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1. Introduction

Digital transformation and utilization of artificial intelligence (Al) in the electric grid are
fundamentally changing the industry’s approach to common problems and enabling a broader
paradigm shift in grid planning and operations. The change in approach is circularly both
enabling and driving modernization, with load growth and reliable management of data center
and Al infrastructure shifting away from planning approaches with relatively predictable
behaviors and toward a mix of consumer and industrial choices that surpass human cognitive
abilities to process. This movement has potential to condition humans to not understand the
system on which the Al depends, while requiring it for development of the necessary
infrastructure. Approaches which would address most likely grid conditions and events, such as
faults, aging of equipment, and weather, now must also account for large loads which shift not
based upon weather or time of day, but the computational load. Quantifying computational load
is independent of the traditional grid forecasting variables, where a data center’s aggregate load
is determined by user and Al system behavior and decoupled from normal grid planning and
operations. Al is both the cause and solution for these challenges, with new grid planning tools
integrating massive amounts of decisions into frameworks.

The race to dominate the Al field between the United States and China has significant positive
and negative implications for both technological advancement and national security. Domination
of the field is not an isolated function of Al technology; instead, the U.S. must grow its capacity
to handle large Al-driven electronic loads, develop new models, and drive adoption. As America
invests heavily in Al research and development, the country’s goal is to achieve breakthroughs
that could redefine industries, economies, and military capabilities. However, the intense
competition from adversarial nations also heightens security risks, including the potential for
cyber espionage, intellectual property theft, and the misuse of Al technologies from the increased
digital attack surface. Ensuring the responsible appropriate use and robust security of Al systems
is paramount to preventing malicious exploitation and maintaining global stability. The U.S.
must navigate this Al race carefully, balancing innovation with international cooperation to
address critical security concerns, specifically when it comes to the integration of Al with critical
functions such as the electrical power grid.

The electric grid is evolving into a complex cyber-physical system where Al is increasingly
applied to enhance monitoring, control, and optimization. Grid operators are already using Al

to monitor transmission lines and isolate faults, and to predict fluctuations in electricity supply
and demand.? As they look to grow and thrive in this new reality, utilities must also consider
their approach to a secure and responsible use of the load on which the Al is driven along with
the Al itself. Many Al applications, will be integrated into these tools, along with new
requirements to implement cloud computing into operational technology (OT) operations, which
also increases utility use of data centers that house cloud computing platforms. Therefore, risk
frameworks must also address these interdependent concerns to enable their responsible and
secure use as rapidly as Al adoption. Energy vendors and service providers are racing to deploy

' Prier, S., Strong, A. M., & Welburn, J. W. (2023). Interdependence across the national critical functions
(RAND Working Paper WR-A210-1). RAND Corporation.

2 Frigerio, G. (2024, December 3). Exploring the role of Al in energy forecasting and grid management.
Plexigrid. https://plexigrid.com/exploring-the-role-of-ai-in-energy-forecasting-and-grid-management/
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Al within their tools, products, and services to demonstrate their acceptance and enriched
modernization capabilities. Though acting fast (and even failing fast) are qualities needed to help
win the Al race, this comes at a cost to early adopters of these technologies, who will bear the
burden of poor implementations, evolving models, and nascent application spaces. When these
applications are in critical infrastructure sectors like the grid, the costs of these challenges could
be significant (e.g., safety or reliability impacts).

This paper focuses on key aspects of Al adoption in the electric energy sector through three
modalities: Al model integration
inside the organization, purchase of

Artificial Intelligence commercial tools with Al integrated,
and edge device integration. The
Machine Learning authors summarize key risk-informed
insights for Al use in electric grid
Deep Learning operations and planning, which

includes a review of the current use
cases for the electric grid and a simple
analysis framework to understand Al
impact, coupled with application
decomposition and consequence-
driven analyses of the application’s
security and impact and in which case
security controls can be applied. By
doing this style of analysis, risk-
informed controls can be placed
around technologies, enabling their
use and reducing the risk of the
highest consequence repercussions.
Like cloud data models, Al introduces
Figure 1: General Al configuration. new shared risk boundaries among

utilities, vendors, regulators, Al
developers, maintainers and support. Similar to other digital transition challenges in the
distributed generation space, ownership transition for companies that don’t exist long term is also
a challenge. High-consequence actions (e.g., autonomous protection) may require hybrid
architectures with fallback and manual conditions, whereas low-consequence actions (e.g.,
customer energy reports) can tolerate more automation processes. Al must be bound with
consequence-driven engineering controls, redundancy, and transparency to prevent systemic
failure.

Generative Artificial
Intelligence

1.1 Whatis Al? A simple primer.

While there is no exact and well-accepted definition of AL, 15 USC 9401(3) defines Al as “a
machine-based system that can, for a given set of human-defined objectives, make predictions,
recommendations, or decisions influencing real or virtual environments. Al systems use machine
and human-based inputs to (a) perceive real and virtual environments; (b) abstract, such as
perceptions into models through analysis in an automated manner; and (c) use model inference to
formulate options for information or action.” Using this definition, Al can encompass several



different modeling techniques and can be used in a large variety of contexts. Generally, however,
Al is defined to include key disciplines such as machine learning (ML), deep learning (DL), and
generative artificial intelligence (GenAl). The generalized set of Al configurations or building
blocks is shown in the Figure 1.

The Department of Energy (DOE) defines ML as “the process of using computers to detect
patterns in massive datasets and then make predictions based on what the computer learns from
those patterns [...] In ML, algorithms serve as rules for how to analyze the data using statistics.
ML systems use these rules to identify relationships between data inputs and desired outputs.”?
With respect to grid optimization, ML algorithms have the capability to “analyze vast amounts of
data from smart meters, sensors, and other grid components to optimize energy distribution,
forecast demand, and detect irregularities that could indicate potential failures.”* This additional
computation power is expected to improve many metrics in time and detection of events.
Example ML techniques commonly used in grid applications include support vector machines
(SVMs), decision trees (DTs), and random forests (RFs).

DL is a subset of ML in which DL algorithms “can automatically learn representations from data
such as images, videos, or text without introducing human domain knowledge.”> Traditional ML
algorithms generally require humans to determine the hierarchy of features within an input
dataset and are a more structured approach. DL, on the other hand, automates the feature
extraction process and uses many different layers of algorithms known as “hidden layers” to
flexibly learn directly from raw data and recognize patterns autonomously, where each layer is
composed of “neurons” that perform individual calculations based on inputs and “weights” to
calculate a set output. Given the increased flexibility of these architectures, DL generally
requires significantly more data than traditional ML and parallelizable processors such as
graphics processing units (GPUs) to process a large number of identical neurons and hidden
layers. Example DL models used in grid applications include artificial neural networks (ANNSs),
long short-term memory (LSTM) networks, and convolutional neural networks (CNNs).

As seen in the innermost circle of Figure 2, GenAl generates new statistically probable outputs
according to learned patterns from raw data.® GenAl requires massive amounts of data, GPUs,
and time to produce and train a model. As a workaround for the complexity of producing these
models, companies have started producing pre-trained GenAl models where a method called
“transfer learning” can be used to reduce the amount of time, data, and computing resources to
train a model. Transfer learning is the process of applying knowledge to a DL/GenAl model
derived from solving one problem and repurposing the final layers of a model to a related but
different problem. This allows for a large pre-trained GenAl model to be used across domains

3us. Department of Energy. (n.d.). DOE Explains...Machine Learning. Retrieved from Office of Science:
https://www.energy.gov/science/doe-explainsmachine-learning.

4Rashid, A., Biswas, P., ALMasum, A., Al Nasim, M., & Gupta, D. K. (2024, October 20). Power Plays:
Unleashing Machine Learning Magic in Smart Grids. 4, p. 16. Retrieved from https://arxiv.org/abs/2410.15423.
5 Nvidia. (2025). Deep Learning. Retrieved from Glossary: https://www.nvidia.com/en-us/glossary/deep-
learning/.

8 Microsoft. (2024, August 29). Deep learning vs. machine learning in Azure Machine Learning. Retrieved from
Machine Learning: https://learn.microsoft.com/en-us/azure/machine-learning/concept-deep-learning-vs-
machine-learning?view=azureml-api-2&viewFallbackFrom=azureml-api-2).
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and contexts with reduced resources. GenAl, such as a generative pretrained transformer (GPT)

model, has been proposed to improve state estimation in the power grid, where measurements are

not available, or allow for flexible, probabilistic forecasting’ through the use of transfer learning
to fit a GPT to grid operations.

Se&lfguild 2. Al Adoption Styles in

\ the Electric Sector

In electric grid infrastructure entities,
Buv a digital technology is intentionally
y adopted by (a) building it internally, (b)

buying a product with it already
integrated, or (c) edge-deployed, such as
in smart meters. Utilities with high levels
of resources might consider building
home-grown products whereas smaller
entities will often buy the product and use
third-party services. This is evident in
cloud transformation where smaller
utilities are using third-parties.® ° In many
cases, a combination of all three
approaches is implemented depending on
the use case.

Model

Larger utilities have the ability (or desire,
Figure 2: Diagram of adoption pathways for Al in the electric as the ability is established) to test
sector. multiple Al tools for multiple
applications, both through use of their

own testbeds and partnerships with research institutions. They have more structured risk
management processes, building in multiple checks for the safe adoption of new technologies.
Smaller utilities lack the freedom and flexibility to experiment with different products and see
what works best for them. They often do not have the negotiating power to ask providers'® to
adjust their products or services, which would make adoption more palatable in their

”Lok Choi, S., Jain, R., Feng, C., Emami, P., Zhang, H., Hong, J., . . . Kroposki, B. (2024). Generative Al for
power grid operations. U.S. Department of Energy. Golden: National Renerable Energy Laboratory. Retrieved
from https://www.nrel.gov/docs/fy250sti/91176.pdf.

8 Stewart, Emma Mary, Morgan, Julia Catherine, Woodruff, Nathan Lee, Combe, Glenn, & Stolworthy, Remy
Vanece (2024). Enhancing Cloud Cybersecurity: Prescriptive Controls for Operational Technology.
https://doi.org/10.2172/2474851

9J. Morgan, E. M. Stewart, R. Stolworthy, N. Woodruff, J. Briones and J. Whitaker, "Consequence Based
Framework for Deployment of Cloud Solutions in the Digital Energy Transition," 2025 |IEEE PES Grid Edge
Technologies Conference & Exposition (Grid Edge), San Diego, CA, USA, 2025, pp. 1-5

0 Co-ops not ready to use the cloud for electric grid operations. (n.d.). Cooperative.com. Retrieved August 26,
2025, from https://www.cooperative.com/news/Pages/co-ops-not-ready-to-use-cloud-for-electric-grid-
operations.aspx
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environments. However, many recognize that they may miss opportunities for efficiency gains,
or cost reduction in the grid modernization space, so they will be adopting Al tools despite the
perceived and real risks. In contrast, due to the regulatory environment for the electric sector,
many smaller utilities have rapidly adopted cloud-based technology (and likely Al), as they are
not as closely regulated as the larger critical entities and therefore can make wider digital
choices. There is no widespread regulation for use of Al in the electric sector, and the pace of
standards and regulation will not hold with the pace of Al adoption. Alternate approaches for its
secure and responsible adoption are needed.

