-
ible structural features. For example, Vol ← I5 and Py ← I5 maps
clearly illustrate a feature at the interface between the film and the
substrate. At the same time, a ← b maps clearly illustrate a feature
associated with the domain wall. Note that these links are bidirec-
tional. We interpret this behavior as an indicator of a non-causal link
between these parameters. The most remarkable contrast is observed
in the Px ← Py and Py ← Px images, which illustrate the presence
of a rich spatial structure. We attribute this behavior to the pres-
ence of disorder in the system that selectively affects the polarization
components.

To gain further insight into the observed behaviors, we explore
the spatial variability of the adjacency matrix using dimension-
ality reduction. Previously, these methods were extensively used
for the analysis of hyperspectral imaging data in electron and

FIG. 4. Sliding window LiNGAM trans-
forms on the SmxBi1−xFeO3 dataset for
x = 0. Note that the use of a bootstrap-
ping method for several variables leads
to both x → y and x ← y relationships:
for example, for lattice parameters (a, b)
and polarization components (Px , Py ).
We pose that this behavior indicates that
variables are linked via a physical link but
this link is non-causal (or cyclic).
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scanning probe microscopies50–55 and were later extended to slid-
ing transform approaches. In principle, this can be implemented
using linear methods such as principal component analysis (PCA),
non-negative matrix factorization (NMF), or non-linear meth-
ods including Gaussian processing,56,57 fully connected and vari-
ational autoencoders, or graph networks. Here, we choose PCA
as the simplest method to perform optimal decomposition in the

information theory sense—that is, with the components ranked in
order of variability.

The PCA analysis for pure BiFeO3 is shown in Fig. 5. Here,
it is immediately obvious that the loading map corresponding to
the first component exhibits variability at the interface between the
film and the substrate, which is generally absent or much weaker
in other loading maps. The corresponding component matrix is

FIG. 5. PCA analysis of LiNGAM adjacency matrices for BiFeO3. Shown are the first eight components and corresponding loading maps. The first component contains a
clearly visible feature localized at the film–substrate interface, whereas the fourth, fifth, and seventh components clearly delineate the domain wall. Note: color encodes
effect size (∣βi → j∣) of each directed link (brighter = stronger).
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dominated by coupling between I5 and the polarization and pro-
jected volume, as well as between the volume and in-plane lattice
parameter, a. The fourth, fifth, and seventh components exhibit vis-
ible features at the ferroelectric domain wall. The corresponding
components are dominated by the couplings I5–α, α–b, and I14–I5,
respectively.

The sliding LiNGAM transform for the 20%-doped Sm-BFO
(x = 0.2) is shown in Fig. 6. Similar to other compositions, here,
the majority of the maps are either zero, indicating the absence of
a causal link between the descriptors, or are spatially uniform. How-
ever, several of the elements exhibit non-trivial dynamics. Similar to
other compositions, the Vol ← I5 element visualizes a clearly vis-
ible feature at the domain wall. The α← b map clearly visualizes
the orthorhombic domains. Interestingly, the α← Px and α← Py
maps illustrate spatial features associated with the wall between
orthorhombic domains. Examination of the sliding transform for
other explored compositions further reveals the presence of spatially
ordered structures in some of the maps, suggesting the potential
of this method to reveal internal structural relationships within the
material.

Finally, we attempted to analyze the concentration dependence
of the adjacency matrix, that is, the coupling strength between
the observables. In this case, the analysis was performed over 13
independent STEM images corresponding to four different concen-
trations acquired over multiple days. In general, given the strong
spatial variability within the dataset, we do not expect the statis-
tics to be sufficient to discern the finer details of the concentration

dependence; however, we expect the overall trends to be detectable.
Examination of all 64 elements of the adjacency matrix demon-
strated that most of these elements are either zero or constant. This
suggests the universality of the corresponding couplings across the
composition series. Non-trivial behaviors were observed for the Vol
← a, and Px ← Py couplings, as shown in Fig. 7. For Vol ← a, we
observe a minimum at the morphotropic phase boundary (MPB)
composition. At the same time, Px ← Py shows an effective change
of sign from positive to negative at the MPB.

To explain these observations, we explore the relation-
ships between the observable descriptors via the thermodynamic
Landau–Ginzburg–Devonshire (LGD) theory. In LGD, the state
of the system can be found via minimization of the free energy
functional for defined global constraints. Here, we derive the
local representation of LGD equations, linearize them around the
ground states, and represent the relationship in the form of Eq. (1)
with the observables in the STEM experiment being the state
vector.

