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1. Introduction 
Digital transformation and utilization of artificial intelligence (AI) in the electric grid are 
fundamentally changing the industry’s approach to common problems and enabling a broader 
paradigm shift in grid planning and operations. The change in approach is circularly both 
enabling and driving modernization, with load growth and reliable management of data center 
and AI infrastructure shifting away from planning approaches with relatively predictable 
behaviors and toward a mix of consumer and industrial choices that surpass human cognitive 
abilities to process. This movement has potential to condition humans to not understand the 
system on which the AI depends, while requiring it for development of the necessary 
infrastructure.  Approaches which would address most likely grid conditions and events, such as 
faults, aging of equipment, and weather, now must also account for large loads which shift not 
based upon weather or time of day, but the computational load. Quantifying computational load 
is independent of the traditional grid forecasting variables, where a data center’s aggregate load 
is determined by user and AI system behavior and decoupled from normal grid planning and 
operations. AI is both the cause and solution for these challenges, with new grid planning tools 
integrating massive amounts of decisions into frameworks.    
 
The race to dominate the AI field between the United States and China has significant positive 
and negative implications for both technological advancement and national security. Domination 
of the field is not an isolated function of AI technology; instead, the U.S. must grow its capacity 
to handle large AI-driven electronic loads, develop new models, and drive adoption. As America 
invests heavily in AI research and development, the country’s goal is to achieve breakthroughs 
that could redefine industries, economies, and military capabilities. However, the intense 
competition from adversarial nations also heightens security risks, including the potential for 
cyber espionage, intellectual property theft, and the misuse of AI technologies from the increased 
digital attack surface. Ensuring the responsible appropriate use and robust security of AI systems 
is paramount to preventing malicious exploitation and maintaining global stability. The U.S. 
must navigate this AI race carefully, balancing innovation with international cooperation to 
address critical security concerns, specifically when it comes to the integration of AI with critical 
functions such as the electrical power grid.1   
 
The electric grid is evolving into a complex cyber-physical system where AI is increasingly 
applied to enhance monitoring, control, and optimization. Grid operators are already using AI 
to monitor transmission lines and isolate faults, and to predict fluctuations in electricity supply 
and demand.2 As they look to grow and thrive in this new reality, utilities must also consider 
their approach to a secure and responsible use of the load on which the AI is driven along with 
the AI itself. Many AI applications, will be integrated into these tools, along with new 
requirements to implement cloud computing into operational technology (OT) operations, which 
also increases utility use of data centers that house cloud computing platforms. Therefore, risk 
frameworks must also address these interdependent concerns to enable their responsible and 
secure use as rapidly as AI adoption. Energy vendors and service providers are racing to deploy 

 
1 Prier, S., Strong, A. M., & Welburn, J. W. (2023). Interdependence across the national critical functions 
(RAND Working Paper WR-A210-1). RAND Corporation. 
2 Frigerio, G. (2024, December 3). Exploring the role of AI in energy forecasting and grid management. 
Plexigrid. https://plexigrid.com/exploring-the-role-of-ai-in-energy-forecasting-and-grid-management/ 

https://plexigrid.com/exploring-the-role-of-ai-in-energy-forecasting-and-grid-management/


 

AI within their tools, products, and services to demonstrate their acceptance and enriched 
modernization capabilities. Though acting fast (and even failing fast) are qualities needed to help 
win the AI race, this comes at a cost to early adopters of these technologies, who will bear the 
burden of poor implementations, evolving models, and nascent application spaces. When these 
applications are in critical infrastructure sectors like the grid, the costs of these challenges could 
be significant (e.g., safety or reliability impacts). 
 
This paper focuses on key aspects of AI adoption in the electric energy sector through three 

modalities: AI model integration 
inside the organization, purchase of 
commercial tools with AI integrated, 
and edge device integration. The 
authors summarize key risk-informed 
insights for AI use in electric grid 
operations and planning, which 
includes a review of the current use 
cases for the electric grid and a simple 
analysis framework to understand AI 
impact, coupled with application 
decomposition and consequence-
driven analyses of the application’s 
security and impact and in which case 
security controls can be applied. By 
doing this style of analysis, risk-
informed controls can be placed 
around technologies, enabling their 
use and reducing the risk of the 
highest consequence repercussions. 
Like cloud data models, AI introduces 
new shared risk boundaries among 
utilities, vendors, regulators, AI 

developers, maintainers and support. Similar to other digital transition challenges in the 
distributed generation space, ownership transition for companies that don’t exist long term is also 
a challenge. High-consequence actions (e.g., autonomous protection) may require hybrid 
architectures with fallback and manual conditions, whereas low-consequence actions (e.g., 
customer energy reports) can tolerate more automation processes. AI must be bound with 
consequence-driven engineering controls, redundancy, and transparency to prevent systemic 
failure. 
 
1.1 What is AI? A simple primer.  
While there is no exact and well-accepted definition of AI, 15 USC 9401(3) defines AI as “a 
machine-based system that can, for a given set of human-defined objectives, make predictions, 
recommendations, or decisions influencing real or virtual environments. AI systems use machine 
and human-based inputs to (a) perceive real and virtual environments; (b) abstract, such as 
perceptions into models through analysis in an automated manner; and (c) use model inference to 
formulate options for information or action.” Using this definition, AI can encompass several 

Figure 1: General AI configuration. 



 

different modeling techniques and can be used in a large variety of contexts. Generally, however, 
AI is defined to include key disciplines such as machine learning (ML), deep learning (DL), and 
generative artificial intelligence (GenAI). The generalized set of AI configurations or building 
blocks is shown in the Figure 1. 
 
The Department of Energy (DOE) defines ML as “the process of using computers to detect 
patterns in massive datasets and then make predictions based on what the computer learns from 
those patterns [...] In ML, algorithms serve as rules for how to analyze the data using statistics. 
ML systems use these rules to identify relationships between data inputs and desired outputs.”3 
With respect to grid optimization, ML algorithms have the capability to “analyze vast amounts of 
data from smart meters, sensors, and other grid components to optimize energy distribution, 
forecast demand, and detect irregularities that could indicate potential failures.”4 This additional 
computation power is expected to improve many metrics in time and detection of events. 
Example ML techniques commonly used in grid applications include support vector machines 
(SVMs), decision trees (DTs), and random forests (RFs). 
 
DL is a subset of ML in which DL algorithms “can automatically learn representations from data 
such as images, videos, or text without introducing human domain knowledge.”5 Traditional ML 
algorithms generally require humans to determine the hierarchy of features within an input 
dataset and are a more structured approach. DL, on the other hand, automates the feature 
extraction process and uses many different layers of algorithms known as “hidden layers” to 
flexibly learn directly from raw data and recognize patterns autonomously, where each layer is 
composed of “neurons” that perform individual calculations based on inputs and “weights” to 
calculate a set output. Given the increased flexibility of these architectures, DL generally 
requires significantly more data than traditional ML and parallelizable processors such as 
graphics processing units (GPUs) to process a large number of identical neurons and hidden 
layers. Example DL models used in grid applications include artificial neural networks (ANNs), 
long short-term memory (LSTM) networks, and convolutional neural networks (CNNs).  
 
As seen in the innermost circle of Figure 2, GenAI generates new statistically probable outputs 
according to learned patterns from raw data.6 GenAI requires massive amounts of data, GPUs, 
and time to produce and train a model. As a workaround for the complexity of producing these 
models, companies have started producing pre-trained GenAI models where a method called 
“transfer learning” can be used to reduce the amount of time, data, and computing resources to 
train a model. Transfer learning is the process of applying knowledge to a DL/GenAI model 
derived from solving one problem and repurposing the final layers of a model to a related but 
different problem. This allows for a large pre-trained GenAI model to be used across domains 

 
3 U.S. Department of Energy. (n.d.). DOE Explains...Machine Learning. Retrieved from Office of Science: 
https://www.energy.gov/science/doe-explainsmachine-learning. 
4 Rashid, A., Biswas, P., Al Masum, A., Al Nasim, M., & Gupta, D. K. (2024, October 20). Power Plays: 
Unleashing Machine Learning Magic in Smart Grids. 4, p. 16. Retrieved from https://arxiv.org/abs/2410.15423. 
5 Nvidia. (2025). Deep Learning. Retrieved from Glossary: https://www.nvidia.com/en-us/glossary/deep-
learning/. 
6 Microsoft. (2024, August 29). Deep learning vs. machine learning in Azure Machine Learning. Retrieved from 
Machine Learning: https://learn.microsoft.com/en-us/azure/machine-learning/concept-deep-learning-vs-
machine-learning?view=azureml-api-2&viewFallbackFrom=azureml-api-2). 

https://www.energy.gov/science/doe-explainsmachine-learning
https://arxiv.org/abs/2410.15423
https://www.nvidia.com/en-us/glossary/deep-learning/
https://www.nvidia.com/en-us/glossary/deep-learning/
https://learn.microsoft.com/en-us/azure/machine-learning/concept-deep-learning-vs-machine-learning?view=azureml-api-2&viewFallbackFrom=azureml-api-2
https://learn.microsoft.com/en-us/azure/machine-learning/concept-deep-learning-vs-machine-learning?view=azureml-api-2&viewFallbackFrom=azureml-api-2


 

and contexts with reduced resources. GenAI, such as a generative pretrained transformer (GPT) 
model, has been proposed to improve state estimation in the power grid, where measurements are 
not available, or allow for flexible, probabilistic forecasting7 through the use of transfer learning 

to fit a GPT to grid operations.  

2. AI Adoption Styles in 
the Electric Sector 
In electric grid infrastructure entities, 
digital technology is intentionally 
adopted by (a) building it internally, (b) 
buying a product with it already 
integrated, or (c) edge-deployed, such as 
in smart meters. Utilities with high levels 
of resources might consider building 
home-grown products whereas smaller 
entities will often buy the product and use 
third-party services. This is evident in 
cloud transformation where smaller 
utilities are using third-parties.8 9 In many 
cases, a combination of all three 
approaches is implemented depending on 
the use case.   
 
Larger utilities have the ability (or desire, 

as the ability is established) to test 
multiple AI tools for multiple 
applications, both through use of their 

own testbeds and partnerships with research institutions. They have more structured risk 
management processes, building in multiple checks for the safe adoption of new technologies. 
Smaller utilities lack the freedom and flexibility to experiment with different products and see 
what works best for them. They often do not have the negotiating power to ask providers10 to 
adjust their products or services, which would make adoption more palatable in their 

 
7 Lok Choi, S., Jain, R., Feng, C., Emami, P., Zhang, H., Hong, J., . . . Kroposki, B. (2024). Generative AI for 
power grid operations. U.S. Department of Energy. Golden: National Renerable Energy Laboratory. Retrieved 
from https://www.nrel.gov/docs/fy25osti/91176.pdf. 
8 Stewart, Emma Mary, Morgan, Julia Catherine, Woodruff, Nathan Lee, Combe, Glenn, & Stolworthy, Remy 
Vanece (2024). Enhancing Cloud Cybersecurity: Prescriptive Controls for Operational Technology. 
https://doi.org/10.2172/2474851 
9 J. Morgan, E. M. Stewart, R. Stolworthy, N. Woodruff, J. Briones and J. Whitaker, "Consequence Based 
Framework for Deployment of Cloud Solutions in the Digital Energy Transition," 2025 IEEE PES Grid Edge 
Technologies Conference & Exposition (Grid Edge), San Diego, CA, USA, 2025, pp. 1-5 
10 Co-ops not ready to use the cloud for electric grid operations. (n.d.). Cooperative.com. Retrieved August 26, 
2025, from https://www.cooperative.com/news/Pages/co-ops-not-ready-to-use-cloud-for-electric-grid-
operations.aspx  

Self Build 
& Use 

Buy a 
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Buy a Tool 
with Models 
Intigrated 

Integrate an 
Edge Device 

with AI 

Figure 2: Diagram of adoption pathways for AI in the electric 
sector. 

https://www.nrel.gov/docs/fy25osti/91176.pdf
https://www.cooperative.com/news/Pages/co-ops-not-ready-to-use-cloud-for-electric-grid-operations.aspx
https://www.cooperative.com/news/Pages/co-ops-not-ready-to-use-cloud-for-electric-grid-operations.aspx


 

environments. However, many recognize that they may miss opportunities for efficiency gains, 
or cost reduction in the grid modernization space, so they will be adopting AI tools despite the 
perceived and real risks. In contrast, due to the regulatory environment for the electric sector, 
many smaller utilities have rapidly adopted cloud-based technology (and likely AI), as they are 
not as closely regulated as the larger critical entities and therefore can make wider digital 
choices. There is no widespread regulation for use of AI in the electric sector, and the pace of 
standards and regulation will not hold with the pace of AI adoption. Alternate approaches for its 
secure and responsible adoption are needed.   
 
Instead, the AI applications that will be deployed in the grid are developed by service and tool 
providers, some of whom may have experience in the utility sector and are attempting to include 
AI in their offerings, and some of whom may have AI expertise and see an opportunity in the 
utility sector. In either case, the dual understanding of how the AI applications work and what 
they are actually accomplishing in the utility space is needed for success. Models need to be 
tuned to the environment in which they are deployed to be most impactful. Careful coordination 
and communication between experts for the individual systems in which technology is deployed 
and the service providers will enable impactful use of AI. As an example of early adoption, 
which is both internally developed and offered as something other entities can buy, Dairyland 
Power Cooperative launched VoltWrite, a private generative AI platform, now offered as a 
service to other rural electric cooperatives. Introduced by CIO Nate Melby at the NRECA 
TechAdvantage Conference in March 2025, VoltWrite is represented as a “secure, in-house AI 
model that avoids the cybersecurity risks of open public models.” An example of its use is field 
inspectors wearing AR glasses linked to VoltWrite and Microsoft Teams for real-time 
collaboration in remote site inspections.11 In another example, Itron is integrating NVIDIA’s 
Jetson Orin Nano system-on-module and AI Enterprise software into its Grid Edge Intelligence 
platform, which supports more than 13 million distributed intelligence endpoints. The addition of 
GPU-based processing at the meter level enables execution of AI models directly on edge 
devices, reducing the need for centralized computation. Potential applications include localized 
load forecasting, voltage optimization, and real-time fault detection using high-resolution 
consumption and power quality data. This architecture is intended to support faster decision-
making in grid operations and improve coordination with distributed energy resources.12  
 
Early adopters of AI technologies will bear the costs of the challenges in novel applications. 
Vendors and service providers are racing to deploy AI in their tools, products, and services to 
demonstrate their adoption and modernization capabilities. Although acting fast and even failing 
fast are qualities need to help win the AI race, early adopters experience costs associated with 
poor implementation, evolving models. When these applications are in critical infrastructure 
sectors like the grid, the costs of these challenges could be significant (e.g. safety or reliability 
impacts). 

 
11 Sukow, R. (2025, March 11). Dairyland Power introduces AI as a service for rural electrics. Retrieved from 
NRTC: https://www.nrtc.coop/dairyland-power-introduces-ai-as-a-service-for-rural-electrics/. 
12 ltron Inc. (2025, March 19). Itron to Bring NVIDIA-Powered Artificial Intelligence to the Grid Edge. Retrieved 
from https://investors.itron.com/news-releases/news-release-details/itron-bring-nvidia-powered-artificial-
intelligence-grid-edge. 

https://www.nrtc.coop/dairyland-power-introduces-ai-as-a-service-for-rural-electrics/
https://investors.itron.com/news-releases/news-release-details/itron-bring-nvidia-powered-artificial-intelligence-grid-edge
https://investors.itron.com/news-releases/news-release-details/itron-bring-nvidia-powered-artificial-intelligence-grid-edge


 

3. Selection of Models and Considerations for AI in the 
Electric Grid  

There are four primary Operational Technology (OT) domains in which power systems 
applications for AI reside detection, prediction, control and optimization, and business and 
customer applications (Figure 4). Some applications fit within multiple domains, and each 
domain has a different risk profile, which will be discussed in the following sections. The 
authors address critical considerations for deploying AI in power systems planning, operations, 
and business contexts. They consider the importance of physical modeling, robust data 
foundations, and secure automation strategies, in relation to these domains.  