Instead, the Al applications that will be deployed in the grid are developed by service and tool
providers, some of whom may have experience in the utility sector and are attempting to include
Al in their offerings, and some of whom may have Al expertise and see an opportunity in the
utility sector. In either case, the dual understanding of how the Al applications work and what
they are actually accomplishing in the utility space is needed for success. Models need to be
tuned to the environment in which they are deployed to be most impactful. Careful coordination
and communication between experts for the individual systems in which technology is deployed
and the service providers will enable impactful use of Al. As an example of early adoption,
which is both internally developed and offered as something other entities can buy, Dairyland
Power Cooperative launched VoltWrite, a private generative Al platform, now offered as a
service to other rural electric cooperatives. Introduced by CIO Nate Melby at the NRECA
TechAdvantage Conference in March 2025, VoltWrite is represented as a “secure, in-house Al
model that avoids the cybersecurity risks of open public models.” An example of its use is field
inspectors wearing AR glasses linked to VoltWrite and Microsoft Teams for real-time
collaboration in remote site inspections.!! In another example, Itron is integrating NVIDIA’s
Jetson Orin Nano system-on-module and Al Enterprise software into its Grid Edge Intelligence
platform, which supports more than 13 million distributed intelligence endpoints. The addition of
GPU-based processing at the meter level enables execution of Al models directly on edge
devices, reducing the need for centralized computation. Potential applications include localized
load forecasting, voltage optimization, and real-time fault detection using high-resolution
consumption and power quality data. This architecture is intended to support faster decision-
making in grid operations and improve coordination with distributed energy resources. '?

Early adopters of Al technologies will bear the costs of the challenges in novel applications.
Vendors and service providers are racing to deploy Al in their tools, products, and services to
demonstrate their adoption and modernization capabilities. Although acting fast and even failing
fast are qualities need to help win the Al race, early adopters experience costs associated with
poor implementation, evolving models. When these applications are in critical infrastructure
sectors like the grid, the costs of these challenges could be significant (e.g. safety or reliability
impacts).

1 Sukow, R. (2025, March 11). Dairyland Power introduces Al as a service for rural electrics. Retrieved from
NRTC: https://www.nrtc.coop/dairyland-power-introduces-ai-as-a-service-for-rural-electrics/.

2 ltron Inc. (2025, March 19). Itron to Bring NVIDIA-Powered Artificial Intelligence to the Grid Edge. Retrieved
from https://investors.itron.com/news-releases/news-release-details/itron-bring-nvidia-powered-artificial-
intelligence-grid-edge.
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3. Selection of Models and Considerations for Al in the
Electric Grid

There are four primary Operational Technology (OT) domains in which power systems
applications for Al reside detection, prediction, control and optimization, and business and
customer applications (Figure 4). Some applications fit within multiple domains, and each
domain has a different risk profile, which will be discussed in the following sections. The
authors address critical considerations for deploying Al in power systems planning, operations,
and business contexts. They consider the importance of physical modeling, robust data
foundations, and secure automation strategies, in relation to these domains.

3.1 Al Task Domains in Operational Power Systems

GTask Domains in Operational Power Syst@

Detection Prediction Control & Optimization Business & Customer Applications
Identify unusual patterns indicating Forecast future states of grid inputs Optimize grid operations to achieve Leverage homegrown business and
faults, anomalies, or security and outputs. cost minimization and reliability customer applications,
threats in the grid. improvement.
haysi $ Corr Commurictor
Security

Figure 3: The four Al task domains for power systems are detection, prediction, and control and optimization.

3.1.1 Detection: Anomaly and Fault Detection

In the grid context, detection tasks involve identifying unusual patterns or events that could
indicate faults, anomalies, or security threats. Examples include detecting equipment failures,
line faults, cyber-intrusions, or abnormal grid oscillations. Al-based detection augments
traditional alarms by sifting through high-volume sensor data (e.g. SCADA, PMU, or smart



meter streams) to catch subtle issues that rule-based systems might miss.!> Many control centers
now employ synchrophasor (PMU) analytics for oscillation and event detection, but as data
volumes grow, ML techniques are being explored to automatically flag anomalies and provide
operator support.'# 3

Model Deployment Examples and Case Studies: Unsupervised learning can be used when
trying to determine the presence of novel events without explicit labels — i.e., a squirrel or a
physical attack causing a fault. Techniques like clustering and outlier detection can learn the
“normal” patterns of grid data and highlight outliers. Alternatively, supervised learning is
applicable when labeled examples of faults or events are available. Researchers have applied
supervised learning for tasks like fault detection and location,'® asset health monitoring, and
security assessment in power grids.!” For example, image-based deep learning'® has been used to
detect equipment issues from drone imagery, and graph convolutional networks have been tested
to detect and isolate faults using the network topology.'” ?° Physics-informed models for
detection are suitable where electrical laws are embedded into an Al model to ensure that an
“anomaly” truly violates expected physical behavior.?' For example, wildfire risk monitoring is
an illustration of detection in action utilizing physics based models. In regions like California,

3 Chen, Y., Fan, X., Huang, R., Huang, Q., Li, A., & Guddanti, K. (2024). Artificial Intelligence/Machine Learning
Technology in Power System Applications (PNNL-35735) (Technical Report). Pacific Northwest National
Laboratory. https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-35735.pdf

4 Stewart, E. M. (2017, September 14). GMLC 1.4.9 - Integrated Multi Scale Machine Learning. Retrieved from
U.S. Department of Energy: https://gmlc.doe.gov/projects/integrated-multi-scale-data-analytics-and-
machine-learning-grid.

S Wilson, A., Ekti, A., Follum, J., Biswas, S., Annalicia, C., Joo, J.-Y., . .. Lian, J. (2024). The Grid Event
Signature Library: An Open-Access Repository of Power System Measurement Signatures. IEEE Access,
76207-76218. doi:10.1109/ACCESS.2024.3404886.

8 Chen, Y., Fan, X., Huang, R., Huang, Q., Li, A., & Guddanti, K. (2024). Artificial intelligence/machine learning
technology in power system applications. U.S. Department of Energy. Oak Ridge: Pacific Northwest National
Laboratory. Retrieved from https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-
35735.pdf.

7 Morales-Rodriguez, M., Srinivas, N., Olatt, J., Hahn, G., Wilson, A., Fuhr, P., . . . Chakraborty, . (2020). Big
Data Framework for the Development of a Signature Library for the Power Grid. IEEE Power and Energy
Society General Meeting. Washington: Lawrence Livermore National Laboratory. Retrieved from
https://www.osti.gov/servlets/purl/1798440.

8 Shashsavari, A., Farajollahi, M., Stewart, E., Cortez, E., & Mohsenian-Rad, H. (2019, February 11).
Situational Awareness in Distribution Grid Using Micro-PMU Data: A Machine Learning Approach. 10(6).
Retrieved from https://www.osti.gov/pages/biblio/1811286.

8 Austin Energy announces full deployment of Al-driven Early Wildfire Detection System. (2024, August 29).
Retrieved from Austin Energy: https://austinenergy.com/about/news/news-releases/2024/austin-energy-
announces-full-deployment-of-ai-driven-early-wildfire-detection-system2024.

20 Stewart, E., Chellappan, K., Backhaus, D., Deka, D., Reno, M., Peisert, S., . . . Buckner, M. (2018). Integrated
Multi Scale Data Analytics and Machine Learning for the Grid; Benchmarking Algorithms and Data Quality
Analysis. U.S. Department of Energy, Lawrence Livermore National Laboratory. Grid Modernization Laboratory
Consortium. Retrieved from https://www.osti.gov/servlets/purl/1490956.

21 Boroujeni, S., Razi, A., Khoshdel, S., Afghah, F., Coen, J., O'Neill, L., . . . Vamvoudakis, K. (2024, August). A
comprehensive survey of research towards Al-enabled unmanned aerial systems in pre-, active-, and post-
wildfire management. Information Fusion, 108. Retrieved from
https://www.sciencedirect.com/science/article/pii/S1566253524001477.
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utilities deploy sensors (for temperature, smoke, etc.)*? and Al models to detect abnormal
conditions near power lines; if an Al model flags a high fire risk (e.g., a line sparking in dry
conditions), the system can trigger corrective actions such as de-energizing lines or adjusting
protection settings.”

Al technologies applied to OT cybersecurity in power grid systems employ advanced techniques,
such as deep neural networks (e.g., LSTM, CNN), digital twins, hybrid intrusion detection
frameworks, and LLM-enhanced interpretability layers to perform detection for cyber anomalies.
These systems process real-time operational data, like phasor measurements and substation
communication streams, to detect and distinguish between genuine physical anomalies and
cyber-induced disruptions. Innovations like generative Al-based anomaly detection and LLM-
supported explanations enhance both adaptability and comprehension, delivering timely,
interpretable responses to cyber threats in critical grid infrastructure.?* Digital-twin approaches
create virtual replicas of power systems, enabling machine learning models to learn normal
behavior patterns and flag deviations that could detect cyberattacks or system faults, particularly
in grids with high penetration of power electronics.?® Additionally, large language models
(LLMs) are being used to bring interpretability into OT cyber detection. In particular,
frameworks combining lightweight ML classifiers with LLM-generated explanations are
reported to detect attacks on Automatic Generation Control (AGC) systems in near real time and
provide human-readable diagnoses of detected cyberattacks.2

3.1.2 Prediction: Forecasting and Proactive Predictive Analytics

Prediction tasks involve forecasting future states of inputs and outputs of the grid (in response to
inputs of forecast, etc.). Electric utilities have long performed forecasting (e.g., demand or load,
renewable generation), and Al can enhance accuracy by learning complex patterns from
historical and real-time data, along with enabling multivariate processing. Beyond load
prediction, Al-based prediction is used for failure prognostics (predicting equipment failure or
maintenance needs), outage forecasting (anticipating where and when outages or stresses will
occur), resource forecasting (predicting availability of generation capacity, particularly for wind

22 NASA. (2025). Al-enabled drone swarms for fire detection, mapping, and modeling. Retrieved from Earth
Science Technology Office: https://esto.nasa.gov/firetech/ai-enabled-drone-swarms-for-fire-detection-
mapping-and-modeling/.

2 Wolfe, S. (2024, August 29). Another utility adopts Al cameras for wildfire detection. This time, it's not as far
west. Retrieved from Factor This Power Engineering: https://www.renewableenergyworld.com/power-
grid/outage-management/another-utility-adopts-ai-cameras-for-wildfire-detection-this-time-its-not-as-far-
west/.

24Qi, R., Rasband, C., Zheng, J., & Longoria, R. (2021). Detecting Cyber Attacks in Smart Grids Using Semi-
Supervised Anomaly Detection and Deep Representation Learning. Information, 12(8), 328. Retrieved from
https://www.mdpi.com/2078-2489/12/8/328.

B Elimam, M., Isbeih, Y. J.,, Azman, S. K., El Moursi, M. S., & Al Hosani, K. A. (in press, 2022). Deep
learning-based PMU cyber security scheme against data manipulation attacks with wide-area damping
control (WADC) application. |IEEE Transactions on Power Systems, 1-15.
https://doi.org/10.1109/TPWRS.2022.3181353

26 Coppolino, L., Nardone, R., Petruolo, A., Romano, L., & Souvent, A. (2023). Exploiting Digital Twin
technology for Cybersecurity Monitoring in Smart Grids. Proceedings of the 18th International Conference on
Availability, Reliability and Security (pp. 1-10). ARES'23. Retrieved from
https://doi.org/10.1145/3600160.3605043.
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and solar resources), and stability or reliability risk forecasting. By analyzing weather data, asset
condition data, and usage patterns, Al could potentially help utilities move from reactive
operations toward proactive management. For instance, Al-driven models can forecast which
transformers are likely to overload or fail during an upcoming heat wave or predict which tree
branches will threaten power lines in a storm.?’ This enables pre-failure intervention, dispatching
crews or actioning an outage to prevent a fire. Prediction can also be considered using planning
tools, such as Google Tapestry or PNNL’s ChatGrid.?® 2 30

Model Deployment Examples and Case Studies: Prediction problems are typically approached
with supervised learning regression models trained on historical data. Classical statistical models
(ARIMA, state-space models) are now often outperformed by ML models, such as gradient-
boosted trees, support vector regression, or neural networks, that capture nonlinear relationships.
In particular, deep learning models excel at time-series forecasting: recurrent neural

networks like LSTMs and GRUs are designed to capture temporal dependencies and have been
successfully applied to forecast loads accounting for daily and seasonal patterns.®! LSTMs, for
example, can learn the influence of past demand and weather on future load, improving accuracy
for day-ahead and hour-ahead forecasts. These models can incorporate multiple inputs for
multivariate forecasting in the grid. Integrating physical knowledge can further improve
predictions; for instance, physics-informed neural networks (PINNs) and hybrid models include
constraints from power system equations (like power flow or machine dynamics) to ensure that
predictions of system states (voltage, frequency, etc.) remain physically plausible. Such models
have been proposed for tasks like system frequency prediction and stability assessment, where
purely data-driven approaches might violate conservation laws or operational limits.>> Al-driven
forecasting, adequately secured and implemented, may benefit grid operations. One study found
that combining machine-learning-based forecasts with real-time sensor data reduced grid
imbalance events by up to 30%.>*

27 PG&E Applies Enhanced Outage Prediction Models To Ready Crews and Resources Ahead of This Week’s
Storm. (2025, March 11). Retrieved from PG&E: https://www.pge.com/en/newsroom/currents/safety/pg-e-
applies-enhanced-outage-prediction-models-to-ready-crews-
an.html#:~:text=The%20data%20provided%20through%20Al,Storm%20safety%20tips.