In the most general case, the description of rare-earth Sm-
doped BiFeO3 requires anti-ferrodistortive (AFD), ferroelectric
(FE), and antiferroelectric (AFE) long-range order.58–62 This neces-
sitates two vectorial long-range order parameters: polarization com-
ponents and oxygen octahedral tilts. The bulk part of the LGD
thermodynamic potential consists of the following contributions:

G = ∫ d3x(ΔGAFD + ΔGBQC + ΔGFE + ΔGEST + ΔGEL). (3a)

FIG. 6. Sliding window LiNGAM trans-
form on the Sm-BFO dataset for x = 0.2
(orthorhombic phase).
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FIG. 7. Concentration dependence of (a) Vol← a and (b) Px ← Py couplings.

The compact form of the AFD contribution is given in Ref. 63.
Operating at room temperature, we will assume that the main impact
of the oxygen octahedral tilt is the renormalization of other coeffi-
cients in Eq. (1) due to the AFD–FE biquadratic coupling, ΔGBQC.
Since the oxygen octahedral tilts are hardly visible by the current
realization of STEM, this circumstance allows us to factor out the
non-observable variables from further consideration.

The compact forms of the FE and AFE contributions are

ΔGFE = ai(P2
i + A2

i ) + aij(P2
i P2

j + A2
i A2

j )
+ aijk(P2

i P2
j P2

k + A2
i A2

j A2
k) + γab

ij (PiPj − AiAj)
+ gaa

ijkl(∂Pi

∂xk

∂Pj

∂xl
+ ∂Ai

∂xk

∂Aj

∂xl
)

+ gab
ijkl(∂Pi

∂xk

∂Pj

∂xl
− ∂Ai

∂xk

∂Aj

∂xl
), (3b)

where the FE and AFE order parameters, Pi = 1
2(Pa

i + Pb
i ) and

Ai = 1
2(Pa

i − Pb
i ), respectively, are introduced. Pa

i and Pb
i are the

polarization components of two equivalent sublattices, “a” and “b,”
respectively.64 Numerical values of the phenomenological coeffi-
cients ai, aij, aijk, and the gradient coefficients, gij, included in
Eq. (3b) are mostly known for pure BiFeO3 and can be found in
supplementary material, Table SI.

The electrostriction contribution is

ΔGEST = −Qaa
ijklσij(PkPl + AkAl) −Qab

ijklσij(PkPl − AkAl), (3c)

where σij are the components of the elastic stress tensor. Electrostric-
tion coefficients are Qaa

ijkl and Qab
ijkl. The elastic and flexoelectric

contributions are

ΔGEL = −1
2

sijklσijσkl − 1
2

Fijkl(σij
∂Pk

∂xl
− Pk

∂σij

∂xl
) + VijσijNd. (3d)

Here, sijkl are the components of the elastic compliance tensor, and
Fijkl are the flexoelectric tensor components. The last term in Eq. (3d)
is the chemical expansion due to the appearance of elastic defects,
that is, R-impurity with concentration, Nd, characterized by the Veg-
ard strain tensor, V ij,65,66 the value of which depends on the impurity
and, as a rule, varies in the range (−5–+5) 10−29 m3. The full form
of expressions (3) depends on the concrete form of the parent phase
symmetry.

For a spatially uniform (i.e., domain-free) system, the equilib-
rium equations for the long-range order parameters can be found as
partial derivatives of Eq. (3a), ∂G

∂Pi
= 0 and ∂G

∂Ai
= 0. These equations

should be solved along with the equation of state for the elastic stress,
∂G
∂σij
= −uij , where uij is an elastic strain tensor.
For the general case of an inhomogeneous (e.g., domain-

structured and/or spatially modulated) system, one should solve the
coupled Euler–Lagrange equations of state, which are expressed via
the variational derivatives of the functional (3a):

δG
δPi
= −Ei,

δG
δAi
= 0. (4a)

The electric field, Ei, can be found from electrostatic equa-
tions with boundary conditions at the surfaces, interfaces, and/or
electrodes. Elastic fields, which are, in fact, the secondary order para-
meters, satisfy the equation of state and mechanical equilibrium
equations:

∂G
∂σij
= −uij ,

∂σij

∂xj
= 0. (4b)