3.1 AI Task Domains in Operational Power Systems 

 
Figure 3:  The four AI task domains for power systems are detection, prediction, and control and optimization. 

3.1.1 Detection: Anomaly and Fault Detection 
In the grid context, detection tasks involve identifying unusual patterns or events that could 
indicate faults, anomalies, or security threats. Examples include detecting equipment failures, 
line faults, cyber-intrusions, or abnormal grid oscillations. AI-based detection augments 
traditional alarms by sifting through high-volume sensor data (e.g. SCADA, PMU, or smart 



 

meter streams) to catch subtle issues that rule-based systems might miss.13 Many control centers 
now employ synchrophasor (PMU) analytics for oscillation and event detection, but as data 
volumes grow, ML techniques are being explored to automatically flag anomalies and provide 
operator support.14 15  
 
Model Deployment Examples and Case Studies: Unsupervised learning can be used when 
trying to determine the presence of novel events without explicit labels — i.e., a squirrel or a 
physical attack causing a fault. Techniques like clustering and outlier detection can learn the 
“normal” patterns of grid data and highlight outliers. Alternatively, supervised learning is 
applicable when labeled examples of faults or events are available. Researchers have applied 
supervised learning for tasks like fault detection and location,16 asset health monitoring, and 
security assessment in power grids.17 For example, image-based deep learning18 has been used to 
detect equipment issues from drone imagery, and graph convolutional networks have been tested 
to detect and isolate faults using the network topology.19 20 Physics-informed models for 
detection are suitable where electrical laws are embedded into an AI model to ensure that an 
“anomaly” truly violates expected physical behavior.21 For example, wildfire risk monitoring is 
an illustration of detection in action utilizing physics based models. In regions like California, 

 
13 Chen, Y., Fan, X., Huang, R., Huang, Q., Li, A., & Guddanti, K. (2024). Artificial Intelligence/Machine Learning 
Technology in Power System Applications (PNNL-35735) (Technical Report). Pacific Northwest National 
Laboratory. https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-35735.pdf 
14  Stewart, E. M. (2017, September 14). GMLC 1.4.9 – Integrated Multi Scale Machine Learning. Retrieved from 
U.S. Department of Energy: https://gmlc.doe.gov/projects/integrated-multi-scale-data-analytics-and-
machine-learning-grid. 
15  Wilson, A., Ekti, A., Follum, J., Biswas, S., Annalicia, C., Joo, J.-Y., . . . Lian, J. (2024). The Grid Event 
Signature Library: An Open-Access Repository of Power System Measurement Signatures. IEEE Access, 
76207-76218. doi:10.1109/ACCESS.2024.3404886. 
16 Chen, Y., Fan, X., Huang, R., Huang, Q., Li, A., & Guddanti, K. (2024). Artificial intelligence/machine learning 
technology in power system applications. U.S. Department of Energy. Oak Ridge: Pacific Northwest National 
Laboratory. Retrieved from https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-
35735.pdf.  
17 Morales-Rodriguez, M., Srinivas, N., Olatt, J., Hahn, G., Wilson, A., Fuhr, P., . . . Chakraborty, I. (2020). Big 
Data Framework for the Development of a Signature Library for the Power Grid. IEEE Power and Energy 
Society General Meeting. Washington: Lawrence Livermore National Laboratory. Retrieved from 
https://www.osti.gov/servlets/purl/1798440. 
18 Shashsavari, A., Farajollahi, M., Stewart, E., Cortez, E., & Mohsenian-Rad, H. (2019, February 11). 
Situational Awareness in Distribution Grid Using Micro-PMU Data: A Machine Learning Approach. 10(6). 
Retrieved from https://www.osti.gov/pages/biblio/1811286. 
19 Austin Energy announces full deployment of AI-driven Early Wildfire Detection System. (2024, August 29). 
Retrieved from Austin Energy: https://austinenergy.com/about/news/news-releases/2024/austin-energy-
announces-full-deployment-of-ai-driven-early-wildfire-detection-system2024. 
20 Stewart, E., Chellappan, K., Backhaus, D., Deka, D., Reno, M., Peisert, S., . . . Buckner, M. (2018). Integrated 
Multi Scale Data Analytics and Machine Learning for the Grid; Benchmarking Algorithms and Data Quality 
Analysis. U.S. Department of Energy, Lawrence Livermore National Laboratory. Grid Modernization Laboratory 
Consortium. Retrieved from https://www.osti.gov/servlets/purl/1490956. 
21 Boroujeni, S., Razi, A., Khoshdel, S., Afghah, F., Coen, J., O'Neill, L., . . . Vamvoudakis, K. (2024, August). A 
comprehensive survey of research towards AI-enabled unmanned aerial systems in pre-, active-, and post-
wildfire management. Information Fusion, 108. Retrieved from 
https://www.sciencedirect.com/science/article/pii/S1566253524001477. 

https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-35735.pdf
https://gmlc.doe.gov/projects/integrated-multi-scale-data-analytics-and-machine-learning-grid
https://gmlc.doe.gov/projects/integrated-multi-scale-data-analytics-and-machine-learning-grid
https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-35735.pdf
https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-35735.pdf
https://www.osti.gov/servlets/purl/1798440
https://www.osti.gov/pages/biblio/1811286
https://austinenergy.com/about/news/news-releases/2024/austin-energy-announces-full-deployment-of-ai-driven-early-wildfire-detection-system2024
https://austinenergy.com/about/news/news-releases/2024/austin-energy-announces-full-deployment-of-ai-driven-early-wildfire-detection-system2024
https://www.osti.gov/servlets/purl/1490956
https://www.sciencedirect.com/science/article/pii/S1566253524001477


 

utilities deploy sensors (for temperature, smoke, etc.)22 and AI models to detect abnormal 
conditions near power lines; if an AI model flags a high fire risk (e.g., a line sparking in dry 
conditions), the system can trigger corrective actions such as de-energizing lines or adjusting 
protection settings.23  
 
AI technologies applied to OT cybersecurity in power grid systems employ advanced techniques, 
such as deep neural networks (e.g., LSTM, CNN), digital twins, hybrid intrusion detection 
frameworks, and LLM-enhanced interpretability layers to perform detection for cyber anomalies. 
These systems process real-time operational data, like phasor measurements and substation 
communication streams, to detect and distinguish between genuine physical anomalies and 
cyber-induced disruptions. Innovations like generative AI-based anomaly detection and LLM-
supported explanations enhance both adaptability and comprehension, delivering timely, 
interpretable responses to cyber threats in critical grid infrastructure.24 Digital-twin approaches 
create virtual replicas of power systems, enabling machine learning models to learn normal 
behavior patterns and flag deviations that could detect cyberattacks or system faults, particularly 
in grids with high penetration of power electronics.25 Additionally, large language models 
(LLMs) are being used to bring interpretability into OT cyber detection. In particular, 
frameworks combining lightweight ML classifiers with LLM-generated explanations are 
reported to detect attacks on Automatic Generation Control (AGC) systems in near real time and 
provide human-readable diagnoses of detected cyberattacks.26 

3.1.2 Prediction: Forecasting and Proactive Predictive Analytics 
Prediction tasks involve forecasting future states of inputs and outputs of the grid (in response to 
inputs of forecast, etc.). Electric utilities have long performed forecasting (e.g., demand or load, 
renewable generation), and AI can enhance accuracy by learning complex patterns from 
historical and real-time data, along with enabling multivariate processing. Beyond load 
prediction, AI-based prediction is used for failure prognostics (predicting equipment failure or 
maintenance needs), outage forecasting (anticipating where and when outages or stresses will 
occur), resource forecasting (predicting availability of generation capacity, particularly for wind 

 
22 NASA. (2025). AI-enabled drone swarms for fire detection, mapping, and modeling. Retrieved from Earth 
Science Technology Office: https://esto.nasa.gov/firetech/ai-enabled-drone-swarms-for-fire-detection-
mapping-and-modeling/. 
23 Wolfe, S. (2024, August 29). Another utility adopts AI cameras for wildfire detection. This time, it's not as far 
west. Retrieved from Factor This Power Engineering: https://www.renewableenergyworld.com/power-
grid/outage-management/another-utility-adopts-ai-cameras-for-wildfire-detection-this-time-its-not-as-far-
west/. 
24 Qi, R., Rasband, C., Zheng, J., & Longoria, R. (2021). Detecting Cyber Attacks in Smart Grids Using Semi-
Supervised Anomaly Detection and Deep Representation Learning. Information, 12(8), 328. Retrieved from 
https://www.mdpi.com/2078-2489/12/8/328. 
25 Elimam, M., Isbeih, Y. J., Azman, S. K., El Moursi, M. S., & Al Hosani, K. A. (in press, 2022). Deep 
learning-based PMU cyber security scheme against data manipulation attacks with wide-area damping 
control (WADC) application. IEEE Transactions on Power Systems, 1–15. 
https://doi.org/10.1109/TPWRS.2022.3181353  
26 Coppolino, L., Nardone, R., Petruolo, A., Romano, L., & Souvent, A. (2023). Exploiting Digital Twin 
technology for Cybersecurity Monitoring in Smart Grids. Proceedings of the 18th International Conference on 
Availability, Reliability and Security (pp. 1-10). ARES'23. Retrieved from 
https://doi.org/10.1145/3600160.3605043. 
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and solar resources), and stability or reliability risk forecasting. By analyzing weather data, asset 
condition data, and usage patterns, AI could potentially help utilities move from reactive 
operations toward proactive management. For instance, AI-driven models can forecast which 
transformers are likely to overload or fail during an upcoming heat wave or predict which tree 
branches will threaten power lines in a storm.27 This enables pre-failure intervention, dispatching 
crews or actioning an outage to prevent a fire. Prediction can also be considered using planning 
tools, such as Google Tapestry or PNNL’s ChatGrid.28 29 30  
 
Model Deployment Examples and Case Studies: Prediction problems are typically approached 
with supervised learning regression models trained on historical data. Classical statistical models 
(ARIMA, state-space models) are now often outperformed by ML models, such as gradient-
boosted trees, support vector regression, or neural networks, that capture nonlinear relationships. 
In particular, deep learning models excel at time-series forecasting: recurrent neural 
networks like LSTMs and GRUs are designed to capture temporal dependencies and have been 
successfully applied to forecast loads accounting for daily and seasonal patterns.31 LSTMs, for 
example, can learn the influence of past demand and weather on future load, improving accuracy 
for day-ahead and hour-ahead forecasts. These models can incorporate multiple inputs for 
multivariate forecasting in the grid. Integrating physical knowledge can further improve 
predictions; for instance, physics-informed neural networks (PINNs) and hybrid models include 
constraints from power system equations (like power flow or machine dynamics) to ensure that 
predictions of system states (voltage, frequency, etc.) remain physically plausible. Such models 
have been proposed for tasks like system frequency prediction and stability assessment, where 
purely data-driven approaches might violate conservation laws or operational limits.32 AI-driven 
forecasting, adequately secured and implemented, may benefit grid operations. One study found 
that combining machine-learning-based forecasts with real-time sensor data reduced grid 
imbalance events by up to 30%.33  

 
27 PG&E Applies Enhanced Outage Prediction Models To Ready Crews and Resources Ahead of This Week’s 
Storm. (2025, March 11). Retrieved from PG&E: https://www.pge.com/en/newsroom/currents/safety/pg-e-
applies-enhanced-outage-prediction-models-to-ready-crews-
an.html#:~:text=The%20data%20provided%20through%20AI,Storm%20safety%20tips. 
28 Wendel, J. (2024, February 22). ChatGrid™: A New Generative AI Tool for Power Grid Visualization. Retrieved 
from Pacific Northwest National Laboratory: https://www.pnnl.gov/news-media/chatgridtm-new-generative-
ai-tool-power-grid-visualization. 
29 Tapestry. (2025). Retrieved from Google LLC: https://x.company/projects/tapestry/  
30 von Meier, A., Stewart, E., McEachern, A., Andersen, M., & Mehrmanesh, L. (2917). Precision Micro-
Synchrophasors for Distribution Systems: A Summary of Applications, 8(6). IEEE, 2926-2936. 
doi:10.1109/TSG.2017.2720543. 
31 Kara, E., Roberts, C., Tabone, M., Alvarez, L., Callaway, D., & Stewart, E. (2018, March). Disaggregating solar 
generation from feeder-level measurements. Sustainable Energy, Grids and Networks, 112-121. 
doi:https://doi.org/10.1016/j.segan.2017.11.001. 
32 U.S. Department of Energy. (2025). Artificial Intelligence. Retrieved from Pacific Northwest National 
Laboratory: https://www.pnnl.gov/artificial-intelligence. 
33 Aslam, S., Aung, P., Rafsanjani, A., & Majeed, A. (2025). Machine learning applications in energy systems: 
current trends, challenges, and research directions. Energy Informatics, 8. Retrieved from 
https://energyinformatics.springeropen.com/articles/10.1186/s42162-025-00524-6. 
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3.1.3 Optimization, Control, and Decision-Making 
Optimization tasks involve determining the best set of actions or configurations for the grid, 
often in real time, to meet certain objectives (cost minimization, loss reduction, reliability 
improvement) under constraints. Traditional grid optimization (like economic dispatch, unit 
commitment, or network reconfiguration) relies on mathematical programming and expert rules. 
AI is augmenting these tasks by handling high-dimensional decision spaces and adapting to 
changing conditions. For example, AI can optimize voltage control on distribution networks by 
coordinating many voltage regulators and inverters, or optimize power dispatch in microgrids, 
balancing generation, storage, and loads. During emergencies, optimization algorithms help 
in outage restoration, finding the fastest way to reroute power or prioritize repairs.34 AI can also 
manage distributed energy resources by solving distributed optimization problems, such as 
deciding how to dispatch hundreds of batteries or loads for peak shaving. In essence, 
optimization AI seeks the optimal or near-optimal operating point for the grid at any moment, 
often needing to satisfy physical and reliability constraints. 
 