22 Wendel, J. (2024, February 22). ChatGrid™: A New Generative Al Tool for Power Grid Visualization. Retrieved
from Pacific Northwest National Laboratory: https://www.pnnl.gov/news-media/chatgridtm-new-generative-
ai-tool-power-grid-visualization.

2 Tapestry. (2025). Retrieved from Google LLC: https://x.company/projects/tapestry/

30yon Meier, A., Stewart, E., McEachern, A., Andersen, M., & Mehrmanesh, L. (2917). Precision Micro-
Synchrophasors for Distribution Systems: A Summary of Applications, 8(6). IEEE, 2926-2936.
doi:10.1109/TSG.2017.2720543.

31 Kara, E., Roberts, C., Tabone, M., Alvarez, L., Callaway, D., & Stewart, E. (2018, March). Disaggregating solar
generation from feeder-level measurements. Sustainable Energy, Grids and Networks, 112-121.
doi:https://doi.org/10.1016/j.segan.2017.11.001.

52 U.S. Department of Energy. (2025). Artificial Intelligence. Retrieved from Pacific Northwest National
Laboratory: https://www.pnnl.gov/artificial-intelligence.

33 Aslam, S., Aung, P., Rafsanjani, A., & Majeed, A. (2025). Machine learning applications in energy systems:
current trends, challenges, and research directions. Energy Informatics, 8. Retrieved from
https://energyinformatics.springeropen.com/articles/10.1186/s42162-025-00524-6.
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3.1.3 Optimization, Control, and Decision-Making

Optimization tasks involve determining the best set of actions or configurations for the grid,
often in real time, to meet certain objectives (cost minimization, loss reduction, reliability
improvement) under constraints. Traditional grid optimization (like economic dispatch, unit
commitment, or network reconfiguration) relies on mathematical programming and expert rules.
Al is augmenting these tasks by handling high-dimensional decision spaces and adapting to
changing conditions. For example, Al can optimize voltage control on distribution networks by
coordinating many voltage regulators and inverters, or optimize power dispatch in microgrids,
balancing generation, storage, and loads. During emergencies, optimization algorithms help

in outage restoration, finding the fastest way to reroute power or prioritize repairs.>* Al can also
manage distributed energy resources by solving distributed optimization problems, such as
deciding how to dispatch hundreds of batteries or loads for peak shaving. In essence,
optimization Al seeks the optimal or near-optimal operating point for the grid at any moment,
often needing to satisfy physical and reliability constraints.

Model Deployment Examples and Case Studies: Deep reinforcement learning has been
studied for grid control tasks such as automatic generation control, battery dispatch, or network
switching operations.®> However, a challenge is ensuring safety of poorly trained Al, adversarial
inputs, and bad policies could violate grid limits, and use of these models for real-time operation
means the consequences of a bad Al decision are heightened. A potential strategy is to train these
models on realistic simulators (digital twins of the grid) and incorporate safety constraints into
the learning process, but that process also depends on good grid models, another current
challenge.® Al is proposed to assist optimization by serving as a fast approximation to
traditional power flow solvers. For example, neural network surrogate models have been
developed to mimic the results of optimal power flow (OPF) calculations much faster, enabling
near real-time dispatch decisions.” 3 There are also hybrid approaches, where a neural network
proposes an optimal control action and a physics-based check (or simpler optimization) verifies
it, leveraging both Al speed and physical law compliance. In real-world deployment, fully
autonomous grid optimization by Al is still approached cautiously due to safety, but there are
successful examples of closed-loop optimization. One notable case is Entergy Louisiana’s
deployment of Al in its advanced metering infrastructure (AMI) to predict when distribution

34 Allsup, M. (2025, July 28). Under the hood of CAISO’s Al outage management pilot. Retrieved from
https://www.latitudemedia.com/news/under-the-hood-of-caisos-ai-outage-management-pilot/

3 Stewart, E., Kiliccote, S., Shand, C., McMorran, A., Arghandeh, R., & von Meier, A. (2014). Addressing the
challenges for integrating micro-synchrophasor data with operational system applications. 20714 |[EEE PES
General Meeting. National Harbor: IEEE. Retrieved from https://ieeexplore.ieee.org/document/6938994/.
36 U.S. Department of Energy. (2023). Inverter-Based Resource Performance Issues Report. Atlanta: North
American Electric Reliability Corporation. Retrieved from
https://www.nerc.com/comm/RSTC_Reliability_Guidelines/NERC_Inverter-
Based_Resource_Performance_lssues_Public_Report_2023.pdf.

57U.S. Department of Energy. (2025). Artificial Intelligence. Retrieved from Pacific Northwest National
Laboratory: https://www.pnnl.gov/artificial-intelligence.

%8 Soltani, Z., Ma, S., Khorsand, M., & Vittal, V. (2023, May). Simultaneous Robust State Estimation, Topology
Error Processing, and Outage Detection for Unbalanced Distribution Systems. IEEE Transactions on Power
Systems, 38(2), 2018-2034. doi:10.1109/TPWRS.2022.3181118.
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transformers are near failure and by proactively replacing them mitigate outages.** The Al
system processes smart meter data and other inputs to reconfigure the network or dispatch field
crews proactively. Since deployment, it has reportedly prevented 536 outages and avoided over
48,000 outage minutes by automatically rerouting power and isolating problems.*° This
illustrates how an Al-driven optimization can directly translate to reliability gains (or losses if
availability of the system is a requirement). Generally, Al-driven optimization in the grid is
implemented in a hierarchical way: slower, cloud-based Al might optimize day-ahead planning
or system configurations, while faster embedded Al at the grid edge (in controllers or devices)
handles real-time fine-tuning. As these models are adopted, ensuring they respect operational
constraints (voltage, frequency, line limits) is a vital constraint. Al applications should not
violate the laws of physics in power systems applications.*!

California Independent System Operator (CAISO), which oversees the majority of California’s
power grid and portions of the Western Energy Imbalance Market, is piloting OATI Genie™, an
advanced Al assistant designed to streamline and modernize outage management workflows.
Traditionally, CAISO operators manually sift through a high volume of structured data and free-
form outage reports to assess grid impact, often under time pressure. OATI Genie augments this
process by using a hybrid Al architecture that blends generative Al, machine learning, and rule-
based logic to extract relevant keywords, correlate outage events with system data (e.g., GIS,
SCADA, weather), and deliver real-time insights in natural language. This co-pilot approach is
designed not just to automate, but to enhance human situational awareness, reduce manual
review time, and support faster, more informed decisions in outage scheduling and grid stability
planning.

Southwest Power Pool (SPP) is collaborating with Hitachi and NVIDIA to develop an Al-
enabled solution aimed at reducing the time required to complete generator interconnection (GI)
impact studies. These studies currently span 18 to 27 months and are critical to evaluating how
new generation sources will affect transmission system reliability. The Al platform, based on
Hitachi 1Q and utilizing NVIDIA-accelerated compute infrastructure, will automate power flow
simulations, optimize resource modeling, and support predictive analytics for interconnection
scenarios. According to SPP, the Al tool could reduce study durations by up to 80%, and
preliminary pilots are expected to begin in winter 2025-2026. The tool is designed to work
alongside, rather than replace, existing engineering workflows; applicants will still have access
to conventional study tracks as a baseline for comparison.*

% entergy. (2024, July 16). We’re taking steps to advance reliability across our region. Retrieved from
https://www.entergy.com/blog/we-re-taking-steps-advance-reliability-across-our-region.

40 Clarion Energy. (2025, February 6). Resilience through intelligence: Al’s impact on utility disaster readiness.
Retrieved from Factor This Engineering: https://www.datacenterdynamics.com/en/news/southwest-power-
pool-partners-with-hitachi-to-slash-interconnection-study-times-through-ai-tool/

41 Mahdi, J., Scaglione, A., Roberts, C., Stewart, E., Peisert, S., & McParland, C. (2018, July 4). Anomaly
Detection Using Optimally Placed uyPMU Sensors in Distribution Grids. IEEE Transactions on Power Systems,
33(4), 3611 - 3623. doi:10.1109/TPWRS.2017.2764882.

42 kidmore, Z. (2025, June 7). Southwest Power Pool partners with Hitachi to slash interconnection study times
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3.1.4 Business and Customer Applications

GenAl is primarily being used in business applications. Notably, most of these applications are
home-grown, rather than commercially purchased as part of another management platform. New
applications such as SEW*® are being sold as a solution for customer Al management.

Model Deployment Examples and Case Studies: Generative Al is being used to assist in
drafting social media posts for utilities. While at first glance this might seem a benign
application, social media in recent years has become the primary source of communication of
outage and customer issues, with rapid communication during events being a gold standard and
trained.** Modern utility contact center platforms now use Al to proactively notify customers of
known outages and estimated restoration times via text or voice, reducing inbound inquiries. Al-
driven systems are being linked to outage management to draft messages to customers
automatically. Malicious use of social media tools to drive societal panic and challenges in
power restoration is also a key feature in large-scale grid exercises such as GridEx*’; therefore,
the automation of these functions through Al should be considered a risk. Data security is less of
a concern, but reliability and clarity of Al outputs are critical. Lastly, GenAl is being used to
draft repeated processes and manuals. For example, a guide on “How Net Metering Works.”*6
While this is a low-risk short-term item, without subject matter expert review, this could be a
challenge. GenAl is also being used internally to support utility employees and enhance
operational workflows. This ranges from knowledge assistants that help staft quickly find
information to Al copilots that assist with coding and analysis.

Many utilities have also implemented Al chatbots to handle routine customer inquiries, utilizing
LLMs such as ChatGPT for natural language responses. These systems can be available 24/7 to
answer billing questions, account changes, and provide information, and therefore availability.
For example, Sulphur Springs Electric Cooperative (AZ) launched a LivePerson Al chat on its
website to handle member questions after hours, reducing call center load.*” UK-based Octopus
Energy’s GPT chatbot is handling 44% of its customer service inquiries, equivalent to 250
people’s work, and has higher satisfaction rates than its human counterparts.*® In particular, these
tools are being used to draft customer service agent email responses. Risks of these types of
applications are in data privacy, with customers’ information being used in potentially external

43 SEW. (2025). #1 Industry Al Chatbot WeSmart. Retrieved from https://www.sew.ai/content/smart-
messaging-chatbots

44 Cohn, L. (2025, August 18). Emergency communications evolution: How intelligent workflows are reshaping
utility crisis response. American Public Power Association.
https://www.publicpower.org/periodical/article/emergency-communications-evolution-how-intelligent-
workflows-are-reshaping-utility-crisis-response

4 North American Electric Reliability Corporation. (2018, March). Grid Security Exercise GridEx IV: Lessons
learned (TLP: WHITE) (Public Report). NERC.
https://www.nerc.com/pa/CI/ESISAC/GridEx/GridEx%201V%20Public%20Report.pdf

46 Mullen, M. (2023, October 18). Here Comes The Meter Man — A Lesson in GenAl Planning. Deep Analysis.
https://www.deep-analysis.net/here-comes-the-meter-man-a-lesson-in-genai-planning/

47 LivePerson. (2025). Al chatbot agents: Better conversations start with a better Al chatbot. Retrieved from
https://www.liveperson.com/products/ai-chatbots/.