The strains (or stresses) should be defined at the system bound-
aries. Coupled Eq. (4), which give us the relations between the
primary and secondary order parameters, are listed in their explicit
form in the supplementary material.
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To link the standard thermodynamic descriptors to the observ-
ables, we use the relationships between the in-plane lattice constants,
a, b, and the angle, α, between them:

a = a0(1 + u11), b = b0(1 + u22), cotan(α) = u12. (5)

Here, a0 and b0 are the bulk values of undoped BFO at a given tem-
perature. The projected volume of the 2D unit cell is V = ab∣sin (α)∣.
The linearized changes of the unit-cell projected volume can be
expressed via the 2D trace of the strain tensor:

V = ab∣sin (α)∣ ≈ a0b0(1 + u11 + u22). (6)

For high-resolution (HR)-STEM, the observable variables in
Eqs. (5) and (6) are the in-plane components of the FE order para-
meters, P .

1 and P .
2, lattice constants, a, b, cos (α), and changes of

the projected unit cell volume, which, in principle, allow us to
extract information about the joint action of the Vegard strain and
electrostriction coupling. However, other components of the order
parameters cannot be observed by HR-STEM imaging, which is
why we need to find the simple (often approximate) linear relations
between the observable and non-observable variables.

To do this, we linearized Eq. (4) in the vicinity of spontaneous
values, denoted by subscript “S,” which are

P .
i = P .

Si(x⃗) + δP .
i , A.

i = A.
Si(x⃗) + δA.

i, (7a)

u.
ij = uS

ij(x⃗) + δu.
ij , σ.

ij = σS
ij(x⃗) + δσ.

ij. (7b)

The magnitudes of the spontaneous values, PS or AS depend on
the average concentration of Sm dopant atoms, and the dependence
can be modeled for the simplest linear model67 as

PS = P0
√

1 − ϵ, AS = P0
√

1 + ϵ, (8)

where P0 is the spontaneous polarization of bulk pure BFO (at a
given temperature), and we introduced the dimensionless doping
factor ϵ:

ϵ(y) ≅ ϵ0(y − y0). (9)

Here, y is the average Sm concentration in the studied sample, y0 is a
characteristic concentration corresponding to the MPB, and the FE
and AFE phases have the same Curie temperatures. The coordinate
dependence of the spontaneous values, P .

Si(x⃗) and A.
Si(x⃗), is related

to mesoscale domain walls, while δP .
i(x⃗) and δA.

i(x⃗) are nanoscale
fluctuations. Here, x⃗ = {x1, x2} is the in-plane coordinate vector.

Linearized Eqs. (3) and (4) can be written in the form of a 3 × 3
block-matrix containing nine equations:

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

aP
ij − gP

ijkl
∂2

∂xk∂xl
0 0

0 aA
ij − gA

ijkl
∂2

∂xk∂xl
0

qP
inj + Finjl

∂

∂xl
qA

inj −1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜
⎝

δPj

δAj

δuin

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

δEi +QP
mjkiPSkδσmj

QA
mjkiASkδσmj

VinδNd − sinjmδσjm

⎞
⎟⎟
⎠

, (10a)

where the block-matrix elements are

aP
ij = 2(ai + 3ailP

2
Sl + 5ailmP2

SlP
2
Sm)δij + (γab

ij −QP
mljiσ

S
ml), (10b)

aA
ij = 2(ai + 3aijA2

Sj + 5aijkA2
SjA

2
Sk)δij − (γab

ij +QA
mljiσ

S
ml), (10c)

qP
inj = 2QP

inkjPSk, qA
inj = 2QA

inkjASk. (10d)

System (10) can be treated further analytically if we neglect the
gradient terms, although the assumption is not well grounded every-
where. However, it can be valid if the coordinate dependence can be
regarded as smooth and then ascribed to the domain wall profiles
of P .

Si(x⃗) and A.
Si(x⃗), while the fluctuations, δP .

i(x⃗) and δA.
i(x⃗), are

characterized by a short-range gradient with almost zero average. In
this case, the antipolar order parameter can be expressed via other
non-observable stress variations as δAn = ãA

niQ
A
mjkiASkδσmj , where

ãA
nia

A
ij = δnj . Next, we exclude the non-observable variables from the

left-hand side of Eq. (10a) by re-designation of the right-hand side:

e∗i = δEi +QP
mjkiPSkδσmj − aP

i3δP3, i = 1, 2, (11a)

s∗ij = VinδNd + (sinjm + qA
imjã

A
ni′Q

A
mjki′ASk)δσjm + qP

ij3δP3, i, j = 1, 2.
(11b)