Model Deployment Examples and Case Studies: Deep reinforcement learning has been 
studied for grid control tasks such as automatic generation control, battery dispatch, or network 
switching operations.35 However, a challenge is ensuring safety of poorly trained AI, adversarial 
inputs, and bad policies could violate grid limits, and use of these models for real-time operation 
means the consequences of a bad AI decision are heightened. A potential strategy is to train these 
models on realistic simulators (digital twins of the grid) and incorporate safety constraints into 
the learning process, but that process also depends on good grid models, another current 
challenge.36 AI is proposed to assist optimization by serving as a fast approximation to 
traditional power flow solvers. For example, neural network surrogate models have been 
developed to mimic the results of optimal power flow (OPF) calculations much faster, enabling 
near real-time dispatch decisions.37 38 There are also hybrid approaches, where a neural network 
proposes an optimal control action and a physics-based check (or simpler optimization) verifies 
it, leveraging both AI speed and physical law compliance. In real-world deployment, fully 
autonomous grid optimization by AI is still approached cautiously due to safety, but there are 
successful examples of closed-loop optimization. One notable case is Entergy Louisiana’s 
deployment of AI in its advanced metering infrastructure (AMI) to predict when distribution 

 
34 Allsup, M. (2025, July 28). Under the hood of CAISO’s AI outage management pilot. Retrieved from 
https://www.latitudemedia.com/news/under-the-hood-of-caisos-ai-outage-management-pilot/ 
35 Stewart, E., Kiliccote, S., Shand, C., McMorran, A., Arghandeh, R., & von Meier, A. (2014). Addressing the 
challenges for integrating micro-synchrophasor data with operational system applications. 2014 IEEE PES 
General Meeting. National Harbor: IEEE. Retrieved from https://ieeexplore.ieee.org/document/6938994/. 
36 U.S. Department of Energy. (2023). Inverter-Based Resource Performance Issues Report. Atlanta: North 
American Electric Reliability Corporation. Retrieved from 
https://www.nerc.com/comm/RSTC_Reliability_Guidelines/NERC_Inverter-
Based_Resource_Performance_Issues_Public_Report_2023.pdf. 
37 U.S. Department of Energy. (2025). Artificial Intelligence. Retrieved from Pacific Northwest National 
Laboratory: https://www.pnnl.gov/artificial-intelligence.  
38 Soltani, Z., Ma, S., Khorsand, M., & Vittal, V. (2023, May). Simultaneous Robust State Estimation, Topology 
Error Processing, and Outage Detection for Unbalanced Distribution Systems. IEEE Transactions on Power 
Systems, 38(2), 2018-2034. doi:10.1109/TPWRS.2022.3181118. 
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transformers are near failure and by proactively replacing them mitigate outages.39 The AI 
system processes smart meter data and other inputs to reconfigure the network or dispatch field 
crews proactively. Since deployment, it has reportedly prevented 536 outages and avoided over 
48,000 outage minutes by automatically rerouting power and isolating problems.40 This 
illustrates how an AI-driven optimization can directly translate to reliability gains (or losses if 
availability of the system is a requirement). Generally, AI-driven optimization in the grid is 
implemented in a hierarchical way: slower, cloud-based AI might optimize day-ahead planning 
or system configurations, while faster embedded AI at the grid edge (in controllers or devices) 
handles real-time fine-tuning. As these models are adopted, ensuring they respect operational 
constraints (voltage, frequency, line limits) is a vital constraint. AI applications should not 
violate the laws of physics in power systems applications.41  
 
California Independent System Operator (CAISO), which oversees the majority of California’s 
power grid and portions of the Western Energy Imbalance Market, is piloting OATI Genie™, an 
advanced AI assistant designed to streamline and modernize outage management workflows. 
Traditionally, CAISO operators manually sift through a high volume of structured data and free-
form outage reports to assess grid impact, often under time pressure. OATI Genie augments this 
process by using a hybrid AI architecture that blends generative AI, machine learning, and rule-
based logic to extract relevant keywords, correlate outage events with system data (e.g., GIS, 
SCADA, weather), and deliver real-time insights in natural language. This co-pilot approach is 
designed not just to automate, but to enhance human situational awareness, reduce manual 
review time, and support faster, more informed decisions in outage scheduling and grid stability 
planning. 
 
Southwest Power Pool (SPP) is collaborating with Hitachi and NVIDIA to develop an AI-
enabled solution aimed at reducing the time required to complete generator interconnection (GI) 
impact studies. These studies currently span 18 to 27 months and are critical to evaluating how 
new generation sources will affect transmission system reliability. The AI platform, based on 
Hitachi iQ and utilizing NVIDIA-accelerated compute infrastructure, will automate power flow 
simulations, optimize resource modeling, and support predictive analytics for interconnection 
scenarios. According to SPP, the AI tool could reduce study durations by up to 80%, and 
preliminary pilots are expected to begin in winter 2025-2026. The tool is designed to work 
alongside, rather than replace, existing engineering workflows; applicants will still have access 
to conventional study tracks as a baseline for comparison.42 

 
39 entergy. (2024, July 16). We’re taking steps to advance reliability across our region. Retrieved from 
https://www.entergy.com/blog/we-re-taking-steps-advance-reliability-across-our-region. 
40 Clarion Energy. (2025, February 6). Resilience through intelligence: AI’s impact on utility disaster readiness. 
Retrieved from Factor This Engineering: https://www.datacenterdynamics.com/en/news/southwest-power-
pool-partners-with-hitachi-to-slash-interconnection-study-times-through-ai-tool/  
41 Mahdi, J., Scaglione, A., Roberts, C., Stewart, E., Peisert, S., & McParland, C. (2018, July 4). Anomaly 
Detection Using Optimally Placed μPMU Sensors in Distribution Grids. IEEE Transactions on Power Systems, 
33(4), 3611 - 3623. doi:10.1109/TPWRS.2017.2764882. 
42 kidmore, Z. (2025, June 7). Southwest Power Pool partners with Hitachi to slash interconnection study times 
through AI tool. Retrieved from https://www.datacenterdynamics.com/en/news/southwest-power-pool-
partners-with-hitachi-to-slash-interconnection-study-times-through-ai-tool/ 
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3.1.4  Business and Customer Applications 
GenAI is primarily being used in business applications. Notably, most of these applications are 
home-grown, rather than commercially purchased as part of another management platform. New 
applications such as SEW43 are being sold as a solution for customer AI management.   
 
Model Deployment Examples and Case Studies: Generative AI is being used to assist in 
drafting social media posts for utilities. While at first glance this might seem a benign 
application, social media in recent years has become the primary source of communication of 
outage and customer issues, with rapid communication during events being a gold standard and 
trained.44 Modern utility contact center platforms now use AI to proactively notify customers of 
known outages and estimated restoration times via text or voice, reducing inbound inquiries. AI-
driven systems are being linked to outage management to draft messages to customers 
automatically. Malicious use of social media tools to drive societal panic and challenges in 
power restoration is also a key feature in large-scale grid exercises such as GridEx45;  therefore, 
the automation of these functions through AI should be considered a risk. Data security is less of 
a concern, but reliability and clarity of AI outputs are critical. Lastly, GenAI is being used to 
draft repeated processes and manuals. For example, a guide on “How Net Metering Works.”46 
While this is a low-risk short-term item, without subject matter expert review, this could be a 
challenge. GenAI is also being used internally to support utility employees and enhance 
operational workflows. This ranges from knowledge assistants that help staff quickly find 
information to AI copilots that assist with coding and analysis.   
 
Many utilities have also implemented AI chatbots to handle routine customer inquiries, utilizing 
LLMs such as ChatGPT for natural language responses. These systems can be available 24/7 to 
answer billing questions, account changes, and provide information, and therefore availability. 
For example, Sulphur Springs Electric Cooperative (AZ) launched a LivePerson AI chat on its 
website to handle member questions after hours, reducing call center load.47 UK-based Octopus 
Energy’s GPT chatbot is handling 44% of its customer service inquiries, equivalent to 250 
people’s work, and has higher satisfaction rates than its human counterparts.48 In particular, these 
tools are being used to draft customer service agent email responses. Risks of these types of 
applications are in data privacy, with customers’ information being used in potentially external 

 
43 SEW. (2025). #1 Industry AI Chatbot WeSmart. Retrieved from https://www.sew.ai/content/smart-
messaging-chatbots 
44 Cohn, L. (2025, August 18). Emergency communications evolution: How intelligent workflows are reshaping 
utility crisis response. American Public Power Association. 
https://www.publicpower.org/periodical/article/emergency-communications-evolution-how-intelligent-
workflows-are-reshaping-utility-crisis-response  
45 North American Electric Reliability Corporation. (2018, March). Grid Security Exercise GridEx IV: Lessons 
learned (TLP: WHITE) (Public Report). NERC. 
https://www.nerc.com/pa/CI/ESISAC/GridEx/GridEx%20IV%20Public%20Report.pdf  
46 Mullen, M. (2023, October 18). Here Comes The Meter Man – A Lesson in GenAI Planning. Deep Analysis. 
https://www.deep-analysis.net/here-comes-the-meter-man-a-lesson-in-genai-planning/  
47 LivePerson. (2025). AI chatbot agents: Better conversations start with a better AI chatbot. Retrieved from 
https://www.liveperson.com/products/ai-chatbots/. 
48 Celonis, Inc. (2025). Connect Octopus Energy and OpenAI (ChatGPT, Whisper, DALL-E) integrations. 
Retrieved from Make: http://make.com/en/integrations/octopus-energy/openai-gpt-3. 
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AI models, and human review is introduced in some cases already due to hallucinatory 
responses. Chatbots are known to be eager to please and may provide inaccurate results to poorly 
phrased or intentionally misleading prompts by customers, potentially resulting in billing issues 
or unintentional panic. Fraud detection may also be a challenge.   
 
Another notable example is Southern California Edison’s deployment of a GenAI chatbot with 
retrieval-augmented generation for its network operations center (Project “Orca”). This internal 
chatbot lets Network Operations Center (NOC) engineers query network device information, 
troubleshoot tickets, and get real-time trend analysis by pulling from SCE’s telecom manuals and 
data, improving response times and aiding training of new operators. The tools are also 
proactively assisting in incident management and data analytics. This use case promotes the use 
of private network AI with NVIDIA.49 While these kinds of functions boost workforce efficiency 
and capture expert knowledge, errors in technical guidance could have serious consequences; 
strict validation of AI-provided answers is required. Data must stay on secure servers to protect 
grid information. 

3.2 Model Deployment Examples and Case Studies   
Table 1 below outlines various AI use cases across different categories, highlighting the 
functionality and applications they bring to the electric grid. These use cases demonstrate the 
transformative potential of AI in driving efficiency, reliability, and security in utility operations, 
paving the way for a more resilient energy future. For instance, in the category of Predictive 
Maintenance and Asset Health Monitoring, AI analyzes sensor data from transformers and 
inverters to predict failures, exemplified by tools such as GE Vernova’s GridOS50 and Schneider 
Electric’s EcoStruxure ADMS.51 
 
Note: The examples listed are not exhaustive; they represent only those solutions identified in the current context, and 
many other AI solutions may be available in the market. 

Table 1: AI Use Cases in Electric, Categorization and Commercial Use Cases (July 2025). 

Use Case Domain Description 
Example Commercial 

AI Solutions (July 
2025) 

DERMS Prediction and 
Optimization 
(Control) 
 

- AI optimizes dispatch of DER assets, 
balancing grid conditions, market 
participation, and customer needs. 

GE Vernova’s GridOS 
DERMS,52 Uplight’s 
AutoGrid Flex,53 and 

 
49 World Wide Technology. (2025, May 29). The Orca AI journey with Southern California Edison. WWT. 
https://www.wwt.com/blog/the-orca-ai-journey-with-southern-california-edison 
50 GE Vernova. (2025). GridOS® Orchestration Software. Retrieved from 
https://www.gevernova.com/software/products/gridos. 
51 Schneider Electric. (2025). EcoStruxure™ ADMS. Retrieved from https://www.se.com/us/en/product-
range/61751-ecostruxure-adms/#overview. 
52 GE Vernova. (2025). GridOS® DERMS - Unlocking Opportunities for Future DSO Transition. Retrieved from 
https://www.gevernova.com/software/resources/webinar/gridosr-derms-unlocking-opportunities-future-
dso-transition. 
53 Uplight. (2025). AutoGrid Unveils Cutting-Edge EV Grid Services Solution to Help Utilities Spur Adoption 
and Attain Sustainability Goals. Retrieved from https://uplight.com/press/autogrid-unveils-cutting-edge-ev-
grid-services-solution-to-help-utilities-spur-adoption-and-attain-sustainability-goals/. 
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- Localized AI processing in edge devices 
enhances efficiency.  

Kraken’s AI-powered 
tools.54 

Predictive 
Maintenance 
and Asset 
Health 
Monitoring 

Prediction - AI analyzes sensor data from transformers 
and inverters to predict failures.  
- Determines optimal maintenance paths and 
timelines to minimize downtime.  

GE Vernova’s GridOS55 
and Schneider Electric’s 
EcoStruxure ADMS56 

Grid 
Forecasting 
(Load, 
Generation, 
Weather) 

Prediction  - AI predicts future load and renewable 
generation patterns for improved dispatch 
planning.  
- Localized processing in edge devices 
supports real-time forecasting.  

GE Vernova and 
Uplight’s AutoGrid 
Flex57 

Model 
Validation 
and Data 
Lake (Central 
Point of 
Truth, etc.)/ 
Digital Twin  

Prediction  - AI validates models against a centralized 
data lake, providing a single source of truth. 
- Digital twins simulate grid operations for 
scenario testing and validation. 

Opal RT Digital Twin 
Advanced Simulation58 
and Siemens Electrical 
Digital Twin.59 

Power Flow 
and 
Interconnection 
Analyses 

Prediction 
(Analysis) 

- AI runs system impact studies, considering 
diverse energy resource mixes and dynamic 
model setups.  
- AI considers larger mixes of resources and 
more combinatorial situations. 
- AI sets up the models dynamically. 

Google Tapestry,60 
Hitachi iQ with 
NVIDIA.61  
 

Autonomous 
Grid Control 
(Real-Time 
Dynamic 
Protection and 
Remediation) 

Optimization 
(Control) 

-AI dynamically adjusts grid protection 
settings and autonomously reacts to 
frequency, voltage, and topology changes. 
- AI adjusts protection settings and reacts to 
grid changes, enhancing stability, and 
resilience.  
- Localized AI in edge devices supports real-
time adjustments.  

Google and Tapestry 
Grid Aware62 

 
54 Kraken. (2025). Upgrade your utility. Retrieved from https://kraken.tech/. 
55 GE Vernova. (2025). GridOS® Orchestration Software. Retrieved from 
https://www.gevernova.com/software/products/gridos. 
56 Schneider Electric. (2025). EcoStruxure™ ADMS. Retrieved from https://www.se.com/us/en/product-
range/61751-ecostruxure-adms/#overview. 
57 Uplight. (2025). AutoGrid Unveils Cutting-Edge EV Grid Services Solution to Help Utilities Spur Adoption 
and Attain Sustainability Goals. Retrieved from https://uplight.com/press/autogrid-unveils-cutting-edge-ev-
grid-services-solution-to-help-utilities-spur-adoption-and-attain-sustainability-goals/. 
58 OPAL-RT TECHNOLOGIES, Inc. (2025). Digital twins for advanced simulation. Retrieved from 
https://www.opal-rt.com/industries-and-applications/simulation-and-testing/digital-twins/. 
59 Siemens. (2025). Electrical Digital Twin. Retrieved from 
https://www.siemens.com/global/en/products/energy/grid-software/planning/electrical-digital-twin.html. 
60 Tapestry. (2025). Retrieved from Google LLC: https://x.company/projects/tapestry/. 
61 Southwest Power Pool . (2025). SPP Partners with Hitachi to Develop Advanced AI Solution. Retrieved from 
https://spp.org/news-list/spp-partners-with-hitachi-to-develop-advanced-ai-solution/. 
62 Tapestry. (2025). Retrieved from Google LLC: https://x.company/projects/tapestry/. 
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Fault Location 
(precursor to 
grid control) 

Detection 
(Analysis) 

- AI enhances fault location capabilities, 
aiding in efficient identification and isolation 
of issues  

GE Vernova’s GridOS 
DERMS.63 

Outage 
Management 
System 

Detection and 
Optimization 
(Control) 

-AI OMS systems help utilities detect, locate, 
and restore power outages. 
- AI-driven models analyze historical data, 
weather patterns, maintenance records, and 
sensor data to predict the likelihood and 
location of potential outages 

OATI Genie64 and 
Entergy Louisiana’s AI 
system.65 

Energy Market 
Optimization 
(AI for Trading 
& Bidding 
Strategy) 

Optimization - AI optimizes participation in wholesale and 
retail energy markets through trend and price 
analysis  

Fluence Mosaic66 and 
Dexter Energy.67 

Cybersecurity 
Ops 

Detection 
(Security) 

- AI monitors SCADA/ICS traffic for 
anomalies to detect cyber threats. 
- Anomaly detection capabilities in edge 
devices enhance security  

Schneider Electric’s 
EcoStructure ADMS.68 

Customer Load 
Management & 
Flexibility (AI-
Powered 
Demand 
Response) 

Optimization 
(Demand 
Response) 

- AI learns customer behavior to control 
smart devices for grid stability during peak 
demand  
- Enhance customer interaction and service 
management, thus contributing to overall 
customer satisfaction and operational 
efficiency.  