48 Celonis, Inc. (2025). Connect Octopus Energy and OpenAl (ChatGPT, Whisper, DALL-E) integrations.
Retrieved from Make: http://make.com/en/integrations/octopus-energy/openai-gpt-3.
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Al models, and human review is introduced in some cases already due to hallucinatory
responses. Chatbots are known to be eager to please and may provide inaccurate results to poorly
phrased or intentionally misleading prompts by customers, potentially resulting in billing issues
or unintentional panic. Fraud detection may also be a challenge.

Another notable example is Southern California Edison’s deployment of a GenAl chatbot with
retrieval-augmented generation for its network operations center (Project “Orca”). This internal
chatbot lets Network Operations Center (NOC) engineers query network device information,
troubleshoot tickets, and get real-time trend analysis by pulling from SCE’s telecom manuals and
data, improving response times and aiding training of new operators. The tools are also
proactively assisting in incident management and data analytics. This use case promotes the use
of private network Al with NVIDIA.* While these kinds of functions boost workforce efficiency
and capture expert knowledge, errors in technical guidance could have serious consequences;
strict validation of Al-provided answers is required. Data must stay on secure servers to protect
grid information.

3.2 Model Deployment Examples and Case Studies

Table 1 below outlines various Al use cases across different categories, highlighting the
functionality and applications they bring to the electric grid. These use cases demonstrate the
transformative potential of Al in driving efficiency, reliability, and security in utility operations,
paving the way for a more resilient energy future. For instance, in the category of Predictive
Maintenance and Asset Health Monitoring, Al analyzes sensor data from transformers and
inverters to predict failures, exemplified by tools such as GE Vernova’s GridOS>? and Schneider
Electric’s EcoStruxure ADMS.>!

Note: The examples listed are not exhaustive; they represent only those solutions identified in the current context, and
many other Al solutions may be available in the market.

Table 1: Al Use Cases in Electric, Categorization and Commercial Use Cases (July 2025).

Example Commercial

Use Case Domain Description Al Solutions (July
2025)
DERMS Prediction and - Al optimizes dispatch of DER assets, GE Vernova’s GridOS
Optimization balancing grid conditions, market DERMS,>? Uplight’s
(Control) participation, and customer needs. AutoGrid Flex,** and

4 World Wide Technology. (2025, May 29). The Orca Al journey with Southern California Edison. WWT.
https://www.wwt.com/blog/the-orca-ai-journey-with-southern-california-edison

50 GE Vernova. (2025). GridOS® Orchestration Software. Retrieved from
https://www.gevernova.com/software/products/gridos.

51 Schneider Electric. (2025). EcoStruxure™ ADMS. Retrieved from https://www.se.com/us/en/product-
range/61751-ecostruxure-adms/#overview.

52 GE Vernova. (2025). GridOS® DERMS - Unlocking Opportunities for Future DSO Transition. Retrieved from
https://www.gevernova.com/software/resources/webinar/gridosr-derms-unlocking-opportunities-future-
dso-transition.

53 Uplight. (2025). AutoGrid Unveils Cutting-Edge EV Grid Services Solution to Help Utilities Spur Adoption
and Attain Sustainability Goals. Retrieved from https://uplight.com/press/autogrid-unveils-cutting-edge-ev-
grid-services-solution-to-help-utilities-spur-adoption-and-attain-sustainability-goals/.



https://www.wwt.com/blog/the-orca-ai-journey-with-southern-california-edison
https://www.gevernova.com/software/products/gridos
https://www.se.com/us/en/product-range/61751-ecostruxure-adms/#overview
https://www.se.com/us/en/product-range/61751-ecostruxure-adms/#overview
https://www.gevernova.com/software/resources/webinar/gridosr-derms-unlocking-opportunities-future-dso-transition
https://www.gevernova.com/software/resources/webinar/gridosr-derms-unlocking-opportunities-future-dso-transition
https://uplight.com/press/autogrid-unveils-cutting-edge-ev-grid-services-solution-to-help-utilities-spur-adoption-and-attain-sustainability-goals/
https://uplight.com/press/autogrid-unveils-cutting-edge-ev-grid-services-solution-to-help-utilities-spur-adoption-and-attain-sustainability-goals/

- Localized Al processing in edge devices
enhances efficiency.

Kraken’s Al-powered
tools.>*

- Localized Al in edge devices supports real-
time adjustments.

Predictive Prediction - Al analyzes sensor data from transformers GE Vernova’s GridOS»
Maintenance and inverters to predict failures. and Schneider Electric’s
and Asset - Determines optimal maintenance paths and | EcoStruxure ADMS3
Health timelines to minimize downtime.
Monitoring
Grid Prediction - Al predicts future load and renewable GE Vernova and
Forecasting generation patterns for improved dispatch Uplight’s AutoGrid
(Load, planning. Flex¥’
Generation, - Localized prgcessing in gdge devices
Weather) supports real-time forecasting.
Model Prediction - Al validates models against a centralized Opal RT Digital Twin
Validation data lake, providing a single source of truth. | Advanced Simulation3?
and Data - Digital twins simulate grid operations for and Siemens Electrical
Lake (Central scenario testing and validation. Digital Twin.>
Point of
Truth, etc.)/
Digital Twin
Power Flow Prediction - Al runs system impact studies, considering | Google Tapestry,®
and (Analysis) diverse energy resource mixes and dynamic Hitachi iQ with
Interconnection model setups. NVIDIA.®!
Analyses - Al considers larger mixes of resources and

more combinatorial situations.

- Al sets up the models dynamically.
Autonomous Optimization -Al dynamically adjusts grid protection Google and Tapestry
Grid Control (Control) settings and autonomously reacts to Grid Aware®
(Real-Time frequency, voltage, and topology changes.
Dynamic - Al adjusts protection settings and reacts to
Protection and grid changes, enhancing stability, and
Remediation) resilience.
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grid control) of issues

Outage Detection and -Al OMS systems help utilities detect, locate, | OATI Genie® and
Management Optimization and restore power outages. Entergy Louisiana’s Al
System (Control) - Al-driven models analyze historical data, system. %

weather patterns, maintenance records, and
sensor data to predict the likelihood and
location of potential outages

Energy Market | Optimization - Al optimizes participation in wholesale and | Fluence Mosaic® and
Optimization retail energy markets through trend and price | Dexter Energy.¢’

(AI for Trading analysis

& Bidding

Strategy)
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Ops (Security) anomalies to detect cyber threats. EcoStructure ADMS.

- Anomaly detection capabilities in edge
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Customer Load | Optimization - Al learns customer behavior to control Kraken’s Al-powered
Management & | (Demand smart devices for grid stability during peak tools,®® LivePerson Al
Flexibility (AI- | Response) demand Chat” and Octopus
Powered - Enhance customer interaction and service Energy’s GPT Chatbot.”!
Demand management, thus contributing to overall
Response) customer satisfaction and operational

efficiency.
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Generation Business - GenAl is used for drafting social media Southern California
Prediction (Communication) | posts, managing customer communication, Edison’s Project
and automating processes. “Orca”’?

- Internally supports utility employees with
knowledge assistants and chatbots.

- Requires strict validation of Al outputs to
ensure accuracy and data security.

Wildfire Prediction and - Al monitors real-time hot spots for Pano Real-time hot spots

Prediction and | Detection potential ignition. for potential ignition,”?

Monitoring LookOut,” and
WIFIRE.”

3.3 Key Constraints for Model Selection and Case Studies in Power
Systems Al

Al deployment in power system applications requires careful model selection that balances
algorithmic capabilities with the physical realities, operational constraints, and contextual factors
of the grid. Unlike purely digital domains, power systems are governed by well-defined physical
laws, network topologies, and operational standards that constrain both the data available for
analysis and the types of models that can be meaningfully applied. Effective Al design must
integrate physics-based understanding, such as power flow equations, stability margins, and
protection schemes, with contextual knowledge of regulatory requirements, market structures,
and system operator practices.

At the foundation of any Al implementation lies data quality and accessibility. Power system
data is often fragmented across supervisory control and data acquisition (SCADA) systems,
phasor measurement units (PMUs), advanced metering infrastructure (AMI), and asset
management systems, each with different temporal resolutions, sampling rates, and privacy
considerations. The choice of model is inherently linked to these data characteristics: the
temporal granularity, spatial coverage, and trustworthiness of the available measurements will
influence whether statistical learning, deep learning, or hybrid physics-informed approaches are
feasible and reliable. This section examines key constraints in selecting AI models for power
system applications, emphasizing the interplay between physics and operational context, data
foundations, and algorithmic suitability. It also reviews case studies demonstrating how these
constraints shape real-world deployments, including examples where domain-aware Al has
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enabled successful integration into operational workflows, and cases where overlooking such
constraints could lead to limited or unsuccessful outcomes.

3.3.1 Physics and Power Systems Context

Applying Al in the electric grid requires alignment of the model with power system physics and
operational realities. The electrical grid’s behavior is governed by physical laws (e.g.,
Kirchhoff’s and Ohm’s laws) and operational constraints (voltage limits, frequency stability
criteria, protection settings). Ensuring the Al model is appropriate for this context is vital for
safety and effectiveness. An Al solution must handle domain-specific data like bus voltages, line
capacities, frequencies, power flows, and system state variables in a way that reflects physical
reality; otherwise, it may produce infeasible or unsafe outputs. One key consideration is
choosing or designing models that incorporate power system physics. Generic black-box models
might ignore constraints, such as maintaining 60 Hz frequency or keeping voltage within £5% of
nominal, which could lead to recommendations that violate grid limits. The importance of
embedding domain physics is underscored by researchers as a way to augment model robustness
and reliability, especially in critical functions.

Voltage, Frequency, and State Data: Data representing system state (voltage magnitudes or
angles, frequency, currents, etc.) carry physical meaning that Al models should treat
appropriately. For instance, frequency deviations in a power system are typically very small
(e.g., 59.8-60.2 Hz) but highly significant; an AI model doing frequency prediction or anomaly
detection must have the resolution and understanding to detect a 0.2 Hz drop as a major event,
not noise. Similarly, bus voltages are coupled by the network; if an Al recommends a control
action that would raise voltage in one area, it must account for how it affects neighboring buses
and overall system balance. Thus, feature engineering and input selection for grid Al should
include physically relevant variables (like including system load, generation, intertie flows, etc.)
rather than treating the data as a generic or independent time series. In anomaly detection,
distinguishing a true physical anomaly from a sensor error requires understanding physical
patterns; for example, a simultaneous dip in voltage and frequency system-wide is likely a real
disturbance, whereas a dip in one sensor reading alone might be a bad measurement.

Physics-based relationships can be expressed as constraints on the model but come at a cost of
more processing power. For example, checks for physics-based validation can also be checked
after the model has come to an output; however, if constraints are not met, the user must to start
over instead of making adjustments during the process. Models may “learn” relationships
between variables that exist because of the physics-based dependencies, but that does not mean
they will always respect that relationship, since there are a variety of conflating objectives for the
algorithm. Testing against edge cases is important to verify if a model truly respects the real-
world constraints.