The truncated matrix form is

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

aP
11 aP

12 0 0 0
aP

21 aP
22 0 0 0

−qP
111 −qP

112 1 0 0
−qP

121 −qP
122 0 1 0

−qP
221 −qP

222 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

δP1

δP2

δu11

δu12

δu22

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

e∗1
e∗2
s∗11

s∗12

s∗22

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

. (12)

Note that the in-plane strains in Eq. (12) are observable
variables, namely, δu11 = a

a0
− 1, δu12 = cos (α) ≈ π

2 − α, and δu22

= b
b0
− 1. Here, the projected volume, V ≈ ab, since cos (α) ≈ π

2 − α
is extremely small. Assuming zero spontaneous stresses and a m3m
parent symmetry, the elements of the block matrix (12) are

aP
11 = aP

22 ≈ 2a1[1 − ϵ(y)] + 6a1lP
2
Sl(x⃗) + γab

11, aP
12 = aP

21 = γab
12 = γab

21,
(13a)

qP
111 = 2QP

11PS1(x⃗), qP
112 = 2QP

12PS2(x⃗), qP
121 = 2QP

44PS2(x⃗),
(13b)

qP
122 = 2QP

44PS1(x⃗), qP
221 = 2QP

12PS1(x⃗), qP
222 = 2QP

11PS2(x⃗).
(13c)

From this analysis, only the polarization dependence is
expected to yield terms dependent on concentration, in agreement
with observational studies.

We further proceed to explore possible mechanisms of spatial
variability of observed behaviors. The coordinate dependence of the
spontaneous values, P .

Si(x⃗), related to a mesoscale domain wall in
the direction x, perpendicular to the wall plane, x = 0, can be fitted
by the following expression:

PS(x) ≅
√
− a1

a11

√
1 − ϵ(y) tanh( x

LP
C
). (14)
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Being repetitive, here, ϵ(y) ≅ ϵ0(y − y0), y is the average Sm
concentration in the studied sample, y0 is a characteristic concen-
tration corresponding to the MPB, and the FE and AFE phases have
the same Curie temperature. For a Sm-doped BFO, the value y0
varies in the range of 15%–25% and the constant ϵ0 must be fitted to

experimental data. Parameters used in the LGD calculations for
AFD-FE perovskite BFO are listed in Table SI; however, the AFE-FE
coupling constants, γab

ij , are unknown. The correlation lengths, LP
C, in

a rhombohedral ferroelectric are listed in Table SII in supplementary
material.

FIG. 8. Ratio of observable variables, δP2/δP1, dependence on distance, x/LP
C, from the 180○ domain wall calculated for different ratios of non-observable local fields,

e∗2 /e
∗

1 , and different parameters, ϵ(y) = 0, 0.5, 0.95, proportional to Sm concentration, y. (a)–(c) Linear plots. (d)–(f) Color maps. Red corresponds to maximal positive
values; violet corresponds to minimal negative values. Other parameters, aP

12 = aP
21 = −2a1.
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For the sake of simplicity, we assume that δσmj = 0 and δP3 = 0
when plotting Fig. 8. This immediately leads to e∗i = δEi, mean-
ing that these non-observable variables are the components of
local electric fields, and to s∗ij = VinδNd, meaning that these non-
observable variables are Vegard strains. If we also assume that

γab
11 = 0, then aP

11 = aP
22 = 2a1[1 − ϵ(y)](1 − 3tanh2( x

LP
C
)) and thus,

aP
11 = aP

22 = −4a1[1 − ϵ(y)] > 0 far from the domain wall, while
aP

11 = aP
22 = 2a1[1 − ϵ(y)] < 0 at the wall.

Figure 8 illustrates how the dimensionless ratio, δP2/δP1,
behaves under a change of the random field ratio, e∗2 /e∗1 , which
is independent of the other observable variables, δuij (if the above
assumptions are valid). From Eq. (12), we obtained the simple
expressions:

δP1 = aP
11e∗1 − aP

12e∗2
(aP

11)2 − (aP
12)2 ,

δP2 = aP
11e∗2 − aP

12e∗1
(aP

11)2 − (aP
12)2 ,

δP2

δP1
= aP

11(e∗2 /e∗1 ) − aP
12

aP
11 − aP

12(e∗2 /e∗1 )
.