Kraken’s AI-powered 
tools,69 LivePerson AI 
Chat70 and Octopus 
Energy’s GPT Chatbot.71 

 
63 GE Vernova. (2025). GridOS® DERMS - Unlocking Opportunities for Future DSO Transition. Retrieved from 
https://www.gevernova.com/software/resources/webinar/gridosr-derms-unlocking-opportunities-future-
dso-transition. 
64 Open Access Technology International, Inc. (2025). Introducing OATI Genie. Retrieved from 
https://www.oatiai.com/. 
65 entergy. (2024, July 16). We’re taking steps to advance reliability across our region. Retrieved from 
https://www.entergy.com/blog/we-re-taking-steps-advance-reliability-across-our-region 
66 Fluence. (2025). Intelligent, AI-powered bidding for solar, wind, and energy storage. Retrieved from 
https://fluenceenergy.com/mosaic-intelligent-bidding-
software/?_gl=1*jlivmp*_gcl_au*NzY4MzMyNDUyLjE3NTQ1OTQ0NjA.*_ga*MTM0NDQyODc5OC4xNzU0NTk0
NDYw*_ga. 
67 Dexter. (2025). Forecast & Trade Optimization. Retrieved from https://dexterenergy.ai/. 
68 Schneider Electric. (2025). EcoStruxure™ ADMS. Retrieved from https://www.se.com/us/en/product-
range/61751-ecostruxure-adms/#overview. 
69 Kraken. (2025). Upgrade your utility. Retrieved from https://kraken.tech/. 
70 LivePerson. (2025). AI chatbot agents: Better conversations start with a better AI chatbot. Retrieved from 
https://www.liveperson.com/products/ai-chatbots/. 
71 Celonis, Inc. (2025). Connect Octopus Energy and OpenAI (ChatGPT, Whisper, DALL-E) integrations. 
Retrieved from Make: http://make.com/en/integrations/octopus-energy/openai-gpt-3.  
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Generation 
Prediction 

Business 
(Communication) 

- GenAI is used for drafting social media 
posts, managing customer communication, 
and automating processes. 
- Internally supports utility employees with 
knowledge assistants and chatbots.  
- Requires strict validation of AI outputs to 
ensure accuracy and data security.  
 
 

Southern California 
Edison’s Project 
“Orca”72 

Wildfire 
Prediction and 
Monitoring 

Prediction and 
Detection 

- AI monitors real-time hot spots for 
potential ignition. 

Pano Real-time hot spots 
for potential ignition,73 
LookOut,74 and 
WIFIRE.75 

 

3.3 Key Constraints for Model Selection and Case Studies in Power 
Systems AI 

AI deployment in power system applications requires careful model selection that balances 
algorithmic capabilities with the physical realities, operational constraints, and contextual factors 
of the grid. Unlike purely digital domains, power systems are governed by well-defined physical 
laws, network topologies, and operational standards that constrain both the data available for 
analysis and the types of models that can be meaningfully applied. Effective AI design must 
integrate physics-based understanding, such as power flow equations, stability margins, and 
protection schemes, with contextual knowledge of regulatory requirements, market structures, 
and system operator practices. 
 
At the foundation of any AI implementation lies data quality and accessibility. Power system 
data is often fragmented across supervisory control and data acquisition (SCADA) systems, 
phasor measurement units (PMUs), advanced metering infrastructure (AMI), and asset 
management systems, each with different temporal resolutions, sampling rates, and privacy 
considerations. The choice of model is inherently linked to these data characteristics: the 
temporal granularity, spatial coverage, and trustworthiness of the available measurements will 
influence whether statistical learning, deep learning, or hybrid physics-informed approaches are 
feasible and reliable. This section examines key constraints in selecting AI models for power 
system applications, emphasizing the interplay between physics and operational context, data 
foundations, and algorithmic suitability. It also reviews case studies demonstrating how these 
constraints shape real-world deployments, including examples where domain-aware AI has 

 
72 World Wide Technology. (2025). The GenAI Chatbot Transforming Network Operations at Southern 
California Edison. Retrieved from https://www.wwt.com/case-study/genai-chatbot-transforming-network-
ops-at-sce. 
73 Pano, Inc. (2025). AI-Powered wildlife detection and situational awareness. Retrieved from 
https://www.pano.ai/. 
74 Robotics Cats. (2022). AI-powered Wildfire Detection System to save lives and cut loss. Retrieved from 
https://roboticscats.com/. 
75 University of San Diego. (2025). Workflows integrating collaborative hazard sciences. Retrieved from 
https://wifire.ucsd.edu/. 
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enabled successful integration into operational workflows, and cases where overlooking such 
constraints could lead to limited or unsuccessful outcomes. 

3.3.1 Physics and Power Systems Context  
Applying AI in the electric grid requires alignment of the model with power system physics and 
operational realities. The electrical grid’s behavior is governed by physical laws (e.g., 
Kirchhoff’s and Ohm’s laws) and operational constraints (voltage limits, frequency stability 
criteria, protection settings). Ensuring the AI model is appropriate for this context is vital for 
safety and effectiveness. An AI solution must handle domain-specific data like bus voltages, line 
capacities, frequencies, power flows, and system state variables in a way that reflects physical 
reality; otherwise, it may produce infeasible or unsafe outputs. One key consideration is 
choosing or designing models that incorporate power system physics. Generic black-box models 
might ignore constraints, such as maintaining 60 Hz frequency or keeping voltage within ±5% of 
nominal, which could lead to recommendations that violate grid limits. The importance of 
embedding domain physics is underscored by researchers as a way to augment model robustness 
and reliability, especially in critical functions.   
 
Voltage, Frequency, and State Data: Data representing system state (voltage magnitudes or 
angles, frequency, currents, etc.) carry physical meaning that AI models should treat 
appropriately. For instance, frequency deviations in a power system are typically very small 
(e.g., 59.8–60.2 Hz) but highly significant; an AI model doing frequency prediction or anomaly 
detection must have the resolution and understanding to detect a 0.2 Hz drop as a major event, 
not noise. Similarly, bus voltages are coupled by the network; if an AI recommends a control 
action that would raise voltage in one area, it must account for how it affects neighboring buses 
and overall system balance. Thus, feature engineering and input selection for grid AI should 
include physically relevant variables (like including system load, generation, intertie flows, etc.) 
rather than treating the data as a generic or independent time series. In anomaly detection, 
distinguishing a true physical anomaly from a sensor error requires understanding physical 
patterns; for example, a simultaneous dip in voltage and frequency system-wide is likely a real 
disturbance, whereas a dip in one sensor reading alone might be a bad measurement. 
 
Physics-based relationships can be expressed as constraints on the model but come at a cost of 
more processing power. For example, checks for physics-based validation can also be checked 
after the model has come to an output; however, if constraints are not met, the user must to start 
over instead of making adjustments during the process. Models may “learn” relationships 
between variables that exist because of the physics-based dependencies, but that does not mean 
they will always respect that relationship, since there are a variety of conflating objectives for the 
algorithm. Testing against edge cases is important to verify if a model truly respects the real-
world constraints.  
 
Model Selection and Validation: The consideration of physics also influences which AI model 
types are suitable. For example, a purely data-driven deep learning model might need an 
enormous amount of data to learn something that a simpler physics-based model already 
“knows.” In cases where data is limited, combining first-principles power system models with AI 
(for instance, using load flow calculations to generate features, or using residual physics models 
to guide learning) can improve performance. As noted in a recent DOE-supported 



 

study, integrating domain knowledge into ML frameworks remains a persistent challenge, but it 
is crucial for trustworthiness.76 Practitioners should favor model architectures that can easily 
integrate prior knowledge. For example, using a model that allows adding hard constraints (like 
linear programming with an ML-based objective) for tasks like dispatch, or using multi-model 
ensembles that include a physics-based estimator alongside an AI predictor. Finally, any AI 
meant to act on the grid should be extensively validated against simulations and field data to 
verify it does not violate physical requirements. Validation guidelines should be developed for 
detecting issues in drift and other spaces. The use of digital twins (high-fidelity grid simulators 
mirroring real operations) is emerging as a best practice. This simulation testing, combined with 
gradual field trials, ensures that the AI’s outputs always make physical sense and keep the 
system within safe operating bounds.77 78 79 

3.3.2 Data Foundation for Utility AI   
Data is the backbone of any AI solution, and in the electric grid context, establishing a strong 
data foundation is a critical consideration. Model performance and reliability are heavily 
dependent on the data quality, quantity, and accessibility.80 Key aspects to consider include data 
volume needs, integration of diverse data sources, creating a “single source of truth,” data pre-
processing pipelines, latency requirements, and governance or security measures. These issues 
are not isolated to AI use. Data volume and quality are critical for many new digital grid 
functions, such as advanced distribution management systems, which require validated and 
accurate grid models to perform.81 Some applications require highly accurate data input (in the 
order of 99.9%) data, while others can approximate. This must be understood along with the 
volume, quality, and accuracy. Training AI on simulated data must account for simulation 
inaccuracies and tolerance, which can sum to around 10% margins.82  
 
Data Volume and Quality: Modern AI, especially deep learning, is a data and power-intensive 
application. Utilities generate massive streams of data (SCADA measurements, phasor 

 
76 Chen, Yousu, et al. "Artificial Intelligence/Machine Learning Technology in Power System Applications," Apr. 
2024. https://doi.org/10.2172/2340760  
77  Pacific Northwest National Laboratory (PNNL). (2020, November 9). PNNL Researchers Speed Power Grid 
Simulations Using AI. Retrieved from U.S. Department of Energy: https://www.pnnl.gov/news-media/pnnl-
researchers-speed-power-grid-simulations-using-ai 
78  OPAL-RT TECHNOLOGIES, Inc. (2025, August 22). 7 real power hardware-in-the-loop examples that 
sharpen your simulation strategy. Retrieved from https://www.opal-rt.com/blog/7-real-power-
hardware%E2%80%91in%E2%80%91the%E2%80%91loop-examples-that-sharpen-your-simulation-
strategy/ 
79  McKinsey & Company. (n.d.). Digital twins and generative AI: A powerful pairing. Retrieved from 
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/digital-twins-and-
generative-ai-a-powerful-pairing 
80 U.S. Department of Energy, Grid Modernization Laboratory Consortium. GMLC Sensing Measurement 
Strategy Sensor Technology Roadmap Final Report. April 2019. GMLC, DOE  
81 U.S. Department of Energy. (2015, February). Voices of experience: Insights into Advanced Distribution 
Management Systems (DOE/GO-OT-6A42-63689). National Renewable Energy Laboratory; Energetics 
Incorporated   
82 E. M. Stewart, S. Kiliccote, D. Arnold, A. von Meier and R. Arghandeh, "Accuracy and validation of measured 
and modeled data for distributed PV interconnection and control," 2015 IEEE Power & Energy Society General 
Meeting, Denver, CO, USA, 2015, pp. 1-5, doi: 10.1109/PESGM.2015.7286484. 
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measurements, smart meter reads, equipment sensor logs, weather feeds, etc.), but not all of it 
may be AI-ready. Much is pre-processed before any use in an application. To be used 
appropriately, data must undergo exhaustive exploratory data analysis and preprocessing to 
enable machine learning, which could be up to 80% of the model development time.83 High-
quality, labeled datasets might be scarce for certain use cases (e.g., examples of rare faults). 
Practitioners must assess how much data is needed and whether it is available. For instance, 
training a transformer-failure prediction model might require many years of historical records 
across many transformers; if a utility only has a dozen failure examples, a purely data-driven 
model may not be feasible without augmentation or transfer learning. Data quality is equally 
important: noisy or erroneous data can mislead AI models. Data cleaning and validation are, 
therefore, foundational steps. As one technical report notes, the effectiveness of AI models relies 
on data variety, volume, and recency and obtaining comprehensive, accurate data (potentially 
from many sources) remains a major hurdle. It is vital to invest in improving data accuracy 
(calibrating sensors, filtering out corrupt entries) and completeness, along with the 
implementation of AI in power systems.  
 
Simulated Data for Training: It’s not uncommon to see AI models trained on data that comes 
from simulations.84 This can create data that is hard to otherwise obtain (e.g., different types of 
faults at multiple locations within a given system), and it is attractive for researchers because it 
produces a cleaner source of data (e.g., no gaps in timestamps or erroneous sensor collections). 
However, few models accurately represent all behaviors of a system (consider the common 
saying, “no model is right, some are useful”), and this method of data generation often leaves out 
edge cases which do appear in the real world but which the researcher may not have considered. 
AI models trained on simulated data may have holes in their understanding which present risks 
when deployed for operational use. 
 
Data Discovery and Integration (Multimodal Data): Utilities often have “scattered datasets” 
across different systems. For example, asset health records in one database, outage history in 
another, weather data in a third, etc. An AI initiative must include data discovery: identifying and 
bringing together these disparate sources. A multimodal or multivariate data approach can 
greatly enhance AI capabilities, combining time-series measurements, text reports (e.g. 
maintenance logs), geospatial data (e.g. GIS of network), images (e.g. line inspection photos), 
and more to give a holistic view. However, integrating these diverse datasets is challenging. It 
requires a modern data architecture and governance processes to reconcile different data schemas 
and ensure everything lines up correctly.85 Best practice is to establish a single source of truth – 
e.g., a unified data lake or database where all relevant data is collected, cleaned, and keyed in a 

 
83 Medium. (2025, March 4). Data Cleaning Why 80 Percent of Data Science Is Spent Fixing Dirty Data. 
Retrieved from https://medium.com/@preetikapuria587/data-cleaning-why-80-percent-of-data-science-is-
spent-fixing-dirty-data-0d0a214ce5c0 
84 National Renewable Energy Laboratory (NREL). (2025). Generative Artificial Intelligence for the Power Grid. 
Retrieved from U.S. Department of Energy: https://www.nrel.gov/grid/generative-artificial-intelligence-for-
the-power-grid 
85 Stewart, Emma, Chellappan, Karthik, Backhaus, Scott, Deka, Deepjyoti, Reno, Matthew, Peisert, Sean, 
Arnold, Dan, Chen, Chen, Florita, Anthony, & Buckner, Mark (2018). Integrated Multi Scale Data Analytics and 
Machine Learning for the Grid; Benchmarking Algorithms and Data Quality Analysis. 
https://doi.org/10.2172/1490956 
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consistent way. This prevents the situation of different teams using slightly different data (or 
definitions) that lead to inconsistent AI outputs. AI for outage prevention86 87 emphasizes that 
data from asset health, vegetation management, fault history, and weather must be integrated, 
cleansed, and made accessible for AI to distinguish between these types of events, and this 
demands clarity on who owns each data source, how it is validated, and how often it is updated. 
In practice, many utilities start with a data audit and build pipelines to stream and merge data. 
For example, linking smart meter outage flags with feeder SCADA telemetry and weather 
stations for a storm prediction model. 
 
Pre-Processing Pipelines: Once data sources are identified, robust pre-processing is needed 
before feeding data to AI models. This includes steps such as filtering out bad or irrelevant data 
(e.g., communication glitches, out-of-range values), handling missing data (through interpolation 
or using domain-specific proxies), normalizing or scaling features (especially important for 
mixing variables like power, voltage, temperature with very different units and ranges), and 
aligning data of different time granularities. Multivariate time synchronization is often needed – 
e.g., aligning PMU data at 30 samples per second with SCADA data at 1 sample every 4 seconds 
and weather data every 5 minutes.88 89 Feature engineering is another part of pre-processing; 
creating composite features that capture domain knowledge, such as load to capacity ratio of a 
transformer or rate-of-change of frequency can significantly improve model performance. 
Additionally, if a project involves supervised learning, a pipeline to label the data is needed. For 
example, automatically labeling historical events as “fault” or “no fault” based on relay logs 
when training a fault detector. Automating these pipelines ensures consistency and allows data to 
flow into AI models continuously. It is also critical to incorporate feedback loops in the pipeline. 
For instance, flagging when incoming data falls outside the range seen in training to warn the 
model might be extrapolating. All these steps add latency, so they must be designed to meet the 
operational timeline. 
 