Model Selection and Validation: The consideration of physics also influences which AI model
types are suitable. For example, a purely data-driven deep learning model might need an
enormous amount of data to learn something that a simpler physics-based model already
“knows.” In cases where data is limited, combining first-principles power system models with Al
(for instance, using load flow calculations to generate features, or using residual physics models
to guide learning) can improve performance. As noted in a recent DOE-supported



study, integrating domain knowledge into ML frameworks remains a persistent challenge, but it
is crucial for trustworthiness.’® Practitioners should favor model architectures that can easily
integrate prior knowledge. For example, using a model that allows adding hard constraints (like
linear programming with an ML-based objective) for tasks like dispatch, or using multi-model
ensembles that include a physics-based estimator alongside an Al predictor. Finally, any Al
meant to act on the grid should be extensively validated against simulations and field data to
verify it does not violate physical requirements. Validation guidelines should be developed for
detecting issues in drift and other spaces. The use of digital twins (high-fidelity grid simulators
mirroring real operations) is emerging as a best practice. This simulation testing, combined with
gradual field trials, ensures that the AI’s outputs always make physical sense and keep the
system within safe operating bounds.”” 7 7°

3.3.2 Data Foundation for Utility Al

Data is the backbone of any Al solution, and in the electric grid context, establishing a strong
data foundation is a critical consideration. Model performance and reliability are heavily
dependent on the data quality, quantity, and accessibility.®’ Key aspects to consider include data
volume needs, integration of diverse data sources, creating a “single source of truth,” data pre-
processing pipelines, latency requirements, and governance or security measures. These issues
are not isolated to Al use. Data volume and quality are critical for many new digital grid
functions, such as advanced distribution management systems, which require validated and
accurate grid models to perform.®! Some applications require highly accurate data input (in the
order of 99.9%) data, while others can approximate. This must be understood along with the
volume, quality, and accuracy. Training Al on simulated data must account for simulation
inaccuracies and tolerance, which can sum to around 10% margins.®?

Data Volume and Quality: Modern Al, especially deep learning, is a data and power-intensive
application. Utilities generate massive streams of data (SCADA measurements, phasor
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measurements, smart meter reads, equipment sensor logs, weather feeds, etc.), but not all of it
may be Al-ready. Much is pre-processed before any use in an application. To be used
appropriately, data must undergo exhaustive exploratory data analysis and preprocessing to
enable machine learning, which could be up to 80% of the model development time.** High-
quality, labeled datasets might be scarce for certain use cases (e.g., examples of rare faults).
Practitioners must assess how much data is needed and whether it is available. For instance,
training a transformer-failure prediction model might require many years of historical records
across many transformers; if a utility only has a dozen failure examples, a purely data-driven
model may not be feasible without augmentation or transfer learning. Data quality is equally
important: noisy or erroneous data can mislead AI models. Data cleaning and validation are,
therefore, foundational steps. As one technical report notes, the effectiveness of Al models relies
on data variety, volume, and recency and obtaining comprehensive, accurate data (potentially
from many sources) remains a major hurdle. It is vital to invest in improving data accuracy
(calibrating sensors, filtering out corrupt entries) and completeness, along with the
implementation of Al in power systems.

Simulated Data for Training: It’s not uncommon to see Al models trained on data that comes
from simulations.®* This can create data that is hard to otherwise obtain (e.g., different types of
faults at multiple locations within a given system), and it is attractive for researchers because it
produces a cleaner source of data (e.g., no gaps in timestamps or erroneous sensor collections).
However, few models accurately represent all behaviors of a system (consider the common
saying, “no model is right, some are useful”), and this method of data generation often leaves out
edge cases which do appear in the real world but which the researcher may not have considered.
Al models trained on simulated data may have holes in their understanding which present risks
when deployed for operational use.

Data Discovery and Integration (Multimodal Data): Utilities often have “scattered datasets”
across different systems. For example, asset health records in one database, outage history in
another, weather data in a third, etc. An Al initiative must include data discovery: identifying and
bringing together these disparate sources. A multimodal or multivariate data approach can
greatly enhance Al capabilities, combining time-series measurements, text reports (e.g.
maintenance logs), geospatial data (e.g. GIS of network), images (e.g. line inspection photos),
and more to give a holistic view. However, integrating these diverse datasets is challenging. It
requires a modern data architecture and governance processes to reconcile different data schemas
and ensure everything lines up correctly. Best practice is to establish a single source of truth —
e.g., a unified data lake or database where all relevant data is collected, cleaned, and keyed in a
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consistent way. This prevents the situation of different teams using slightly different data (or
definitions) that lead to inconsistent Al outputs. Al for outage prevention®® #” emphasizes that
data from asset health, vegetation management, fault history, and weather must be integrated,
cleansed, and made accessible for Al to distinguish between these types of events, and this
demands clarity on who owns each data source, how it is validated, and how often it is updated.
In practice, many utilities start with a data audit and build pipelines to stream and merge data.
For example, linking smart meter outage flags with feeder SCADA telemetry and weather
stations for a storm prediction model.

Pre-Processing Pipelines: Once data sources are identified, robust pre-processing is needed
before feeding data to AI models. This includes steps such as filtering out bad or irrelevant data
(e.g., communication glitches, out-of-range values), handling missing data (through interpolation
or using domain-specific proxies), normalizing or scaling features (especially important for
mixing variables like power, voltage, temperature with very different units and ranges), and
aligning data of different time granularities. Multivariate time synchronization is often needed —
e.g., aligning PMU data at 30 samples per second with SCADA data at 1 sample every 4 seconds
and weather data every 5 minutes.®® 3° Feature engineering is another part of pre-processing;
creating composite features that capture domain knowledge, such as load to capacity ratio of a
transformer or rate-of-change of frequency can significantly improve model performance.
Additionally, if a project involves supervised learning, a pipeline to label the data is needed. For
example, automatically labeling historical events as “fault” or “no fault” based on relay logs
when training a fault detector. Automating these pipelines ensures consistency and allows data to
flow into Al models continuously. It is also critical to incorporate feedback loops in the pipeline.
For instance, flagging when incoming data falls outside the range seen in training to warn the
model might be extrapolating. All these steps add latency, so they must be designed to meet the
operational timeline.

Latency and Real-Time Requirements: It is not just training data that needs to be considered.
Various grid applications have different latency needs, which affects the quality and quantity of
data needed for these applications to run in operation. Some analyses can be done offline (e.g., a
long-term asset risk model might be run monthly on batch data), but many operational
applications require real-time or near-real-time data streaming and processing, such as fault
applications.”® For example, an Al-based anomaly detector in the control room might need to
ingest PMU data with only a few seconds of delay to be useful for grid operators. This
necessitates a data pipeline that can handle streaming data and perform inference quickly. It
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might mean placing certain computations at the network edge, like in substation or field devices,
to avoid round-trip delays to a central cloud. Indeed, edge computing and distributed Al are
emerging so that critical decisions, such as isolating a fault or regulating voltage, can be made in
sub-seconds and at the grid edge.’!

When designing Al systems, engineers must account for the end-to-end latency: from data
generation, through communication networks and any data bus or broker (e.g., an enterprise
SCADA historian or message queue), into the model, and back out to a control command. If the
total latency is beyond the requirement (say, an Al that adjusts a battery should respond within
one second, but the data path takes five seconds), then architectural changes are needed.
Sometimes this involves model simplification or optimization for speed, using a smaller neural
network or compiling models to faster runtimes. It may also involve prioritizing which data is
truly needed in real-time (sending high-frequency essential signals and leaving less critical data
for batch updates). In summary, aligning the AI’s data pipeline with operational timing is crucial
for success.

Data Governance and Security: Given the sensitive and critical nature of grid operations data,
governance and security cannot be overlooked. Data governance includes defining clear
ownership of data streams, setting up data quality audits, and managing access controls so that
only authorized systems and personnel can use the data. Utilities often deal with customer data
(from smart meters), which has privacy implications, as well as critical infrastructure data
(substation, generation status), which has national security implications. A single source of truth
helps enforce governance rules uniformly. Additionally, metadata (data about the data) should be
maintained; knowing the source, timestamp, units, etc., for each data point to avoid
misinterpretation by Al models.

On security, the introduction of Al and networking in grid operations expands the attack surface.
Al models themselves can be targets of adversarial attacks or data poisoning. An attacker who
feeds manipulated data into an Al-based control system could cause it to misoperate the grid in a
worst-case scenario or create long-term small errors contributing to financial issues. Therefore,
utilities must secure data pipelines, such as through encryption in transit and at rest and
authentication of sensors to ensure data integrity, and possibly monitor Al outputs for signs of
tampering. Recent assessments highlight risks like false data injection, where maliciously altered
sensor data causes Al models to make incorrect decisions.®? Strong security measures, following
standards such as NERC CIP for cyber protection of critical systems, are required to mitigate
these risks. In practice, this means including the IT or security teams in Al project planning and
using secure gateways and implementing fail-safes or fallbacks if data is suspicious. Data
resilience is also part of security, ensuring that if one data source fails (say, a PMU is offline),
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the Al system can gracefully degrade or switch to backup data. Lastly, compliance with privacy
regulations is key. For example, if using smart meter data for an AI model, it’s important to
aggregate or anonymize as needed to protect customer identities. Establishing proper
governance, privacy handling, and security from the start not only protects the utility and
customers but also builds confidence that the AI’s insights can be trusted and are legally
compliant.

4.Balancing Risk and Benefit of Adoption of Al in Electric
Utilities
There are several key risks associated with Al adoption in grid planning and operations. These
challenges range from technical considerations of the models and data themselves to the ways in
which using Al will change human behaviors and reactions, to the potential for these tools to be
misused or adversarial manipulated. This section will identify several key risks categorized as
cybersecurity, operator and planning, regulatory, supply chain, privacy, and human-related risks.
Al adoption and, therefore, risk can be grouped into functions similar to how cybersecurity is
approached in these spaces. In the IT spaces, primary functions revolve around human processes,
such as data and billing management, and customer engagement. These kinds of applications in

GenAl are considered simple models that have low operational risk but potentially higher
customer data security risk.

In OT spaces, functional and mission assurance is key, in particular, safety, reliability, and
performance. Accuracy is paramount in life-saving applications, and this is why so many safety-
critical functions are manually verified, such as lockout or tagout. In planning applications, Al
may be trusted to make decisions that have longer-term implications for the reliability,
performance, and economics of the power grid. In operations applications, timing and
performance, as expected, are key. Whether humans are part of the decision loop or actions are
fully autonomous, trusting the Al to make decisions or recommendations that are most
appropriate in the moment can make or break the usability of the model. Utilities in California
and elsewhere have faced real-world scenarios where cutting power, despite the significant
inconvenience and economic disruption, was deemed the lesser risk compared to potential loss of
life or catastrophic infrastructure damage. Public Safety Power Shutoff (PSPS) events
implemented by Pacific Gas and Electric (PG&E) and other utilities exemplify this trade-off. In
high wind and drought conditions, proactively de-energizing lines can prevent equipment faults
from igniting wildfires, a danger that has historically caused billions in damage and claimed
many lives. The same principle applies in unusual operational incidents, such as the case of a
woman who climbed onto an energized transformer, where operators had to quickly disable
equipment to prevent injury, despite the cost of localized outages.”?

9 Jennings, A. (2024, November 13). More than 800 Utah homes lose power after woman climbs transformer.
Retrieved from https://www.abc4.com/news/digital-exclusives/800-homes-lose-power-trespass/
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This trade-off reflects an “Al trolley problem”** dynamic when decision support systems or
automated controls are integrated into grid operations. The system may be required to choose
between two unfavorable outcomes: continuing service under unsafe conditions versus
interrupting service to avert a potentially more severe event. In human decision-making, these
judgments draw on experience, training, and safety regulations; in Al-assisted environments, the
same logic must be encoded into model objectives, risk thresholds, and control algorithms. In
both human and machine contexts, the guiding principle is that temporary loss of power is
preferable to the irreversible consequences of wildfire ignition, severe injury, or death.
Embedding such prioritization into Al systems ensures that safety remains the dominant factor,
even when automated decision-making is involved in real-time grid control. Key risk themes
include cybersecurity, operational resilience, physical security, regulatory, supply chain, and
privacy (Table 2). An additional risk to consider is human talent and knowledge drain in power
operations. As Al automation is used to replace human tasks, humans may lose the skills,
expertise, and contextual awareness required to execute these tasks, creating risk if Al is
unavailable or makes decisions that humans cannot identify as risky behaviors.