(15)

From Eq. (15) and Fig. 8, we observe that the dependence of
δP2/δP1 on e∗2 /e∗1 reaches a maximum at the domain wall plane and
the height of the maximum gradually decreases with an increase in
ϵ(y). That said, the maximum at the wall is highest at the MPB,
ϵ(y) = 0. The sharpness of the maximum is virtually independent of
ϵ(y). The ratio δP2/δP1 becomes much more sensitive to the ratio,
e∗2 /e∗1 , as ϵ(y) increases. The limit, ϵ(y)→ 1, corresponds to the AFE
phase.

Note that the strains, δuij, are linearly dependent on the observ-
able variables, δPi, and seemingly independent of one another (while
can be dependent via δPi). Actually, from Eq. (12),

δu11 = qP
111δP1 + qP

112δP2 + s∗11,

δu12 = qP
121δP1 + qP

122δP2 + s∗12,

δu12 = qP
121δP1 + qP

122δP2 + s∗12.

(16a)

For the case PS1(x⃗) = PS(x⃗) and PS2(x⃗) = 0, corresponding to a
single 180○ domain wall in the x-direction, we obtain from Eq. (13)
that qP

111 = 2QP
11PS(x⃗), qP

112 = 0, qP
121 = 0, and qP

122 = 2QP
44PS(x⃗),

qP
221 = 2QP

12PS(x⃗), qP
222 = 0, and so in the case of in-plane lattice para-

meters, the angle between them and the projected volume are the
following:

FIG. 9. Ratio of observable variables (a)
δu11/δP1, (b) δu12/δP2, (c) δu22/δP1,
and (d) δV/δP1 in their dependence
on distance, x/LP

C, from the 180○

domain wall calculated for different para-
meters, ϵ(y) = 0, 0.5, 0.95, proportional
to Sm concentration, y. Other para-
meters aP

12 = aP
21 = −2a1, s∗i j = 0.
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a
a0
= 1 + 2QP

11PS(x⃗)δP1 + s∗11,
b
b0
= 1 + 2QP

12PS(x⃗)δP1 + s∗22, (16b)

π
2
− α = 2QP

44PS(x⃗)δP2 + s∗12,

V
a0b0

≈ 1 + 2(QP
11 +QP

12)PS(x⃗)δP1 + s∗11 + s∗22. (16c)

From the last expressions, a
a0
− 1 ∼ δP1 and b

b0
− 1 ∼ δP1, but

π
2 − α ∼ δP2. Figure 9 illustrates the ratio of the observable variables,
δu11/δP1, δu12/δP2, δu22/δP1, and δV/δP1 in their dependence
on the distance, x/LP

C, from the 180○ domain wall calculated for
the different parameters, ϵ(y) = 0, 0.5, 0.95, proportional to the Sm
concentration, y. We put aP

12 = aP
21 = −2a1 and s∗ij = 0.

To summarize, here we explore the causal linear coupling
between polarization, lattice parameter, and chemical composi-
tion from experimentally observed single unit-cell level behaviors
in Sm-doped BiFeO3. This analysis suggests that the causal links
between the observables are nearly universal for all Sm concentra-
tions/compositions. The variation of coupling strength between the
different materials is generally similar across the phase transition
boundary, with concentration-dependent behaviors observed for
polarization only. This is directly confirmed by the linearized model
based on the LGD theory for ferroelectrics. We further explored
the spatial variability of the causal coupling using the sliding win-
dow transform method. Interestingly, this approach revealed new
causal relationships emerging at both expected locations, such as
domain walls and interfaces, but also at regions in the vicinity of
the walls or spatially distributed features where clusters formed.
While the exact physical origins of these relationships are unclear,
they likely represent nanophase-separated regions in morphotropic
phase boundaries.

Overall, we propose that an in-depth understanding of com-
plex disordered materials necessitates the understanding of not only
generative processes that can lead to observed microscopic states,
but also the causal links between the observed variables. While
generative models are sufficient to describe systems in the state of
thermodynamic equilibrium, non-equilibrium systems may require
causal descriptors that can describe cause-and-effect relationships
between multiple interacting subsystems.

The supplementary material document for this publication
provides additional details on the Ginzburg–Landau–Devonshire
(LGD) thermodynamic model used to describe the physical system
(S1), the derivation of the linearized equations relating observable
and non-observable variables (S2–S3), and a comprehensive listing
of the phenomenological parameters and correlation lengths used in
the calculations (Tables SI–SII). It also includes a dedicated section
(S4) outlining the specific data pre-requirements and optimal con-
ditions for applying the LiNGAM model to experimental STEM
data.
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