Latency and Real-Time Requirements: It is not just training data that needs to be considered. 
Various grid applications have different latency needs, which affects the quality and quantity of 
data needed for these applications to run in operation. Some analyses can be done offline (e.g., a 
long-term asset risk model might be run monthly on batch data), but many operational 
applications require real-time or near-real-time data streaming and processing, such as fault 
applications.90 For example, an AI-based anomaly detector in the control room might need to 
ingest PMU data with only a few seconds of delay to be useful for grid operators. This 
necessitates a data pipeline that can handle streaming data and perform inference quickly. It 

 
86 M. Jamei et al., "Anomaly Detection Using Optimally Placed μPMU Sensors in Distribution Grids," in IEEE 
Transactions on Power Systems, vol. 33, no. 4, pp. 3611-3623, July 2018, doi: 10.1109/TPWRS.2017.2764882 
87 Q. Huang, R. Huang, W. Hao, J. Tan, R. Fan and Z. Huang, "Adaptive Power System Emergency Control Using 
Deep Reinforcement Learning," in IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1171-1182, March 2020  
88 Pattanaik, V., Malika, B. K., Panda, S., Rout, P. K., Sahu, B. K., Samanta, I. S., Bajaj, M., Blazek, V., & Prokop, 
L. (2024). A critical review on phasor measurement units installation planning and application in smart grid 
environment. Results in Engineering, 24, Article 103559. https://doi.org/10.1016/j.rineng.2024.103559 
89 M. Madadi et al., "Distributed Hierarchical Sensing and Analytics for Grid-Edge Behind the Meter Visibility 
and Grid Resilience," 2023 IEEE Energy Conversion Congress and Exposition (ECCE), Nashville, TN, USA, 
2023, pp. 6580-6582, doi: 10.1109/ECCE53617.2023.10362941.  
90 J. Morgan and E. Stewart, "Evaluation and Use Cases in Cloud Implementation for Future Electric Grid 
Technologies," 2024 IEEE Power & Energy Society General Meeting (PESGM), Seattle, WA, USA, 2024, pp. 1-7. 
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might mean placing certain computations at the network edge, like in substation or field devices, 
to avoid round-trip delays to a central cloud. Indeed, edge computing and distributed AI are 
emerging so that critical decisions, such as isolating a fault or regulating voltage, can be made in 
sub-seconds and at the grid edge.91  
 
When designing AI systems, engineers must account for the end-to-end latency: from data 
generation, through communication networks and any data bus or broker (e.g., an enterprise 
SCADA historian or message queue), into the model, and back out to a control command. If the 
total latency is beyond the requirement (say, an AI that adjusts a battery should respond within 
one second, but the data path takes five seconds), then architectural changes are needed. 
Sometimes this involves model simplification or optimization for speed, using a smaller neural 
network or compiling models to faster runtimes. It may also involve prioritizing which data is 
truly needed in real-time (sending high-frequency essential signals and leaving less critical data 
for batch updates). In summary, aligning the AI’s data pipeline with operational timing is crucial 
for success. 
 
Data Governance and Security: Given the sensitive and critical nature of grid operations data, 
governance and security cannot be overlooked. Data governance includes defining clear 
ownership of data streams, setting up data quality audits, and managing access controls so that 
only authorized systems and personnel can use the data. Utilities often deal with customer data 
(from smart meters), which has privacy implications, as well as critical infrastructure data 
(substation, generation status), which has national security implications. A single source of truth 
helps enforce governance rules uniformly. Additionally, metadata (data about the data) should be 
maintained; knowing the source, timestamp, units, etc., for each data point to avoid 
misinterpretation by AI models. 
 
On security, the introduction of AI and networking in grid operations expands the attack surface. 
AI models themselves can be targets of adversarial attacks or data poisoning. An attacker who 
feeds manipulated data into an AI-based control system could cause it to misoperate the grid in a 
worst-case scenario or create long-term small errors contributing to financial issues. Therefore, 
utilities must secure data pipelines, such as through encryption in transit and at rest and 
authentication of sensors to ensure data integrity, and possibly monitor AI outputs for signs of 
tampering. Recent assessments highlight risks like false data injection, where maliciously altered 
sensor data causes AI models to make incorrect decisions.92 Strong security measures, following 
standards such as NERC CIP for cyber protection of critical systems, are required to mitigate 
these risks. In practice, this means including the IT or security teams in AI project planning and 
using secure gateways and implementing fail-safes or fallbacks if data is suspicious. Data 
resilience is also part of security, ensuring that if one data source fails (say, a PMU is offline), 
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92 U.S. Department of Homeland Security. (2023, December 22). Risks and mitigation strategies. Science and 
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12/23_1222_st_risks_mitigation_strategies.pdf  
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https://www.dhs.gov/sites/default/files/2023-12/23_1222_st_risks_mitigation_strategies.pdf
https://www.dhs.gov/sites/default/files/2023-12/23_1222_st_risks_mitigation_strategies.pdf


 

the AI system can gracefully degrade or switch to backup data. Lastly, compliance with privacy 
regulations is key. For example, if using smart meter data for an AI model, it’s important to 
aggregate or anonymize as needed to protect customer identities. Establishing proper 
governance, privacy handling, and security from the start not only protects the utility and 
customers but also builds confidence that the AI’s insights can be trusted and are legally 
compliant. 
 

4. Balancing Risk and Benefit of Adoption of AI in Electric 
Utilities   

There are several key risks associated with AI adoption in grid planning and operations. These 
challenges range from technical considerations of the models and data themselves to the ways in 
which using AI will change human behaviors and reactions, to the potential for these tools to be 
misused or adversarial manipulated. This section will identify several key risks categorized as 
cybersecurity, operator and planning, regulatory, supply chain, privacy, and human-related risks. 
AI adoption and, therefore, risk can be grouped into functions similar to how cybersecurity is 
approached in these spaces. In the IT spaces, primary functions revolve around human processes, 
such as data and billing management, and customer engagement.  These kinds of applications in 
GenAI are considered simple models that have low operational risk but potentially higher 
customer data security risk.   
 
In OT spaces, functional and mission assurance is key, in particular, safety, reliability, and 
performance. Accuracy is paramount in life-saving applications, and this is why so many safety-
critical functions are manually verified, such as lockout or tagout. In planning applications, AI 
may be trusted to make decisions that have longer-term implications for the reliability, 
performance, and economics of the power grid. In operations applications, timing and 
performance, as expected, are key. Whether humans are part of the decision loop or actions are 
fully autonomous, trusting the AI to make decisions or recommendations that are most 
appropriate in the moment can make or break the usability of the model. Utilities in California 
and elsewhere have faced real-world scenarios where cutting power, despite the significant 
inconvenience and economic disruption, was deemed the lesser risk compared to potential loss of 
life or catastrophic infrastructure damage. Public Safety Power Shutoff (PSPS) events 
implemented by Pacific Gas and Electric (PG&E) and other utilities exemplify this trade-off. In 
high wind and drought conditions, proactively de-energizing lines can prevent equipment faults 
from igniting wildfires, a danger that has historically caused billions in damage and claimed 
many lives. The same principle applies in unusual operational incidents, such as the case of a 
woman who climbed onto an energized transformer, where operators had to quickly disable 
equipment to prevent injury, despite the cost of localized outages.93 
 

 
93 Jennings, A. (2024, November 13). More than 800 Utah homes lose power after woman climbs transformer. 
Retrieved from https://www.abc4.com/news/digital-exclusives/800-homes-lose-power-trespass/ 
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This trade-off reflects an “AI trolley problem”94 dynamic when decision support systems or 
automated controls are integrated into grid operations. The system may be required to choose 
between two unfavorable outcomes: continuing service under unsafe conditions versus 
interrupting service to avert a potentially more severe event. In human decision-making, these 
judgments draw on experience, training, and safety regulations; in AI-assisted environments, the 
same logic must be encoded into model objectives, risk thresholds, and control algorithms. In 
both human and machine contexts, the guiding principle is that temporary loss of power is 
preferable to the irreversible consequences of wildfire ignition, severe injury, or death. 
Embedding such prioritization into AI systems ensures that safety remains the dominant factor, 
even when automated decision-making is involved in real-time grid control. Key risk themes 
include cybersecurity, operational resilience, physical security, regulatory, supply chain, and 
privacy (Table 2). An additional risk to consider is human talent and knowledge drain in power 
operations. As AI automation is used to replace human tasks, humans may lose the skills, 
expertise, and contextual awareness required to execute these tasks, creating risk if AI is 
unavailable or makes decisions that humans cannot identify as risky behaviors.  
 
Utilities must take a secure and responsible approach when integrating AI and cloud 
technologies. Generative AI can greatly improve data management and customer engagement, 
but it also introduces serious challenges to data security. On the operational side, AI plays a 
pivotal role in supporting decisions that affect grid reliability and economic performance. 
However, the adoption of AI in grid planning and operations brings distinct risks, ranging from 
technical vulnerabilities and shifts in human behavior to opportunities for misuse. These risks 
can be grouped into the categories identified in Table 2 below. 
 
Table 2: Summary of key risk themes. 

Category Example Risk 
Cybersecurity Adversarial attacks on AI models, causing grid disruption 
Operational Loss of human oversight due to black-box AI decisions, 

Synchronized responses destabilizing frequency or voltage 
Regulatory Lack of standards for AI validation in critical infrastructure 
Supply Chain Dependency on foreign AI models, chips, and firmware 
Privacy Customer, PII, and CEII data  

 

4.1 Cybersecurity Risks 
Several potential vulnerability classes of AI and ML are being researched. To determine how 
these may result in consequences to power grid operations and planning, the authors utilize the 
OWASP Top 10.95 Table 3 outlines the critical cybersecurity threats associated with the adoption 
of AI, highlighting potential vulnerabilities and risks that utilities must address to safeguard their 
operations. 
 

 
94 The Alan Turning Institute. (2025). AI's "Trolley Problem" Problem. Retrieved from 
https://www.turing.ac.uk/blog/ais-trolley-problem-problem 
95 OWASP. (n.d.). ML01:2023 Input Manipulation Attack. Retrieved from https://owasp.org/www-project-
machine-learning-security-top-10/docs/ML01_2023-Input_Manipulation_Attack  

https://www.turing.ac.uk/blog/ais-trolley-problem-problem
https://owasp.org/www-project-machine-learning-security-top-10/docs/ML01_2023-Input_Manipulation_Attack
https://owasp.org/www-project-machine-learning-security-top-10/docs/ML01_2023-Input_Manipulation_Attack


 

Table 3: OWASP’s Top 2023 LLM vulnerability list and descriptions. 

OWASP 
vulnerability Name Description of OWASP Vulnerability 

ML01:2023 Input 
Manipulation Attack 

A type of attack in which an attacker deliberately alters input data to 
mislead the model. 

ML02:2023 Data 
Poisoning Attack 

An attacker manipulates the training data to cause the model to behave in an 
undesirable way. 

ML03:2023 Model 
Inversion Attack 

Model inversion attacks occur when an attacker reverse-engineers the 
model to extract information from it. 

ML04:2023 
Membership 
Inference Attack 

Membership inference attacks occur when an attacker manipulates the 
model’s training data in order to cause it to behave in a way that exposes 
sensitive information. 

ML05:2023 Model 
Theft 

Model theft attacks occur when an attacker gains access to the model’s 
parameters. 

ML06:2023 AI 
Supply Chain 
Attacks 

In ML Supply Chain Attacks, threat actors target the supply chain of ML 
models. This category is broad and important, as software supply chain in 
ML includes even more elements than in the case of classic software. 

ML07:2023 Transfer 
Learning Attack 

Transfer learning attacks occur when an attacker trains a model on one task 
and then fine-tunes it on another task to cause it to behave in an undesirable 
way. 

ML08:2023 Model 
Skewing 

Model skewing attacks occur when an attacker manipulates the distribution 
of the training data to cause the model to behave in an undesirable way. 

ML09:2023 Output 
Integrity Attack 

In an Output Integrity Attack scenario, an attacker aims to modify or 
manipulate the output of a machine learning model in order to change its 
behavior or cause harm to the system it is used in. 

ML10:2023 Model 
Poisoning 

Model poisoning attacks occur when an attacker manipulates the model's 
parameters to cause it to behave in an undesirable way. 

 

4.2 Operational and Planning Risks  
These risks can be systematically grouped into two broad categories, operational and planning, 
providing a structured framework for assessing the potential impacts of AI integration on grid 
reliability (Table 4Table 4). 
 
Table 4: Safety risk and description. 

Risk Description 
Loss of Operator 
Understanding 

AI models may make decisions that operators cannot interpret, reducing 
situational awareness and impairing crisis response. 

Operations Model 
Drift Models trained on historical data may fail when grid conditions change. 



 

Automation 
Dependency 

Over-reliance on AI may reduce manual system checks, leading to latent 
failures that go unnoticed until critical. 

Inflexible Failover 
Paths 

AI-based control systems might lack robust manual override or fail-safe options 
in case of malfunction. 

Model Validation 
Challenges 

There is no standardized way to test AI for safe grid deployment under all 
scenarios, making certification difficult. 

Load and 
Generation 
Forecast Errors 

AI systems may mispredict load or renewable generation, leading to imbalances 
and reserve margin failures. 

Safety If AI is used in protective relaying or fault isolation, incorrect decisions could 
lead to cascading outages. 

Power Outage Failure in safety, or other automation or operations results in a power outage. 
 

4.3 Regulatory and Policy Risk 
These challenges can also be systematically grouped into categories that highlight their 
implications for standards, jurisdiction, and accountability, providing a structured framework for 
evaluating regulatory and policy risks (Table 5). 
 
Table 5: Regulatory risk and description. 

Risk Description 
Standards Lag Existing grid reliability standards (NERC CIP, IEEE, etc.) are not fully 

equipped to address AI-specific risks, leaving gaps in regulation. 
Policy  Policies at federal, regional, and state levels may restrict or change the way 

that AI can be used in different applications and may not be informed by the 
state-of-the-art technical best practices. Additionally, policies may vary 
across jurisdictional territories, making it difficult to standardize the 
adoption of best practices. 

Liability, 
Responsibility, and 
Accountability 

It may be unclear who is liable if an AI-enabled device causes a grid event—
manufacturer, AI vendor, utility, or operator 

 

4.4 Supply Chain  
These vulnerabilities can be systematically grouped into categories that reflect risks in sourcing, 
hardware dependencies, and development pipelines, providing a structured framework for 
evaluating supply chain security (Table 6). 
 
Table 6: Supply chain risk and description. 

Risk Description 
Foreign 
Adversary 
Control Points 

AI software or hardware may be sourced from or maintained by foreign 
entities, raising concerns about embedded malicious code or operational 
dependencies. 

Hardware-
Software 
Coupling Risks 

AI functions may require specialized chips (e.g., GPUs, NPUs) that have their 
own security and supply chain issues, especially if sourced from non-U.S. 
manufacturers. 



 

Software 
Development 
Pipeline 

AI applications that are used in the grid may involve multiple stakeholders, 
including not only the primary tool provider, but also software integrators, 
developers of models on top of which utility applications are built, and more. 
If not all of these actors understand the utility’s primary objectives, the 
deployed model may not meet all of the safety and reliability needs. 

4.5 Privacy and Security  
These concerns can be grouped into categories spanning customer privacy, financial integrity, 
and data security, providing a structured framework for assessing the vulnerabilities AI 
introduces to sensitive information (Table 7). 
 
Table 7: Security risk and description. 

Risk Description 
Customer Data 
Breach/Manipulation/Loss 

Customer data, including personally identifiable information 
(PII) or power usage-data (AMI data breach 96 ) that reveals 
personal habits, may be accidentally revealed by AI if proper 
protections are not in place. Manipulation of such data could 
lead to billing errors.  