Utilities must take a secure and responsible approach when integrating Al and cloud
technologies. Generative Al can greatly improve data management and customer engagement,
but it also introduces serious challenges to data security. On the operational side, Al plays a
pivotal role in supporting decisions that affect grid reliability and economic performance.
However, the adoption of Al in grid planning and operations brings distinct risks, ranging from
technical vulnerabilities and shifts in human behavior to opportunities for misuse. These risks
can be grouped into the categories identified in Table 2 below.

Table 2: Summary of key risk themes.

Category Example Risk

Cybersecurity Adversarial attacks on Al models, causing grid disruption
Operational Loss of human oversight due to black-box Al decisions,

Synchronized responses destabilizing frequency or voltage
Regulatory Lack of standards for Al validation in critical infrastructure
Supply Chain Dependency on foreign Al models, chips, and firmware
Privacy Customer, PII, and CEII data

4.1 Cybersecurity Risks

Several potential vulnerability classes of Al and ML are being researched. To determine how
these may result in consequences to power grid operations and planning, the authors utilize the
OWASP Top 10.” Table 3 outlines the critical cybersecurity threats associated with the adoption
of Al highlighting potential vulnerabilities and risks that utilities must address to safeguard their
operations.

9 The Alan Turning Institute. (2025). Al's "Trolley Problem" Problem. Retrieved from
https://www.turing.ac.uk/blog/ais-trolley-problem-problem

9% OWASP. (n.d.). ML01:2023 Input Manipulation Attack. Retrieved from https://owasp.org/www-project-
machine-learning-security-top-10/docs/ML01_2023-Input_Manipulation_Attack
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Table 3: OWASP’s Top 2023 LLM vulnerability list and descriptions.

OWASP . o

ol sl £ By e Description of OWASP Vulnerability
ML01:2023 Input A type of attack in which an attacker deliberately alters input data to
Manipulation Attack | mislead the model.
ML02:2023 Data An attacker manipulates the training data to cause the model to behave in an
Poisoning Attack undesirable way.
ML03:2023 Model Model inversion attacks occur when an attacker reverse-engineers the
Inversion Attack model to extract information from it.
ML04:2023 Membership inference attacks occur when an attacker manipulates the
Membership model’s training data in order to cause it to behave in a way that exposes
Inference Attack sensitive information.

ML05:2023 Model Model theft attacks occur when an attacker gains access to the model’s
Theft parameters.

ML06:2023 Al In ML Supply Chain Attacks, threat actors target the supply chain of ML
Supply Chain models. This category is broad and important, as software supply chain in
Attacks ML includes even more elements than in the case of classic software.

Transfer learning attacks occur when an attacker trains a model on one task
and then fine-tunes it on another task to cause it to behave in an undesirable
way.

ML07:2023 Transfer
Learning Attack

ML08:2023 Model Model skewing attacks occur when an attacker manipulates the distribution
Skewing of the training data to cause the model to behave in an undesirable way.

In an Output Integrity Attack scenario, an attacker aims to modify or
manipulate the output of a machine learning model in order to change its
behavior or cause harm to the system it is used in.

ML09:2023 Output
Integrity Attack

ML10:2023 Model Model poisoning attacks occur when an attacker manipulates the model's
Poisoning parameters to cause it to behave in an undesirable way.

4.2 Operational and Planning Risks

These risks can be systematically grouped into two broad categories, operational and planning,
providing a structured framework for assessing the potential impacts of Al integration on grid
reliability (Table 4Table 4).

Table 4: Safety risk and description.

Risk Description
Loss of Operator Al models may make decisions that operators cannot interpret, reducing
Understanding situational awareness and impairing crisis response.
]())ll?ief:'atlons Model Models trained on historical data may fail when grid conditions change.




Automation
Dependency

Over-reliance on Al may reduce manual system checks, leading to latent
failures that go unnoticed until critical.

Inflexible Failover
Paths

Al-based control systems might lack robust manual override or fail-safe options
in case of malfunction.

Forecast Errors

Model Validation There is no standardized way to test Al for safe grid deployment under all
Challenges scenarios, making certification difficult.

Load an.d Al systems may mispredict load or renewable generation, leading to imbalances
Generation

and reserve margin failures.

Safety

If Al is used in protective relaying or fault isolation, incorrect decisions could
lead to cascading outages.

Power Outage

Failure in safety, or other automation or operations results in a power outage.

4.3 Regulatory and Policy Risk

These challenges can also be systematically grouped into categories that highlight their
implications for standards, jurisdiction, and accountability, providing a structured framework for
evaluating regulatory and policy risks (Table 5).

Table 5: Regulatory risk and description.

Risk Description \

Standards Lag Existing grid reliability standards (NERC CIP, IEEE, etc.) are not fully
equipped to address Al-specific risks, leaving gaps in regulation.

Policy Policies at federal, regional, and state levels may restrict or change the way
that Al can be used in different applications and may not be informed by the
state-of-the-art technical best practices. Additionally, policies may vary
across jurisdictional territories, making it difficult to standardize the
adoption of best practices.

Liability, It may be unclear who is liable if an Al-enabled device causes a grid event—

Responsibility, and  manufacturer, Al vendor, utility, or operator

Accountability

4.4  Supply Chain

These vulnerabilities can be systematically grouped into categories that reflect risks in sourcing,
hardware dependencies, and development pipelines, providing a structured framework for
evaluating supply chain security (Table 6).

Table 6: Supply chain risk and description.

Risk Description \
Foreign Al software or hardware may be sourced from or maintained by foreign
Adversary entities, raising concerns about embedded malicious code or operational
Control Points dependencies.

Hardware- Al functions may require specialized chips (e.g., GPUs, NPUs) that have their
Software own security and supply chain issues, especially if sourced from non-U.S.

Coupling Risks

manufacturers.




Software Al applications that are used in the grid may involve multiple stakeholders,

Development including not only the primary tool provider, but also software integrators,

Pipeline developers of models on top of which utility applications are built, and more.
If not all of these actors understand the utility’s primary objectives, the
deployed model may not meet all of the safety and reliability needs.

4.5 Privacy and Security

These concerns can be grouped into categories spanning customer privacy, financial integrity,
and data security, providing a structured framework for assessing the vulnerabilities Al
introduces to sensitive information (Table 7).

Table 7: Security risk and description.

Risk Description ‘
Customer Data Customer data, including personally identifiable information
Breach/Manipulation/Loss (PII) or power usage-data (AMI data breach *® ) that reveals
personal habits, may be accidentally revealed by Al if proper
protections are not in place. Manipulation of such data could
lead to billing errors.

Planning Data Loss of Critical Data, Manipulation of Data used nefariously
Breach/Loss/Manipulation

5. Consequence Analysis and Attribute Decomposition of
Cyber Physical Risk of the Use of Al

In Al-enabled power system applications, consequence analysis must evaluate not only the
projected physical and operational impacts of an event on the grid, but also the performance
constraints of the Al system itself. This additional layer is essential because the reliability of Al-
derived outputs directly influences the quality and timeliness of operator actions. The
decomposition into availability, accuracy, and speed or delay provides a structured method for
characterizing the Al system’s operational profile (Figure 4). From the system perspective,
availability refers to the proportion of operational time the Al application remains functional and
able to process inputs, accounting for hardware uptime, data pipeline continuity, and model
service stability, and the application availability itself, for example if a utility were to lose access
to its fault location tooling, they likely can manually process, but if the utility lost access to its
OMS, there may be more significant events such as longer outage processing times and therefore
longer times with lights out for customers. Accuracy measures the system’s ability to generate
correct classifications, forecasts, or anomaly detections under diverse operating conditions and
data quality states, including during contingencies or degraded measurements. An error in fault
location may result in a significant cost in digging the wrong space for access to the power line.
Speed/delay encompasses end-to-end latency from data acquisition through Al inference to

% Kovacs, E. (2025, July 9). Canadian Electric Utility Says Power Meters Disrupted by Cyberattack. Retrieved
from SecurityWeek: https://www.securityweek.com/canadian-electric-utility-says-power-meters-disrupted-
by-cyberattack/
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delivery of actionable output, with consideration of worst-case execution times under high
computational load. Restoration and fast reaction tooling such as line drop detection, to prevent a
wildfire, cannot tolerate latency, but power systems planning can.

@ &

Data Acquisition Al Processing — Decision Support S
/ = 4
Availability issues at input Accuracy constraints at Speed constraints at end-to-
and service uptime. For model inference. For end delivery of action. For
example, Hardware uptime, example, fault location example, Line drop
data pipeline continuity, and precision, degraded detection (wildfire), outage
OMS access. measurements, and restoration tools, vs. long-
anomaly detection errors. horizon planning.

Figure 4: Performance Constraints of Al for Grid.

From the grid impact perspective, availability failures in the Al system may translate into
delayed fault isolation, missed protection coordination windows, or reduced situational
awareness. Accuracy deficiencies may result in incorrect dispatch signals, misidentification of
incipient instability, or failure to detect cyber-physical intrusions, each carrying distinct safety,
reliability, and resilience consequences. Excessive speed or delay may render Al outputs non-
actionable in time-critical operations such as remedial action schemes, fast frequency response,
or wildfire-related PSPS decision-making. By mapping Al system performance attributes to
specific grid consequence categories, including safety, reliability, resilience, reputation, and
economic cost, operators can quantify the dependency of operational risk on Al system behavior.
This approach ensures that consequence analysis remains physically grounded in grid
performance metrics while explicitly incorporating the technical constraints and capabilities of
the Al system delivering the analysis

For each use case or Al application domain, it’s possible to evaluate key operational constraints
such as latency, availability, and accuracy of the solution and evaluate these in a matrix. This
evaluation and remediation or protection approach is evaluated against the top 10 OWASP styles
of Al attack or failure (see Table 3).

The authors selected several Al-enabled applications for this analysis and categorized them using
a subset of OWASP’s Top Risks and Vulnerabilities for LLM applications. A heatmap was then
created to show which applications pose the highest consequence if the identified OWASP
vulnerabilities and/or risks are exploited.



5.1 Consequence Evaluation

The consequences of each Al event style, on the use case are evaluated utilizing the following
criteria, noting that this is not exhaustive, but intended to determine a prioritized range of
consequences for ranking and mitigating risk. As a framework, individual entities may consider
alternative features, but as a starting point these are the primary concerns of many utilities.

Note: The applications were rated on a scale from green to red, with green indicating the lowest consequence or risk and
red indicating the highest consequence or risk.

Table 8: Criteria and Mapped Consequence of Al Event Styles.

Criteria Consequence of AI Event Style

Ability to Serve Load - Size of Outage: Ranging from single home to whole region or territory
depending on entity assessing.
- Duration of Outage: How long the power would likely be impacted
(momentary to days).

Safety - Potential for a safety event, from low to loss of life.

OT Asset Integrity - Can be reinstated quickly, or needs fully replaced and/or no longer trusted.

Privacy - Data remains private, to full loss of data.

Critical Data Loss - None to all.

Cost of Event - Low loss event to entity bankruptcy.

Reliability of Grid - Impact to metrics, such as CAIDI and SAIDI.

Reputation or Customer - Many utilities are ranked on customer satisfaction and reputational damage

Satisfaction can significantly impact their business operations.

Ability to Reason about - Potential complexity and timescale impact to reason about that system.

System

Putting together the evaluation, the style of use case and the OWASP Top 10, the authors created
an extensive list of potential consequences of the style of Al issue. An example is provided in
Table 9, with a complete table available in Appendix A: Consequence Table Heatmap, along
with additional descriptions for that table in Appendix B: Consequence Table Descriptions. The
heatmap in Appendix A categorizes Al vulnerabilities across use cases by severity, using a color-
coded scale from green (lowest consequence) to red (highest consequence). This evaluation is
informed by the 2023 OWASP Top 10 for LLMs, which highlights key risks such as prompt
injection, model poisoning, and insecure feedback loops.

Disclaimer: While this consequence ranking provides a structured view of potential impacts, the
actual severity of Al vulnerabilities depends heavily on the specific model architecture,
deployment environment, operational dependencies, and organizational context. A use case
ranked as "moderate" in one system may be "high" in another, depending on how the Al is
integrated and relied.



Table 9: Example of consequence ranking with varying severities.
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Ultimately, the evaluation underscores the importance of applying the greatest rigor to Al
applications that fall within the “red” or high-consequence category. Rigor, in this context, refers
to the disciplined application of robust safeguards: comprehensive testing and validation,
continuous monitoring for drift or manipulation, alignment with evolving standards, and
structured contingency planning. Utilities should ask not only whether Al is needed for a given
use case, but also whether the benefits of adoption meaningfully outweigh the potential risks.
Choosing not to adopt carries its own risks, such as foregone efficiencies, slower response times
or missed opportunities for resilience. However, adoption without sufficient mitigations could
expose the grid to unacceptable vulnerabilities. Safe deployment therefore requires striking a
balance: prioritizing high-value use cases, investing in layered defenses, and implementing
governance mechanisms that ensure Al augments rather than undermines grid reliability.

6. Repercussions of Non-Al Deployment or Limited

Deployment

While much attention is given to the risks induced by Al in power systems, the risks of not
deploying Al, or deploying it in a limited, fragemented, or delayed manner, must also be
evaluated. Some business drivers for reducing cost in utilities, and therefore not increasing rates,




include increasing reliability and increasing customer satisfaction will outweigh the risks posed
in utilizing the modernized functionality. This has been one of the reasons cloud adoption in
smaller utilities is outpacing large IOUs, and there is potential for the same to occur in Al
adoption.

Using the availability, accuracy, and speed or delay decomposition provides a consistent
framework to assess operational risk in both scenarios. From the Al system performance
perspective, availability refers to the operational uptime of the Al service; accuracy is the rate of
correct outputs under varying data and grid conditions; and speed or delay measures inference
latency relative to the time-criticality of the function. These characteristics map directly to grid
repercussions (Table 10).

Table 10: Al Characteristics Mapped to Grid Repercussions.

Characteristics Grid Repercussions

Availability - Failures can delay protective actions
Accuracy - can lead to incorrect operational decisions
Speed or Delay - can make outputs non-actionable in time-sensitive scenarios

From the non-adoption perspective, absence of Al can introduce comparable risk in a future
modernized grid. In terms of availability, reliance on purely manual processes can bottleneck
operations, especially under high workload or during emergencies. In terms of accuracy, human
operators, typically managing a strained workload, are more prone to misinterpret complex
system states, increasing error rates. In terms of speed or delay, manual analysis can be
significantly slower, leading to delayed interconnections, slower contingency response, or
missed real-time mitigation opportunities. Non-adoption can also limit the organization’s ability
to leverage advanced grid technologies such as adaptive protection schemes, predictive
maintenance, or DER orchestration, constraining system flexibility, resilience, and integration
capacity. With grid deployments and operational environments becoming more complex, often
surpassing the threshold of human cognitive processing capacity, Al becomes increasingly
critical for managing the scale, speed, and multidimensional trade-offs inherent in modern power
system decision-making.

6.1 Consequence Analysis

By scoring both Al-enabled and non-Al scenarios qualitatively—classifying the consequence in
each attribute as low, medium, or high—operators can compare not only the risks of using Al but
also the operational and strategic costs of forgoing it. This approach ensures decision-making
accounts for the full spectrum of impacts, enabling a more complete viability assessment when
selecting solutions.

In the example of consequence ratings below for select non-adoption of Al application for power
systems, the same scale of evaluation is used as for evaluating the risks of Al adoption, namely
the same criteria in Table 8.



Table 11: Example use cases of consequence of non-Al adoption.

Use Case Consequence of Non-Al Deployment Ranking

Fault Detection ~ Without Al-driven fault location or predictive analytics, outage High
sizes may increase and restoration times may lengthen. Manual
processes may not scale during widespread events. Delayed
detection of hazardous conditions (e.g., line drops, thermal
overloads) increases the risk of safety incidents, especially in
wildfire-prone or high-voltage environments.

Predictive asset  Lack of Al-driven predictive maintenance may lead to situations Low
maintenance of undetected degradation, resulting in catastrophic failures and

costly replacements.
Outage Operational inefficiencies, prolonged outages, and reactive Moderate
Management maintenance can escalate costs significantly, especially during

high-impact events. Longer outages and slower service restoration
can erode public trust, especially in regions where utilities are
benchmarked on customer satisfaction. missed optimization

opportunities.
Autonomous As grid complexity increases, human-only reasoning becomes Moderate
Grid Control insufficient to manage real-time trade-offs, leading to suboptimal

or delayed decisions.

The evaluation of non-Al deployment consequences reveals that inaction is not a neutral or risk-
free decision—it introduces its own spectrum of operational, safety, and strategic vulnerabilities.
As power systems grow in complexity and interdependence, the limitations of automated or fixed
processes become more pronounced, particularly in areas requiring speed, precision, and
adaptability.

7.Engineering Controls and Approach to Develop
Solutions

Using this approach, an Al user in a utility setting can evaluate their risk tolerance and develop
appropriate controls. By applying this approach, utilities can align Al deployment strategies with
their defined risk tolerance and operational priorities. This alignment enables selection of
appropriate deployment architectures—for example, on-premises, hybrid, or edge-based Al
systems—based on the criticality of the function and associated risk profile. Risk-informed
solution deployment can be further reinforced through structured methodologies such as Cyber
Informed Engineering (CIE), °7 which integrates cybersecurity considerations into system design

97 Office of Cybersecurity, Energy Security, and Emergency Response (CESER). (n.d.). Cyber-Informed
Engineering. Retrieved from U.S. Department of Energy: https://www.energy.gov/ceser/cyber-informed-
engineering
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from inception, and applicable NIST frameworks—for example, the NIST Cybersecurity
Framework (CSF) for risk management or NIST Al Risk Management Framework (Al RMF) for
trustworthy Al practices. These frameworks help ensure that Al systems are not only technically
robust, but also secure, resilient, and compliant with industry standards, while providing clear
checkpoints for governance, validation, and continuous monitoring.

To mitigate systemic failures, utilities should implement consequence-driven engineering
controls (ECs) that bound Al within safe operating parameters. Redundancy, transparency, and
fail-safe mechanisms are essential to ensure resilience when Al systems malfunction or produce
incorrect recommendations. At a minimum, every system should include a manual override or
“off-switch” that enables operators to assume control seamlessly. If an Al application must be
taken offline—whether for maintenance or in response to abnormal behavior—grid operations
should transition smoothly to manual or traditional controls. Likewise, when outputs deviate
from expected bounds or when the Al model signals low confidence, the system should default
to a safe mode, reverting control to human operators or conservative, rule-based backups. This
mirrors aviation autopilot systems, which hand control back to pilots during complex or
uncertain conditions to preserve safety.

Equally important is designing redundancy into Al systems to avoid single points of failure. A
lone Al agent should never hold sole responsibility for critical functions. Using multiple models
with diverse architectures, or maintaining traditional control systems as backups, significantly
enhances reliability. For instance, some utilities deploy “watchdog” systems that monitor Al
health by tracking factors like input data integrity and processing time. These watchdogs issue
alerts when anomalies occur, enabling proactive responses before failures escalate. By
embedding these engineering safeguards into Al deployments, utilities can ensure that grid
operations remain resilient and customer safety is preserved—even in the face of Al-related
disruptions.

7.1 Deployment Taxonomy

As electric utilities begin integrating artificial intelligence (Al) capabilities, including large
language models (LLMs) and agentic Al systems, into operational workflows, it is necessary to
categorize deployment environments based on the location of compute and data, the required
level of control, and the associated operational and regulatory risk. The deployment taxonomy
presented herein establishes a structured framework to align Al system implementation with
established consequence thresholds in electric utility operations. Each deployment category (e.g.,
public cloud, hybrid, on-premises, edge, federated, and private cloud) presents a distinct profile
in terms of latency, data governance, scalability, and infrastructure control. These factors must
be evaluated in the context of system criticality, regulatory compliance requirements (e.g.,
NERC CIP), and the potential operational impact of Al system performance, error, or
degradation.

7.1.1 Taxonomy Options for Deployment

The taxonomy options described briefly below are summarized in more detail in Table 12.

Full Public Cloud
e Model Location: Cloud (e.g., OpenAl, Azure OpenAl, AWS Bedrock)



Data Location: Cloud-native (utility-hosted on cloud or SaaS environments)

Advantages: Scalable, fastest innovation cycles, access to cutting-edge APIs

Challenges: NERC-CIP data restrictions, sovereignty risks, network latency,
compliance limitations

Hybrid Cloud (Cloud Model + On-Prem/Private Data)

Model Location: Cloud-hosted model (e.g., OpenAl API)

Data Location: Utility-owned infrastructure on-prem

Advantages: Secure data control + advanced models

Challenges: Complex integration, data tunneling, latency, increased need for cyber
governance

Fully On-Prem

Model Location: On-site (using open-source LLMs or fine-tuned local models)
Data Location: On-prem data centers or secure utility networks

Advantages: Total control, compliance-aligned (NERC CIP, IT/OT segmentation)
Challenges: Infrastructure and maintenance burden, slower to scale, high CapEx

Edge-Based Al (at Substations, DERs, Field Devices)

Model Location: Embedded in devices (e.g., ARM chips, rugged edge servers)
Data Location: Localized (on-device, at edge nodes)

Advantages: Low latency, operates during comms loss, fast decisions at the edge
Challenges: Limited compute/storage, requires distilled models

Federated / Distributed Al

Model Location: Multi-location (edge + regional + cloud inference nodes)

Data Location: Local to each node, coordinated for training or inference
Advantages: Privacy-preserving model sharing, no centralized data exposure
Challenges: Federated orchestration complexity, high coordination effort, expanded
attack surface and ownership models

Private Cloud / Co-Located Data Center (e.g., Vendor or Utility-Owned)

Model Location: Hosted in utility-controlled or vendor-managed secure cloud
Data Location: Private cloud storage or connected utility systems

Advantages: Can align with NERC/FERC compliance, scalable, cloud-like control
Challenges: Slower Al toolchain updates, requires close vendor partnerships

Table 12: Deployment taxonomy and data residence example.

Deployment Model Data Model Data Consequence
Model Resides Resides Resides Resides Alignment
Public Cloud Cloud Cloud Cloud Cloud Low consequence
Hybrid Cloud Cloud On-Prem Cloud On-Prem Moderate

consequence




On-Premises  On-Prem On-Prem On-Prem On-Prem High-moderate

consequence
Edge Al Field Local Field Local High consequence
Devices Devices
Federated Mixed Distributed  Mixed Distributed  High-real-time
Private Cloud Private Private Private Private Medium-to-high
Utility DC  Cloud Utility DC  Cloud

8. Responsible Practice Recommendations

Best-practice recommendations for selecting and deploying Al models in the electric grid
context. These practices aim to maximize the value of Al while safeguarding reliability and
safety. The items below are the authors’ Top 10 recommendations for responsible deployment
and should be considered for all applications. Future work includes a practice guide for CIE-
informed AI deployments for the grid.”®

Align Al Solutions with Use-Case Criticality: Evaluate the consequences of Al
decisions in each application and choose the level of human oversight accordingly. Not
all grid Al applications carry equal risk. For example, an Al that writes customer outage
texts can be fully automated, whereas an Al that controls a transmission breaker should
be under human supervision. A consequence-driven approach is advised: for high-impact,
safety-critical actions, keep humans in the loop or in approval roles; for lower-risk
optimizations, more autonomy can be allowed. In practice, categorize potential Al use
cases (forecasting, outage restoration, market bidding, etc.) by operational risk and adopt
stricter controls on those with high impact. The new "technology" is moving and
integrators should make efforts to harmonize with the existing before replacing to bring
the human's along.