Planning Data 
Breach/Loss/Manipulation 

Loss of Critical Data, Manipulation of Data used nefariously 

5. Consequence Analysis and Attribute Decomposition of 
Cyber Physical Risk of the Use of AI  

In AI-enabled power system applications, consequence analysis must evaluate not only the 
projected physical and operational impacts of an event on the grid, but also the performance 
constraints of the AI system itself. This additional layer is essential because the reliability of AI-
derived outputs directly influences the quality and timeliness of operator actions. The 
decomposition into availability, accuracy, and speed or delay provides a structured method for 
characterizing the AI system’s operational profile (Figure 4). From the system perspective, 
availability refers to the proportion of operational time the AI application remains functional and 
able to process inputs, accounting for hardware uptime, data pipeline continuity, and model 
service stability, and the application availability itself, for example if a utility were to lose access 
to its fault location tooling, they likely can manually process, but if the utility lost access to its 
OMS, there may be more significant events such as longer outage processing times and therefore 
longer times with lights out for customers. Accuracy measures the system’s ability to generate 
correct classifications, forecasts, or anomaly detections under diverse operating conditions and 
data quality states, including during contingencies or degraded measurements. An error in fault 
location may result in a significant cost in digging the wrong space for access to the power line. 
Speed/delay encompasses end-to-end latency from data acquisition through AI inference to 

 
96 Kovacs, E. (2025, July 9). Canadian Electric Utility Says Power Meters Disrupted by Cyberattack. Retrieved 
from SecurityWeek: https://www.securityweek.com/canadian-electric-utility-says-power-meters-disrupted-
by-cyberattack/ 

https://www.securityweek.com/canadian-electric-utility-says-power-meters-disrupted-by-cyberattack/
https://www.securityweek.com/canadian-electric-utility-says-power-meters-disrupted-by-cyberattack/


 

delivery of actionable output, with consideration of worst-case execution times under high 
computational load. Restoration and fast reaction tooling such as line drop detection, to prevent a 
wildfire, cannot tolerate latency, but power systems planning can.  

 
Figure 4: Performance Constraints of AI for Grid. 

From the grid impact perspective, availability failures in the AI system may translate into 
delayed fault isolation, missed protection coordination windows, or reduced situational 
awareness. Accuracy deficiencies may result in incorrect dispatch signals, misidentification of 
incipient instability, or failure to detect cyber-physical intrusions, each carrying distinct safety, 
reliability, and resilience consequences. Excessive speed or delay may render AI outputs non-
actionable in time-critical operations such as remedial action schemes, fast frequency response, 
or wildfire-related PSPS decision-making. By mapping AI system performance attributes to 
specific grid consequence categories, including safety, reliability, resilience, reputation, and 
economic cost, operators can quantify the dependency of operational risk on AI system behavior. 
This approach ensures that consequence analysis remains physically grounded in grid 
performance metrics while explicitly incorporating the technical constraints and capabilities of 
the AI system delivering the analysis 
 
For each use case or AI application domain, it’s possible to evaluate key operational constraints 
such as latency, availability, and accuracy of the solution and evaluate these in a matrix. This 
evaluation and remediation or protection approach is evaluated against the top 10 OWASP styles 
of AI attack or failure (see Table 3).       
 
The authors selected several AI-enabled applications for this analysis and categorized them using 
a subset of OWASP’s Top Risks and Vulnerabilities for LLM applications. A heatmap was then 
created to show which applications pose the highest consequence if the identified OWASP 
vulnerabilities and/or risks are exploited.  



 

5.1 Consequence Evaluation 
The consequences of each AI event style, on the use case are evaluated utilizing the following 
criteria, noting that this is not exhaustive, but intended to determine a prioritized range of 
consequences for ranking and mitigating risk. As a framework, individual entities may consider 
alternative features, but as a starting point these are the primary concerns of many utilities.  
 
Note: The applications were rated on a scale from green to red, with green indicating the lowest consequence or risk  and 
red indicating the highest consequence or risk. 

Table 8: Criteria and Mapped Consequence of AI Event Styles. 

Criteria Consequence of AI Event Style 
Ability to Serve Load - Size of Outage: Ranging from single home to whole region or territory 

depending on entity assessing.  
- Duration of Outage: How long the power would likely be impacted 
(momentary to days). 

Safety - Potential for a safety event, from low to loss of life. 
OT Asset Integrity - Can be reinstated quickly, or needs fully replaced and/or no longer trusted. 
Privacy - Data remains private, to full loss of data.  
Critical Data Loss - None to all. 
Cost of Event - Low loss event to entity bankruptcy. 
Reliability of Grid - Impact to metrics, such as CAIDI and SAIDI. 
Reputation or Customer 
Satisfaction 

- Many utilities are ranked on customer satisfaction and reputational damage 
can significantly impact their business operations.  

Ability to Reason about 
System 

- Potential complexity and timescale impact to reason about that system. 

 
Putting together the evaluation, the style of use case and the OWASP Top 10, the authors created 
an extensive list of potential consequences of the style of AI issue. An example is provided in 
Table 9, with a complete table available in Appendix A: Consequence Table Heatmap, along 
with additional descriptions for that table in Appendix B: Consequence Table Descriptions. The 
heatmap in Appendix A categorizes AI vulnerabilities across use cases by severity, using a color-
coded scale from green (lowest consequence) to red (highest consequence). This evaluation is 
informed by the 2023 OWASP Top 10 for LLMs, which highlights key risks such as prompt 
injection, model poisoning, and insecure feedback loops.  
 
Disclaimer: While this consequence ranking provides a structured view of potential impacts, the 
actual severity of AI vulnerabilities depends heavily on the specific model architecture, 
deployment environment, operational dependencies, and organizational context. A use case 
ranked as "moderate" in one system may be "high" in another, depending on how the AI is 
integrated and relied. 
 
 
 
 



 

Table 9: Example of consequence ranking with varying severities. 

Use Case 
ML1:  
Input 

Manipulation 

ML8:  
Model Skewing 

ML10:  
Model Poisoning 

Total 
Consequence 

Ranking 

Predictive 
Maintenance 

and Asset 
Health 

Monitoring 

Injected false sensor 
data (temperature, 
vibration) causes 

premature or missed 
maintenance. 

Maintenance team 
interventions bias 
model to ignore 

outliers, degrading 
predictive 

performance. 

Weights are 
tampered to reduce 
model sensitivity to 

critical failure 
indicators like 
thermal spikes. 

 Green  
= 

Lowest 
Consequence 

Model 
Validation 

and Data Lake 

Erroneous or 
mislabeled data 

leads to incorrect 
model acceptance or 

rejection. 

Spurious 
correlations or 
feedback loops 

reinforce historical 
biases or flawed 

assumptions. 

Poisoned or 
inconsistent data 
schemas degrade 
model traceability 

and long-term 
performance. 

Yellow 
= 

Moderate 
Consequence 

Fault Location 
(Precursor to 
Grid Control) 

Injected harmonics 
or noise spoof true 
location, delaying 

restoration. 

Field technician 
error feedback 

retrains model(s) to 
ignore certain 

anomalies. 

Internal model logic 
gradually diverges, 
misplacing faults 

systematically over 
time. 

Orange 
= 

Moderate - High 
Consequence 

Autonomous 
Grid Control 
(Real-Time 
Dynamic 

Protection and 
Remediation) 

Compromised 
frequency or phase 
angle data triggers 

false grid separation 
or reclosure. 

Operator feedback 
to dampen transient 
events shifts control 

away from robust 
configurations. 

Small, persistent 
changes in training 

degrade grid 
stabilization ability 

over time. 

Red  
=  

Highest 
Consequence  

 
Ultimately, the evaluation underscores the importance of applying the greatest rigor to AI 
applications that fall within the “red” or high-consequence category. Rigor, in this context, refers 
to the disciplined application of robust safeguards: comprehensive testing and validation, 
continuous monitoring for drift or manipulation, alignment with evolving standards, and 
structured contingency planning. Utilities should ask not only whether AI is needed for a given 
use case, but also whether the benefits of adoption meaningfully outweigh the potential risks. 
Choosing not to adopt carries its own risks, such as foregone efficiencies, slower response times 
or missed opportunities for resilience. However, adoption without sufficient mitigations could 
expose the grid to unacceptable vulnerabilities. Safe deployment therefore requires striking a 
balance: prioritizing high-value use cases, investing in layered defenses, and implementing 
governance mechanisms that ensure AI augments rather than undermines grid reliability. 

6. Repercussions of Non-AI Deployment or Limited 
Deployment  

While much attention is given to the risks induced by AI in power systems, the risks of not 
deploying AI, or deploying it in a limited, fragemented, or delayed manner, must also be 
evaluated. Some business drivers for reducing cost in utilities, and therefore not increasing rates, 



 

include increasing reliability and increasing customer satisfaction will outweigh the risks posed 
in utilizing the modernized functionality. This has been one of the reasons cloud adoption in 
smaller utilities is outpacing large IOUs, and there is potential for the same to occur in AI 
adoption.  
Using the availability, accuracy, and speed or delay decomposition provides a consistent 
framework to assess operational risk in both scenarios. From the AI system performance 
perspective, availability refers to the operational uptime of the AI service; accuracy is the rate of 
correct outputs under varying data and grid conditions; and speed or delay measures inference 
latency relative to the time-criticality of the function. These characteristics map directly to grid 
repercussions (Table 10). 
 
Table 10: AI Characteristics Mapped to Grid Repercussions. 

Characteristics Grid Repercussions 
Availability - Failures can delay protective actions 
Accuracy - can lead to incorrect operational decisions 
Speed or Delay - can make outputs non-actionable in time-sensitive scenarios 

 
From the non-adoption perspective, absence of AI can introduce comparable risk in a future 
modernized grid. In terms of availability, reliance on purely manual processes can bottleneck 
operations, especially under high workload or during emergencies. In terms of accuracy, human 
operators, typically managing a strained workload, are more prone to misinterpret complex 
system states, increasing error rates. In terms of speed or delay, manual analysis can be 
significantly slower, leading to delayed interconnections, slower contingency response, or 
missed real-time mitigation opportunities. Non-adoption can also limit the organization’s ability 
to leverage advanced grid technologies such as adaptive protection schemes, predictive 
maintenance, or DER orchestration, constraining system flexibility, resilience, and integration 
capacity. With grid deployments and operational environments becoming more complex, often 
surpassing the threshold of human cognitive processing capacity, AI becomes increasingly 
critical for managing the scale, speed, and multidimensional trade-offs inherent in modern power 
system decision-making. 

6.1 Consequence Analysis  
 
By scoring both AI-enabled and non-AI scenarios qualitatively—classifying the consequence in 
each attribute as low, medium, or high—operators can compare not only the risks of using AI but 
also the operational and strategic costs of forgoing it. This approach ensures decision-making 
accounts for the full spectrum of impacts, enabling a more complete viability assessment when 
selecting solutions. 
 
In the example of consequence ratings below for select non-adoption of AI application for power 
systems, the same scale of evaluation is used as for evaluating the risks of AI adoption, namely 
the same criteria in Table 8.  



 

Table 11: Example use cases of consequence of non-AI adoption. 

Use Case Consequence of Non-AI Deployment Ranking 

Fault Detection Without AI-driven fault location or predictive analytics, outage 
sizes may increase and restoration times may lengthen. Manual 
processes may not scale during widespread events. Delayed 
detection of hazardous conditions (e.g., line drops, thermal 
overloads) increases the risk of safety incidents, especially in 
wildfire-prone or high-voltage environments. 

High 

Predictive asset 
maintenance  

Lack of AI-driven predictive maintenance may lead to situations 
of undetected degradation, resulting in catastrophic failures and 
costly replacements. 

Low 

Outage 
Management 

Operational inefficiencies, prolonged outages, and reactive 
maintenance can escalate costs significantly, especially during 
high-impact events. Longer outages and slower service restoration 
can erode public trust, especially in regions where utilities are 
benchmarked on customer satisfaction. missed optimization 
opportunities. 

Moderate 

Autonomous 
Grid Control 

As grid complexity increases, human-only reasoning becomes 
insufficient to manage real-time trade-offs, leading to suboptimal 
or delayed decisions. 

Moderate 

 
The evaluation of non-AI deployment consequences reveals that inaction is not a neutral or risk-
free decision—it introduces its own spectrum of operational, safety, and strategic vulnerabilities. 
As power systems grow in complexity and interdependence, the limitations of automated or fixed 
processes become more pronounced, particularly in areas requiring speed, precision, and 
adaptability.  

7. Engineering Controls and Approach to Develop 
Solutions 

Using this approach, an AI user in a utility setting can evaluate their risk tolerance and develop 
appropriate controls. By applying this approach, utilities can align AI deployment strategies with 
their defined risk tolerance and operational priorities. This alignment enables selection of 
appropriate deployment architectures—for example, on-premises, hybrid, or edge-based AI 
systems—based on the criticality of the function and associated risk profile. Risk-informed 
solution deployment can be further reinforced through structured methodologies such as Cyber 
Informed Engineering (CIE), 97 which integrates cybersecurity considerations into system design 

 
97 Office of Cybersecurity, Energy Security, and Emergency Response (CESER). (n.d.). Cyber-Informed 
Engineering. Retrieved from U.S. Department of Energy: https://www.energy.gov/ceser/cyber-informed-
engineering 
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from inception, and applicable NIST frameworks—for example, the NIST Cybersecurity 
Framework (CSF) for risk management or NIST AI Risk Management Framework (AI RMF) for 
trustworthy AI practices. These frameworks help ensure that AI systems are not only technically 
robust, but also secure, resilient, and compliant with industry standards, while providing clear 
checkpoints for governance, validation, and continuous monitoring. 

To mitigate systemic failures, utilities should implement consequence-driven engineering 
controls (ECs) that bound AI within safe operating parameters. Redundancy, transparency, and 
fail-safe mechanisms are essential to ensure resilience when AI systems malfunction or produce 
incorrect recommendations. At a minimum, every system should include a manual override or 
“off-switch” that enables operators to assume control seamlessly. If an AI application must be 
taken offline—whether for maintenance or in response to abnormal behavior—grid operations 
should transition smoothly to manual or traditional controls. Likewise, when outputs deviate 
from expected bounds or when the AI model signals low confidence, the system should default 
to a safe mode, reverting control to human operators or conservative, rule-based backups. This 
mirrors aviation autopilot systems, which hand control back to pilots during complex or 
uncertain conditions to preserve safety. 

Equally important is designing redundancy into AI systems to avoid single points of failure. A 
lone AI agent should never hold sole responsibility for critical functions. Using multiple models 
with diverse architectures, or maintaining traditional control systems as backups, significantly 
enhances reliability. For instance, some utilities deploy “watchdog” systems that monitor AI 
health by tracking factors like input data integrity and processing time. These watchdogs issue 
alerts when anomalies occur, enabling proactive responses before failures escalate. By 
embedding these engineering safeguards into AI deployments, utilities can ensure that grid 
operations remain resilient and customer safety is preserved—even in the face of AI-related 
disruptions. 

7.1 Deployment Taxonomy  
As electric utilities begin integrating artificial intelligence (AI) capabilities, including large 
language models (LLMs) and agentic AI systems, into operational workflows, it is necessary to 
categorize deployment environments based on the location of compute and data, the required 
level of control, and the associated operational and regulatory risk. The deployment taxonomy 
presented herein establishes a structured framework to align AI system implementation with 
established consequence thresholds in electric utility operations. Each deployment category (e.g., 
public cloud, hybrid, on-premises, edge, federated, and private cloud) presents a distinct profile 
in terms of latency, data governance, scalability, and infrastructure control. These factors must 
be evaluated in the context of system criticality, regulatory compliance requirements (e.g., 
NERC CIP), and the potential operational impact of AI system performance, error, or 
degradation.  

7.1.1 Taxonomy Options for Deployment 
The taxonomy options described briefly below are summarized in more detail in Table 12. 
 
Full Public Cloud 

• Model Location: Cloud (e.g., OpenAI, Azure OpenAI, AWS Bedrock) 



 

• Data Location: Cloud-native (utility-hosted on cloud or SaaS environments) 
• Advantages: Scalable, fastest innovation cycles, access to cutting-edge APIs 
• Challenges:  NERC-CIP data restrictions, sovereignty risks, network latency, 

compliance limitations 

Hybrid Cloud (Cloud Model + On-Prem/Private Data) 
• Model Location: Cloud-hosted model (e.g., OpenAI API) 
• Data Location: Utility-owned infrastructure on-prem 
• Advantages: Secure data control + advanced models 
• Challenges: Complex integration, data tunneling, latency, increased need for cyber  

governance 

Fully On-Prem 
• Model Location: On-site (using open-source LLMs or fine-tuned local models) 
• Data Location: On-prem data centers or secure utility networks 
• Advantages: Total control, compliance-aligned (NERC CIP, IT/OT segmentation) 
• Challenges: Infrastructure and maintenance burden, slower to scale, high CapEx 

Edge-Based AI (at Substations, DERs, Field Devices) 
• Model Location: Embedded in devices (e.g., ARM chips, rugged edge servers) 
• Data Location: Localized (on-device, at edge nodes) 
• Advantages: Low latency, operates during comms loss, fast decisions at the edge 
• Challenges: Limited compute/storage, requires distilled models 

Federated / Distributed AI 
• Model Location: Multi-location (edge + regional + cloud inference nodes) 
• Data Location: Local to each node, coordinated for training or inference 
• Advantages: Privacy-preserving model sharing, no centralized data exposure 
• Challenges: Federated orchestration complexity,  high coordination effort, expanded 

attack surface and ownership models 

Private Cloud / Co-Located Data Center (e.g., Vendor or Utility-Owned) 
• Model Location: Hosted in utility-controlled or vendor-managed secure cloud  
• Data Location: Private cloud storage or connected utility systems 
• Advantages: Can align with NERC/FERC compliance, scalable, cloud-like control 
• Challenges: Slower AI toolchain updates, requires close vendor partnerships 

Table 12: Deployment taxonomy and data residence example. 

Deployment 
Model 

Model 
Resides 

Data 
Resides 

Model 
Resides 

Data 
Resides 

Consequence 
Alignment 

Public Cloud Cloud Cloud Cloud Cloud Low consequence 
Hybrid Cloud Cloud On-Prem Cloud On-Prem Moderate 

consequence 



 

On-Premises On-Prem On-Prem On-Prem On-Prem High-moderate 
consequence 

Edge AI Field 
Devices 

Local Field 
Devices 

Local High consequence 

Federated Mixed Distributed Mixed Distributed High-real-time 
Private Cloud Private 

Utility DC 
Private 
Cloud 

Private 
Utility DC 

Private 
Cloud 

Medium-to-high 

8. Responsible Practice Recommendations  
Best-practice recommendations for selecting and deploying AI models in the electric grid 
context. These practices aim to maximize the value of AI while safeguarding reliability and 
safety. The items below are the authors’ Top 10 recommendations for responsible deployment 
and should be considered for all applications. Future work includes a practice guide for CIE-
informed AI deployments for the grid.98   

• Align AI Solutions with Use-Case Criticality: Evaluate the consequences of AI 
decisions in each application and choose the level of human oversight accordingly. Not 
all grid AI applications carry equal risk. For example, an AI that writes customer outage 
texts can be fully automated, whereas an AI that controls a transmission breaker should 
be under human supervision. A consequence-driven approach is advised: for high-impact, 
safety-critical actions, keep humans in the loop or in approval roles; for lower-risk 
optimizations, more autonomy can be allowed. In practice, categorize potential AI use 
cases (forecasting, outage restoration, market bidding, etc.) by operational risk and adopt 
stricter controls on those with high impact. The new "technology" is moving and 
integrators should make efforts to harmonize with the existing before replacing to bring 
the human's along. 

• Choose the Right Model Type for the Task and Function: Base model selection on the 
nature of the problem, available data, and need for interpretability. For instance, 
use supervised learning models for well-defined prediction tasks with historical labels 
(e.g. load forecasting), unsupervised models for anomaly detection and pattern discovery 
when you lack labels (equipment anomaly detection), and reinforcement learning for 
sequential decision or control problems (voltage control, dynamic energy dispatch). 
Within these, consider advanced architectures (like LSTMs for time-series, CNNs for 
image-based asset inspections, GNNs for networked data) as needed. However, balance 
complexity with transparency – if a simpler model (like a decision tree or linear model) 
achieves the goal, it may be preferable for ease of explanation to engineers and 
regulators. Physics-informed models or hybrid approaches should be favored in domains 
where physical consistency is paramount (state estimation, stability analysis).  Evaluate 
model performance not just on accuracy but also on whether outputs make sense 
physically (no negative loads, no frequency beyond limits, etc.). 

• Data Readiness First: Successful AI deployment begins with robust data infrastructure. 
Utilities should ensure they have a single, reliable source of truth for operational data – 

 
98 Idaho National Laboratory (INL). (n.d.). Managing Cyber Risk from Concept to Operation . 

Retrieved from Cyber-Informed Engineering: https://inl.gov/national-security/cie/ 

https://inl.gov/national-security/cie/


 

typically by establishing data lakes or federated data platforms that integrate SCADA, 
AMI, asset management, outage management, weather and other datasets. Implement 
strong data governance: assign data stewards, document data lineage, and enforce data 
quality checks regularly.  Before model development, spend ample time on data cleaning 
and feature engineering, as these often yield bigger improvements than fancy algorithms. 
It’s also recommended to create a cross-functional data team that includes domain experts 
(power engineers) working with data scientists, so that data is interpreted in context (e.g. 
knowing that a “0” in a SCADA field might mean sensor offline, not true zero). In terms 
of volume, leverage historical archives and consider augmenting with simulated data if 
real data is insufficient for rare events. Additionally, ensure data update pipelines are in 
place – models might need periodic retraining as new data comes in (to avoid model 
drift). Having automated pipelines for data ingestion and model retraining (with proper 
validation gates) will keep the AI solution accurate over time. Diverse data sources can 
unlock powerful insights but requires tackling compatibility and sharing challenges 
upfront. 

• Embed Security and Privacy Measures/Policy: Treat AI models as part of the critical 
infrastructure – secure them and their data. This includes protecting training data and 
real-time input data from manipulation (through encryption, authentication, intrusion 
detection) because compromised data can lead to dangerous outputs. Establish processes 
to detect anomalous model outputs that might indicate either model issues or malicious 
interference (for example, a sudden recommendation to shed a large load could be 
flagged for review). Incorporate adversarial testing during development – expose the 
model to slightly corrupted or adversarial inputs to see if it behaves robustly. On the 
privacy front, comply with all regulations: use anonymization or aggregation for 
customer data in AI models, and restrict access to sensitive data. Data governance 
policies should clearly define what data can be used for AI and ensure regulatory 
reporting (some regulators require disclosure of how customer data is used or if an AI 
makes certain decisions). By proactively addressing cyber and privacy aspects, utilities 
can avoid setbacks later and build trust with stakeholders that the AI is safe to use. 

• Ensure Explainability and Transparency: One challenge with AI, especially complex 
ML models, is their “black box” nature. In a critical domain like the grid, operators and 
engineers need to understand (at least at a high level) why an AI model is recommending 
a certain action. So, incorporate explainability tools and requirements in model selection. 
This could mean using inherently interpretable models where possible or adding 
explanation layers for deep models. For grid operations, even a simple textual 
explanation can help, such as “Voltage regulator tap changed by AI because voltage at 
node X exceeded threshold due to high load.” Providing these insights helps humans 
validate and trust the AI’s reasoning. As noted in a NERC report, humans often assume 
AI is reasoning like they do, which is not true, and this mismatch can be problematic if 
not addressed. Thus, design the AI system’s UI to present relevant context: confidence 
levels, key factors influencing the decision, and any model uncertainty. Transparency 
also extends to documenting the model’s validation: keep a record of how the model was 
tested (scenarios, performance metrics) and any limitations discovered. This 
documentation not only aids internal understanding but also is crucial if regulators or 
other external parties inquire about the AI’s use. In summary, no black boxes in the 



 

control room – operators should feel the AI is a tool they comprehend and control, not a 
mysterious oracle. 

• Use a Phased and Pilot-Based Deployment Strategy: When introducing AI into 
operations, start small and simple, then progressively expand. Begin with pilot projects in 
a controlled environment – for example, run the AI decision support in parallel with 
human decision-making for some months (“shadow mode”) to evaluate its suggestions 
without risk. Use these pilots to gather performance data, user feedback, and to calibrate 
the model. Phased deployment gradually increase the AI’s autonomy and the scope of its 
actions as confidence grows. A best practice is to start with human-in-the-loop: let the AI 
recommend actions and have humans approve them. This phase allows operators to get 
comfortable and also serves as on-the-job training. Over time – and with clear success 
criteria met (e.g. the AI’s recommendations proved correct 99% of the time in pilot) – 
then closed-loop automation for specific functions. Maintain fallback: the AI should have 
an easy manual override or an off-switch in case it behaves unexpectedly. Also plan 
for contingency operations – if the AI system has to be taken offline (for maintenance or 
due to an issue), ensure the grid operations can smoothly revert to manual or traditional 
control.   

• Train and Upskill Personnel (Human-Centric Deployment): The success of AI in the 
grid is not just a technical matter, but also a human one. Invest in operational training 
programs so that engineers and operators learn how to use the new AI tools effectively, 
along with continuing to learn core power system operations, one should not replace the 
other. Establish human-machine teaming framework: redefine roles so that staff know 
what the AI will handle and what their own responsibilities are.  

• Implement Continuous Monitoring and Improvement: Deployment is not the end – 
monitor the AI system’s performance continuously in production. Set up metrics and 
KPIs to track its impact (e.g. forecasting error reduction, fewer outages, cost savings, 
etc.). Also monitor for errors or drift: for example, if a load forecasting AI starts to show 
bias as new electrification trends emerge, trigger a retraining or recalibration. Establish a 
process for periodic review of the AI’s decisions by experts, at least in the early stages, to 
catch any odd behavior. This can be formalized as an AI governance committee within 
the utility that reviews AI outcomes and any incidents. Integrate real-time validation 
where feasible – one recommendation is to use parallel models or rules as a check on the 
AI’s recommendations. For instance, if the AI suggests a power flow that violates a 
constraint, a simple rule-based checker could catch it before execution. Over time, these 
validations can be relaxed as trust increases, but it’s good to have them as a safety net. 
Keep models up to date with the latest data and system configuration (for example, if a 
new solar farm is added, ensure the forecasting model knows about it). Moreover, plan 
for model maintenance: machine learning models can degrade over time (data drift, 
changes in usage patterns), so schedule periodic retraining or re-validation (perhaps every 
year or after major system changes). Document any model updates and ensure operators 
are informed of changes in behavior or new features. In essence, treat the AI system as a 
living part of the grid ecosystem that requires ongoing care, not a one-off install. 

• Leverage Industry Lessons and Collaborate: The electric utility community is actively 
sharing lessons learned from AI deployments. Engaging with industry groups (e.g., EPRI, 
IEEE smart grid groups, NERC working groups) and learning from case studies can 
greatly benefit a utility’s AI journey. Many recent whitepapers and reports (like NERC’s 



 

2024 AI in operations white paper, DOE’s AI for grid research, etc.) highlight common 
pitfalls and successful strategies. For example, one RAND study pointed out that 
introducing AI widely in grid operations can have unexpected systemic effects if not 
coordinated (they found that if some operators have AI assistance and others do not, it 
can lead to misaligned decisions).  Such insights suggest that industry-wide standards and 
best practices may be needed for smooth integration. Utilities should advocate for and 
adopt emerging standards for AI in critical infrastructure – whether it be in model 
validation, data exchange formats, or reliability testing protocols. Additionally, sharing 
non-sensitive data and results with research partners or consortia can accelerate 
innovation (for instance, participating in open datasets or challenges for grid AI). Many 
utilities have found value in partnering with universities or national labs to develop AI 
models tailored to their needs, benefiting from cutting-edge research. By staying 
connected to the broader community, utility leaders can ensure they are following the 
most up-to-date and proven practices, rather than reinventing the wheel. 

• Focus on Resilience and Fail-safes: Finally, users should prepare for the scenario where 
AI might fail or yield an incorrect recommendation. Build resilience into the AI 
deployment. This means having fail-safe mechanisms: if the AI output is outside normal 
bounds or the system detects the AI is not confident, it should default to a safe mode 
(e.g., revert control to human or to a conservative rule-based backup). It’s analogous to 
autopilot systems handing control back to pilots in complex situations – the transition 
must be smooth. Conduct “what-if” analyses for worst-case AI failures (like what if the 
AI mis-classifies a major fault as normal? what if it fails to forecast a peak load?) and 
have mitigation plans (alarms, redundant checks, etc.) for those. Additionally, consider 
the redundancy of AI systems: a single AI agent should not be a single point of failure for 
critical control. Using multiple models (with diversity in design) or keeping the 
traditional control as a backup initially can improve reliability. Some utilities implement 
a “watchdog” that monitors the AI’s health (looking at factors like input data health, 
processing time, etc.) and raises an alert if something seems off. By engineering these 
safety features, the grid can tolerate an AI issue without impacting customers or safety – 
which is absolutely essential given the high stakes. 

9. Conclusion  
In conclusion, the selection and deployment of AI models in the electric grid should be 
approached with a blend of technical rigor and operational pragmatism. By focusing on models 
well-suited to the task domains (detection, prediction, optimization), grounding them in power 
system physics, ensuring robust data foundations, and carefully managing the human/automation 
interface, utilities can harness AI’s capabilities to create a smarter, more resilient grid. Artificial 
intelligence could in the next 5 to 10 years become a core component of electric grid business 
planning and operations. This paper outlined how AI is being proposed or piloted to support 
functions across detection, prediction, optimization, and customer engagement, while also 
identifying the risks associated with its adoption. These risks include cybersecurity 
vulnerabilities, data quality and governance challenges, model drift, regulatory gaps, and 
potential reductions in operator expertise. 



 

A consequence-based framework provides a systematic method to evaluate AI applications. By 
assessing adoption against operational criticality, performance attributes, and the consequences 
of non-adoption, utilities can align AI deployment with their risk tolerance. Effective integration 
requires models that reflect power system physics, reliable and well-governed data, and clear 
processes for monitoring and validation. Engineering controls such as redundancy, fail-safes, and 
manual overrides remain necessary to ensure continuity of safe operation. 

AI deployment in the electric sector should be treated as an incremental, managed process with 
responsible and appropriate adoption. Phased implementation, workforce training, and 
engagement with regulatory and industry standards will be important for achieving reliable 
outcomes. By applying consequence-based assessment and cyber-informed engineering 
practices, utilities can incorporate AI in ways that improve operational effectiveness while 
maintaining safety, security, and compliance. 

 

  



 

Appendix A: Consequence Table Heatmap 
Table 13: Heatmap example of Top 10 OWASP AI risks and vulnerabilities by grid application/ use case. 

Note: While this consequence ranking offers a structured lens for evaluating AI vulnerabilities, the actual impact of a given issue can vary significantly. Factors 
such as model architecture, deployment environment, operational dependencies, and how the AI is integrated into decision-making all influence the real-world 
severity. A use case rated as “moderate” in one context may be “high” in another. 
   