Choose the Right Model Type for the Task and Function: Base model selection on the
nature of the problem, available data, and need for interpretability. For instance,

use supervised learning models for well-defined prediction tasks with historical labels
(e.g. load forecasting), unsupervised models for anomaly detection and pattern discovery
when you lack labels (equipment anomaly detection), and reinforcement learning for
sequential decision or control problems (voltage control, dynamic energy dispatch).
Within these, consider advanced architectures (like LSTMs for time-series, CNNs for
image-based asset inspections, GNNs for networked data) as needed. However, balance
complexity with transparency — if a simpler model (like a decision tree or linear model)
achieves the goal, it may be preferable for ease of explanation to engineers and
regulators. Physics-informed models or hybrid approaches should be favored in domains
where physical consistency is paramount (state estimation, stability analysis). Evaluate
model performance not just on accuracy but also on whether outputs make sense
physically (no negative loads, no frequency beyond limits, etc.).

Data Readiness First: Successful Al deployment begins with robust data infrastructure.
Utilities should ensure they have a single, reliable source of truth for operational data —
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typically by establishing data lakes or federated data platforms that integrate SCADA,
AMI, asset management, outage management, weather and other datasets. Implement
strong data governance: assign data stewards, document data lineage, and enforce data
quality checks regularly. Before model development, spend ample time on data cleaning
and feature engineering, as these often yield bigger improvements than fancy algorithms.
It’s also recommended to create a cross-functional data team that includes domain experts
(power engineers) working with data scientists, so that data is interpreted in context (e.g.
knowing that a “0” in a SCADA field might mean sensor offline, not true zero). In terms
of volume, leverage historical archives and consider augmenting with simulated data if
real data is insufficient for rare events. Additionally, ensure data update pipelines are in
place — models might need periodic retraining as new data comes in (to avoid model
drift). Having automated pipelines for data ingestion and model retraining (with proper
validation gates) will keep the Al solution accurate over time. Diverse data sources can
unlock powerful insights but requires tackling compatibility and sharing challenges
upfront.

Embed Security and Privacy Measures/Policy: Treat Al models as part of the critical
infrastructure — secure them and their data. This includes protecting training data and
real-time input data from manipulation (through encryption, authentication, intrusion
detection) because compromised data can lead to dangerous outputs. Establish processes
to detect anomalous model outputs that might indicate either model issues or malicious
interference (for example, a sudden recommendation to shed a large load could be
flagged for review). Incorporate adversarial testing during development — expose the
model to slightly corrupted or adversarial inputs to see if it behaves robustly. On the
privacy front, comply with all regulations: use anonymization or aggregation for
customer data in Al models, and restrict access to sensitive data. Data governance
policies should clearly define what data can be used for Al and ensure regulatory
reporting (some regulators require disclosure of how customer data is used or if an Al
makes certain decisions). By proactively addressing cyber and privacy aspects, utilities
can avoid setbacks later and build trust with stakeholders that the Al is safe to use.
Ensure Explainability and Transparency: One challenge with Al, especially complex
ML models, is their “black box” nature. In a critical domain like the grid, operators and
engineers need to understand (at least at a high level) why an Al model is recommending
a certain action. So, incorporate explainability tools and requirements in model selection.
This could mean using inherently interpretable models where possible or adding
explanation layers for deep models. For grid operations, even a simple textual
explanation can help, such as “Voltage regulator tap changed by Al because voltage at
node X exceeded threshold due to high load.” Providing these insights helps humans
validate and trust the AI’s reasoning. As noted in a NERC report, humans often assume
Al is reasoning like they do, which is not true, and this mismatch can be problematic if
not addressed. Thus, design the Al system’s Ul to present relevant context: confidence
levels, key factors influencing the decision, and any model uncertainty. Transparency
also extends to documenting the model’s validation: keep a record of how the model was
tested (scenarios, performance metrics) and any limitations discovered. This
documentation not only aids internal understanding but also is crucial if regulators or
other external parties inquire about the AI’s use. In summary, no black boxes in the



control room — operators should feel the Al is a tool they comprehend and control, not a
mysterious oracle.

Use a Phased and Pilot-Based Deployment Strategy: When introducing Al into
operations, start small and simple, then progressively expand. Begin with pilot projects in
a controlled environment — for example, run the Al decision support in parallel with
human decision-making for some months (“shadow mode”) to evaluate its suggestions
without risk. Use these pilots to gather performance data, user feedback, and to calibrate
the model. Phased deployment gradually increase the AI’s autonomy and the scope of its
actions as confidence grows. A best practice is to start with human-in-the-loop: let the Al
recommend actions and have humans approve them. This phase allows operators to get
comfortable and also serves as on-the-job training. Over time — and with clear success
criteria met (e.g. the AI’s recommendations proved correct 99% of the time in pilot) —
then closed-loop automation for specific functions. Maintain fallback: the Al should have
an easy manual override or an off-switch in case it behaves unexpectedly. Also plan

for contingency operations — if the Al system has to be taken offline (for maintenance or
due to an issue), ensure the grid operations can smoothly revert to manual or traditional
control.

Train and Upskill Personnel (Human-Centric Deployment): The success of Al in the
grid is not just a technical matter, but also a human one. Invest in operational training
programs so that engineers and operators learn how to use the new Al tools effectively,
along with continuing to learn core power system operations, one should not replace the
other. Establish human-machine teaming framework: redefine roles so that staff know
what the Al will handle and what their own responsibilities are.

Implement Continuous Monitoring and Improvement: Deployment is not the end —
monitor the Al system’s performance continuously in production. Set up metrics and
KPIs to track its impact (e.g. forecasting error reduction, fewer outages, cost savings,
etc.). Also monitor for errors or drift: for example, if a load forecasting Al starts to show
bias as new electrification trends emerge, trigger a retraining or recalibration. Establish a
process for periodic review of the AI’s decisions by experts, at least in the early stages, to
catch any odd behavior. This can be formalized as an A governance committee within
the utility that reviews Al outcomes and any incidents. Integrate real-time validation
where feasible — one recommendation is to use parallel models or rules as a check on the
AT’s recommendations. For instance, if the Al suggests a power flow that violates a
constraint, a simple rule-based checker could catch it before execution. Over time, these
validations can be relaxed as trust increases, but it’s good to have them as a safety net.
Keep models up to date with the latest data and system configuration (for example, if a
new solar farm is added, ensure the forecasting model knows about it). Moreover, plan
for model maintenance: machine learning models can degrade over time (data drift,
changes in usage patterns), so schedule periodic retraining or re-validation (perhaps every
year or after major system changes). Document any model updates and ensure operators
are informed of changes in behavior or new features. In essence, treat the Al system as a
living part of the grid ecosystem that requires ongoing care, not a one-off install.
Leverage Industry Lessons and Collaborate: The electric utility community is actively
sharing lessons learned from Al deployments. Engaging with industry groups (e.g., EPRI,
IEEE smart grid groups, NERC working groups) and learning from case studies can
greatly benefit a utility’s Al journey. Many recent whitepapers and reports (like NERC’s



2024 Al in operations white paper, DOE’s Al for grid research, etc.) highlight common
pitfalls and successful strategies. For example, one RAND study pointed out that
introducing Al widely in grid operations can have unexpected systemic effects if not
coordinated (they found that if some operators have Al assistance and others do not, it
can lead to misaligned decisions). Such insights suggest that industry-wide standards and
best practices may be needed for smooth integration. Utilities should advocate for and
adopt emerging standards for Al in critical infrastructure — whether it be in model
validation, data exchange formats, or reliability testing protocols. Additionally, sharing
non-sensitive data and results with research partners or consortia can accelerate
innovation (for instance, participating in open datasets or challenges for grid AI). Many
utilities have found value in partnering with universities or national labs to develop Al
models tailored to their needs, benefiting from cutting-edge research. By staying
connected to the broader community, utility leaders can ensure they are following the
most up-to-date and proven practices, rather than reinventing the wheel.

e Focus on Resilience and Fail-safes: Finally, users should prepare for the scenario where
Al might fail or yield an incorrect recommendation. Build resilience into the Al
deployment. This means having fail-safe mechanisms: if the Al output is outside normal
bounds or the system detects the Al is not confident, it should default to a safe mode
(e.g., revert control to human or to a conservative rule-based backup). It’s analogous to
autopilot systems handing control back to pilots in complex situations — the transition
must be smooth. Conduct “what-if” analyses for worst-case Al failures (like what if the
Al mis-classifies a major fault as normal? what if it fails to forecast a peak load?) and
have mitigation plans (alarms, redundant checks, etc.) for those. Additionally, consider
the redundancy of Al systems: a single Al agent should not be a single point of failure for
critical control. Using multiple models (with diversity in design) or keeping the
traditional control as a backup initially can improve reliability. Some utilities implement
a “watchdog” that monitors the AI’s health (looking at factors like input data health,
processing time, etc.) and raises an alert if something seems off. By engineering these
safety features, the grid can tolerate an Al issue without impacting customers or safety —
which is absolutely essential given the high stakes.

9. Conclusion

In conclusion, the selection and deployment of Al models in the electric grid should be
approached with a blend of technical rigor and operational pragmatism. By focusing on models
well-suited to the task domains (detection, prediction, optimization), grounding them in power
system physics, ensuring robust data foundations, and carefully managing the human/automation
interface, utilities can harness AI’s capabilities to create a smarter, more resilient grid. Artificial
intelligence could in the next 5 to 10 years become a core component of electric grid business
planning and operations. This paper outlined how Al is being proposed or piloted to support
functions across detection, prediction, optimization, and customer engagement, while also
identifying the risks associated with its adoption. These risks include cybersecurity
vulnerabilities, data quality and governance challenges, model drift, regulatory gaps, and
potential reductions in operator expertise.



A consequence-based framework provides a systematic method to evaluate Al applications. By
assessing adoption against operational criticality, performance attributes, and the consequences
of non-adoption, utilities can align Al deployment with their risk tolerance. Effective integration
requires models that reflect power system physics, reliable and well-governed data, and clear
processes for monitoring and validation. Engineering controls such as redundancy, fail-safes, and
manual overrides remain necessary to ensure continuity of safe operation.

Al deployment in the electric sector should be treated as an incremental, managed process with
responsible and appropriate adoption. Phased implementation, workforce training, and
engagement with regulatory and industry standards will be important for achieving reliable
outcomes. By applying consequence-based assessment and cyber-informed engineering
practices, utilities can incorporate Al in ways that improve operational effectiveness while
maintaining safety, security, and compliance.



Appendix A: Consequence Table Heatmap

Table 13: Heatmap example of Top 10 OWASP Al risks and vulnerabilities by grid application/ use case.

Note: While this consequence ranking offers a structured lens for evaluating Al vulnerabilities, the actual impact of a given issue can vary significantly. Factors
such as model architecture, deployment environment, operational dependencies, and how the Al is integrated into decision-making all influence the real-world

severity. A use case rated as “moderate” in one context may be “high” in another.
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Appendix B: Consequence Table Descriptions

Table 14: Consequence descriptions per use case.
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