OWASP Top 1O LLM/AI Vulnerabilities (2023) 

 

Grid 
Application /  

Use Case 
Possible Risk(s) ML1: Input 

Manipulation 

ML2: 
Data 

Poisoning 

ML3: 
Model 

Inversion 

ML4: 
Membership 

Inference 

ML05: 
Model 
Theft 

ML06: 
AI 

Supply 
Chain 
Attack 

ML07: 
Transfer 
Learning 

Attack 

ML8: 
Model 

Skewing 

ML09: 
Output 

Integrity 

ML10: 
Model 

Poisoning 

Overall 
Ranking of 

Consequence 
from AI Issues 

DERMS  

• Incorrect AI predictions 
causing over/under-
dispatch 
• Adversarial inputs (e.g., 
spoofed data) leading to 
cascading failures 
• Loss of operator trust 
due to black-box decision-
making 

   

        

Predictive 
Maintenance& 

Asset Health 
Monitoring 

• False positives causing 
unnecessary maintenance 
• Missed failures leading to 
unexpected outages 
• Data privacy concerns 
from vendor-managed AI 
• Long-term incorrect 
expenditures            

Grid 
Forecasting 

(Load, 
Generation, 

Weather) 

• Model drift causing 
forecasts to degrade over 
time 

           



 

Model 
Validation & 

Data Lake 

• Erroneous model 
acceptance or rejection 
due to mislabeled or poor-
quality training data 
• Spurious correlations or 
reinforcement of historical 
biases 
• Data governance issues 
(e.g., inconsistent 
schema, time alignment, 
lack of metadata) 
• Degraded model 
performance and 
traceability            

Power Flow & 
Interconnectio

n Analyses 

• Misrepresentation of grid 
physics under atypical or 
stressed conditions 
• Oversimplification of 
complex network 
interactions 
• Regulatory non-
compliance due to lack of 
traceability 
• Over-reliance on AI 
outputs without rigorous 
validation            

Autonomous 
Grid Control 
(Real-Time 

Dynamic 
Protection and 
Remediation) 

• Latency issues during 
rapid grid events 
• Difficulty in post-event 
analysis due to black-box 
models 
• Synchronization risks 
between AI controllers            

Fault Location 

• Inaccurate predictions 
due to poor data quality 
• Failure to generalize to 
novel fault conditions 
• Operator over-reliance 
on AI outputs 
• Cybersecurity 
vulnerabilities 
• Lack of explainability for 
regulatory compliance            



 

Outage 
Management 

System (OMS) 

• Inaccurate outage 
detection or 
misclassification of events 
• Delayed restoration due 
to incorrect prioritization 
by AI 
• Over-reliance on AI 
recommendations during 
emergencies 
• Data integration issues 
across legacy and modern 
systems 
• Lack of explainability in 
outage cause analysis 
• Vulnerability to 
cyberattacks targeting 
outage response systems            

Energy Market 
Optimization 

(AI for Trading & 
Bidding 

Strategy) 

• Synchronization risks 
between AI-driven 
controllers 

           

Cybersecurity 
Operations 

• Market manipulation or 
regulatory compliance 
violations 
• Misalignment between AI 
bidding strategies and grid 
reliability needs 
• Overconcentration of AI-
driven strategies            

Customer Load 
Management & 

Flexibility 

• High false positive rate 
leading to alert fatigue 
• AI missing novel attack 
patterns 
• Vulnerability to 
adversarial evasion            

 



 

Appendix B: Consequence Table Descriptions 
Table 14: Consequence descriptions per use case. 

Use Case ML1 Input 
Manipulation 

ML2 Data 
Poisoning 

ML3 Model 
Inversion 

ML4 
Membership 

Inference 

ML05 
Model Theft 

ML06 AI 
Supply 
Chain 
Attack 

ML07 
Transfer 
Learning 

Attack 

ML08 Model 
Skewing 

ML09 Output 
Integrity 

ML10 Model 
Poisoning 

DERMS Spoofed DER 
telemetry (e.g., 
fake 
voltage/frequenc
y data) causes 
AI to 
miscalculate 
dispatch, leading 
to overloading 
or 
underutilization 
of assets. 

Malicious 
training data 
skews 
DERMS 
optimization, 
prioritizing 
unreliable or 
adversary-
controlled 
DERs. 

Attackers 
extract DER 
operational 
patterns, 
revealing 
sensitive data 
like load 
curves or 
customer 
behavior. 

Inference that 
specific 
customer or 
DER behavior 
was used 
during 
training, 
exposing 
private load 
profiles. 

An adversary 
replicates the 
DERMS 
logic to 
predict 
utility 
dispatch in 
real-time, 
enabling 
manipulation 
or gaming. 

Compromise
d DERMS 
model or 
library 
introduces 
logic that 
preferentiall
y dispatches 
unstable or 
adversary 
nodes. 

Imported 
DER 
optimization 
model 
includes a 
hidden rule 
that under-
dispatches 
critical 
feeders under 
stress. 

Operator 
overrides or 
feedback 
loops skew 
training, 
reinforcing 
suboptimal 
DERMS 
decisions 
over time. 

Dispatch signals 
are modified in 
transit‚ e.g., 
switching DERs 
off when grid 
needs support. 

Gradual 
corruption of 
DERMS 
internal weights 
leads to 
misprioritizing 
dispatch during 
high-demand 
periods.. 

Predictive 
Maintenance 
& Asset 
Health 
Monitoring 

Injected false 
sensor data 
(temperature, 
vibration) causes 
premature or 
missed 
maintenance. 

Training data 
modified to 
reflect 
misleading 
asset failure 
patterns, 
skewing 
prioritization. 

Reconstructio
n of asset 
operational 
profiles could 
expose 
proprietary 
equipment 
stress data. 

Disclosure of 
whether a 
specific asset 
or substation 
failure history 
was part of 
training. 

Attackers 
clone 
predictive 
logic, using 
it to guess 
upcoming 
outages or 
equipment 
replacements
. 

Third-party 
maintenance 
model is 
embedded 
with code to 
suppress 
alerts on 
select 
failures. 

Pretrained 
health model 
contains logic 
to ignore 
transformer 
degradation 
beyond a set 
threshold. 

Maintenance 
team 
interventions 
bias model to 
ignore 
outliers, 
degrading 
predictive 
performance. 

Maintenance 
recommendations 
are altered post-
model to defer 
necessary repairs. 

Weights are 
tampered to 
reduce model 
sensitivity to 
critical failure 
indicators like 
thermal spikes. 

Grid 
Forecasting 
(Load, 
Generation, 
Weather) 

Spoofed weather 
or generation 
data skews 
forecasts, 
leading to 
reserve 
shortfalls. 

Training sets 
altered with 
fake 
load/generatio
n patterns 
degrade future 
predictions. 

Reconstructs 
load or 
generation 
patterns of 
sensitive sites, 
risking 
profiling or 
targeting. 

Reveals which 
weather or 
demand 
events (e.g., 
heatwaves) 
were used to 
train 
forecasting 
models. 

Forecasting 
models are 
stolen and 
used to game 
market 
positions 
against the 
utility. 

Corrupted 
forecasting 
module 
subtly shifts 
predictions 
to destabilize 
dispatch 
planning. 

Poisoned 
pretrained 
forecast 
model 
suppresses 
peak event 
predictions 
when reused. 

Human edits 
to forecasts 
fed back into 
training bias 
future 
predictions 
under similar 
conditions. 

Forecast outputs 
are modified 
before use, 
misleading 
operators and 
reserve planners. 

Weights are 
corrupted to 
flatten high-
risk/variance 
predictions, 
masking 
extremes like 
cold snaps. 

Model 
Validation and 
Data Lake 
(central point 
of truth etc) 

Fake data enters 
validation set, 
producing 
incorrect 
baseline 
performance 
results. 

Intentional 
corruption of 
training data 
within the 
lake leads to 
systemic 
model flaws. 

Data lake 
models reveal 
sensitive 
system-wide 
telemetry like 
topology or 

Attackers 
deduce 
whether 
specific fault 
events or 
datasets were 

Validation 
engines or 
centralized 
models are 
copied, 
providing 
insights into 

Compromise
d data lake 
pipeline 
ingests 
poisoned 
models or 
spreads 

Pretrained 
validation 
models from 
vendors 
include logic 
to overlook 
performance 

Human 
corrections to 
model outputs 
fed back into 
the lake bias 
all future 

Validation 
metrics are 
altered in 
dashboards to 
conceal model 
underperformanc
e. 

Training 
metadata is 
subtly 
manipulated to 
consistently 
approve 



 

outage 
response. 

stored in 
central lake. 

system 
thresholds. 

scripts 
across 
departments. 

dips/set up 
wrong 
upgrades. 

training 
datasets. 

underperformin
g models. 

Power Flow & 
Interconnectio
n Analyses 

Manipulated 
network 
topology inputs 
mislead power 
flow analysis, 
leading to 
unsafe 
conditions. 

Training with 
fake 
interconnectio
n scenarios 
results in 
flawed 
contingency 
analysis. 

Extracts 
sensitive grid 
topology or 
interconnectio
n queue data 
from the 
model’s 
responses.. 

Discovers if 
specific 
project 
interconnectio
n studies were 
used to train 
ML models. 

Reconstructe
d power flow 
models can 
be used to 
simulate and 
evaluate 
attacker 
playbooks 
against the 
grid  

network 
analysis 
tools 
misroute or 
suppress 
warnings for 
risky 
interconnects 

Pretrained 
models 
repurposed for 
interconnectio
n ignore 
voltage or 
thermal 
constraints  

Mislabeling 
of fault or 
overload 
cases during 
training 
reduces future 
detection 
accuracy. 

Model-calculated 
limits or flows 
are altered in 
route to 
engineers, 
causing unsafe 
approvals. 

Contaminated 
model weights 
underrepresent 
edge-case 
violations, 
risking unstable 
interconnections
. 

Autonomous 
Grid Control 
(Real-Time 
Dynamic 
Protection and 
Remediation) 

Compromised 
frequency or 
phase angle data 
triggers false 
grid separation 
or reclosure. 

Distorted fault 
event data 
leads to 
incorrect 
automated 
grid recovery 
logic. 

Attacker 
reconstructs 
dynamic 
control logic 
for critical 
substations 
and breakers. 

Infers use of 
specific 
transient or 
voltage 
collapse 
events in 
training, 
exposing grid 
weak points. 

Stolen real-
time control 
model allows 
adversary 
simulation of 
grid behavior 
under 
disturbance. 

Backdoored 
controller 
logic 
disables key 
protection 
during 
defined 
conditions 
(e.g., high 
DER 
penetration). 

Embedded 
logic in 
inherited 
model 
suppresses 
protective 
action  

Operator 
feedback to 
dampen 
transient 
events shifts 
control away 
from robust 
configuration
s. 

Control setpoints 
modified 
midstream, 
sending unstable 
signals to voltage 
regulators or 
relays. 

Small, persistent 
changes in 
training degrade 
grid 
stabilization 
ability over 
time. 

Fault Location 
(precursor to 
grid control) 

Injected 
harmonics or 
noise spoof true 
location, 
delaying 
restoration. 

Labeled 
historical fault 
data is 
corrupted to 
favor 
incorrect fault 
paths. 

Attacker 
deduces 
network 
impedance 
and feeder 
topology from 
model 
outputs. 

Confirms 
which line 
segments had 
faults in 
training‚ 
exposing 
high-risk 
infrastructure. 

Reconstructe
d model can 
be used to 
test stealthy 
grid 
disruptions 
offline. 

Model routes 
fault 
detection 
away from 
true location 
under 
overload. 

Residual logic 
in reused 
models 
ignores faults 
behind 
specific 
device types. 

Field 
technician 
error 
feedback 
retrains 
model to 
ignore certain 
anomalies. 

Location results 
are altered en 
route to outage 
management, 
causing 
misallocated 
crews. 

Internal model 
logic gradually 
diverges, 
misplacing 
faults 
systematically 
over time. 

OMS False outage 
calls or sensor 
inputs trick 
OMS into 
dispatching to 
wrong areas. 

Training with 
fake or 
improperly 
labeled outage 
records 
degrades 
event triage. 

Exposes 
historical 
restoration 
decisions and 
prioritization 
logic for 
critical loads. 

Confirms 
which 
customer 
complaints or 
outages were 
included in 
OMS training. 

Cloned OMS 
model can be 
used to 
mimic utility 
response for 
malicious 
load shifting. 

Backdoored 
OMS 
module 
removes 
outage 
visibility 
under 
defined 
loading. 

Legacy logic 
disables alerts 
if restoration 
exceeds X 
hours under 
certain 
temperatures. 

Repeated 
manual 
dispatcher 
changes bias 
AI to 
deprioritize 
rural regions. 

Crew dispatch 
orders are 
tampered before 
field receipt, 
delaying 
recovery. 

Continuous 
retraining 
erodes fast 
restoration 
recommendatio
ns during peak 
outages. 

Energy 
Market 
Optimization 
(AI for 
Trading & 
Bidding 
Strategy) 

Fake prices or 
resource 
forecasts distort 
real-time 
bidding outputs. 

Falsified past 
market actions 
lead to risky 
bidding 
strategies. 

Competitors 
deduce 
pricing 
strategy and 
supply curve 
from query 
responses. 

Confirms 
participation 
of specific 
generators or 
bids in 
training 
history. 

Stolen AI 
model used 
to undercut 
utility bids or 
cause 
financial 
imbalance. 

Corrupted 
optimizer 
skews bids 
toward 
underpriced 
or infeasible 
blocks. 

Leftover 
bidding logic 
disables high 
price 
responses 
during 
scarcity. 

Manual 
overrides to 
AI bids 
retrain system 
to avoid 
profitable 
dispatch. 

Final bid stack is 
altered during 
transmission, 
creating exposure 
to market 
penalties. 

Model begins 
self-sabotaging 
high-return bids 
after long 
horizon 
exposure. 



 

Cybersecurity 
Ops 

Spoofed 
occupancy or 
thermostat data 
leads to 
disjointed 
demand 
response events. 

Training with 
falsified 
comfort or 
usage data 
weakens DR 
effectiveness. 

Infers 
appliance 
schedules or 
home 
occupancy 
patterns via 
smart control 
models. 

Reveals which 
homes or 
behaviors 
trained the 
DR logic 
risking 
privacy. 

Stolen load 
model lets 
adversaries 
simulate 
control 
sequences 
for sabotage 
or 
exploitation. 

Compromise
d model 
favors third-
party devices 
or delays DR 
for select 
users. 

Legacy 
HVAC logic 
suppresses 
override when 
load shed is 
required. 

Biased 
homeowner 
feedback 
retrains 
model away 
from effective 
load control. 

Thermostat 
control signals 
tampered, 
reducing event 
alignment with 
grid needs. 

DR response 
curves decay 
over time due to 
corrupted 
retraining 
episodes. 

Customer 
Load 
Management 
& Flexibility 
(AI-Powered 
Demand 
Response) 

Adversarial 
inputs (e.g., 
spoofed 
voltage/frequenc
y signals) could 
mislead AI 
systems, causing 
false dispatches 
or incorrect 
protection 
settings. 

Compromised 
training data 
from sensors 
or historical 
logs leads to 
poor asset 
health 
predictions, 
skewed 
forecasting, or 
biased market 
strategies. 

Attackers may 
extract 
sensitive 
operational 
data (e.g., 
customer 
loads or 
SCADA 
patterns), 
risking 
privacy and 
system 
insights. 

An attacker 
could infer 
which feeders 
or substations 
were involved 
in past grid 
events, 
leaking grid 
behavior or 
incident 
response data. 

Stolen 
models (e.g., 
DERMS 
optimization 
logic) could 
be replicated 
or exploited 
by 
competitors 
or 
adversaries 
to predict 
system 
behavior. 

Pretrained 
ML libraries 
or packages 
embedded 
with 
malicious 
payloads 
could 
corrupt 
dispatch or 
monitoring 
systems at 
scale. 

Poisoned pre-
trained 
models reused 
in utilities 
could embed 
hidden logic, 
only 
triggering 
erroneous 
actions under 
certain 
conditions. 

MLOps 
feedback 
loops from 
operator 
override or 
manipulated 
event logs 
may result in 
performance 
drift and 
decreased 
grid 
reliability. 

If AI outputs 
(e.g., dispatch 
orders or alerts) 
are modified in 
transit, operators 
may act on false 
recommendations
, risking safety. 

Deliberate 
parameter 
corruption at 
training or 
deployment 
alters behavior 
over time—e.g., 
predicting 
normal 
operations 
during faults. 


