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Abstract

This project presents the development and evaluation of a general drag model for
gas—solid multiphase flows using deep learning techniques. A comprehensive database
of more than 4,000 experimental and numerical data points for spherical and non-
spherical particles was compiled, incorporating geometric features such as sphericity,
aspect ratio, and orientation. Several predictive approaches—including traditional em-
pirical correlations, machine learning, and deep neural networks—were benchmarked,
with the proposed Drag Coefficient Correlation-aided Deep Neural Network (DCC-
DNN) demonstrating superior accuracy. To account for particle-particle interactions,
additional drag data were generated using CFD-based simulations of packed and flu-
idized beds, leading to the development of a retrained model capable of incorporat-
ing volume fraction effects. Integration of the trained model with the MFiX CFD
solver was achieved using FTorch, enabling drag predictions during discrete element
method (DEM) simulations. Validation against experimental data for single particles
and fluidized beds confirmed the model’s improved predictive ability, particularly for
non-spherical geometries. While the model performed strongly under fluidized con-
ditions, limitations remained in unfluidized regimes, suggesting a need for expanded
datasets. Overall, this study demonstrates the feasibility of combining deep learning
with physics-informed CFD to improve drag modeling for gas—solid flows, with promis-
ing implications for scaling multiphase simulations in industrial applications.
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1 Introduction

Particles are encountered in a wide array of engineering and natural processes, ranging from
industrial systems to environmental and geophysical phenomena. Among these, multiphase
energy systems stand out due to their importance in energy conversion and environmen-
tal sustainability. For example, fluidized bed technologies—widely used in combustion and
gasification—exploit the intense mixing and excellent heat transfer properties of particu-
late flows to convert solid fuels into syngas, thereby enabling cleaner energy production
and reduction in carbon emissions. Beyond energy systems, particle-laden flows appear in

(a) Fluidized Bed (b) Volcanic Ash

Figure 1: Example of particle flow in the fluidized bed and volcanic debris transport.

applications such as sand ingestion in air-breathing jet engines, the ballistic transport of
volcanic ash in the atmosphere, and sedimentation in rivers and ocean. Figure-1 showing
two examples of the particle-fluid interactions in the industrial and natural process. These
processes involve a large number of particles interactions which makes the associated flow
problems highly complex and computationally intensive to model. To manage the computa-
tional burden, simplifications and modeling assumptions are often made, including the use
of averaged continuum models and empirical correlations [12, 16]. At the core of accurately
modeling these systems lies the need to predict the drag force acting on individual particles.
This force plays a crucial role in determining particle dynamics such as settling velocity,
residence time, and dispersion. The drag coefficient (Cp) is a non- dimensional number
that relates the drag force on a particle to reference quantities like fluid density, particle
velocity, and projected area. However, while considerable research has provided data and
empirical models for C'p, its dependence on particle shape, flow regime, and fluid properties
remains uncertain—especially for non-spherical particles at moderate to high Reynolds num-
bers. Understanding the drag force on non-spherical particles is inherently more complex
than for spherical ones due to the geometric irregularities that influence the surrounding
flow field. While the drag force on a smooth, isolated sphere in a uniform flow has been
studied extensively and can be described with well-established correlations across various
Reynolds number regimes, the situation is more nuanced for non-spherical particles. Their
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asymmetric shapes lead to non-uniform pressure distributions and induce additional flow
separation and wake effects, which, in turn, alter the magnitude and direction of the drag
force. The drag coefficient (Cp) for non-spherical particles depends not only on the Reynolds
number but also on shape descriptors such as aspect ratio, sphericity, and orientation rel-
ative to the flow. Sphericity (®), defined as the ratio of the surface area of a sphere (with
equivalent volume) to the surface area of the particle, is commonly used to characterize the
deviation from a spherical form. As ® decreases (i.e., as the particle becomes less spherical),
the drag generally increases due to enhanced flow separation and form drag. In addition to
shape, particle orientation plays a pivotal role. Non-spherical particles, such as ellipsoids
or cylinders, can experience significant variation in drag depending on their alignment with
the flow. For example, a prolate spheroid aligned with the flow will experience less drag
compared to the same particle oriented perpendicular to it. In turbulent or complex flows,
particles continuously rotate, resulting in time-averaged drag that is orientation-dependent
and difficult to capture with simplified models. Several empirical and semi-empirical corre-
lations have been proposed to estimate the drag on non-spherical particles. These models
often apply correction factors to standard drag correlations for spheres, incorporating parti-
cle shape parameters to better align with experimental observations. Notably, the empirical
formulation by Haider and Levenspiel [18] introduces the concept of sphericity to account
for deviations from spherical geometry. Similarly, Ganser [15] extended the Stokes drag
model by incorporating shape effects through sphericity-based correction factors. Another
key parameter in drag modeling for non-spherical particles is particle orientation, which can
significantly influence drag, especially for particles with low sphericity. Holzer and Som-
merfeld [21] addressed this by introducing lengthwise and crosswise sphericity parameters
that explicitly capture orientation effects. Their proposed correlation uses three sphericity
values, offering improved accuracy over simpler models. However, the additional complex-
ity in calculating these sphericities poses a challenge, particularly in simulations requiring
real-time orientation tracking. Specifically, the lengthwise sphericity can be computationally
demanding, as it involves integrating the projected sectional area along the particle’s axis
Despite these advances, modeling drag forces for non-spherical particles remains a challenge,
particularly in multiparticle systems or flows with high turbulence intensity. The lack of
generalizable, first-principles-based models compels researchers to rely on empirical data,
which may not cover all particle shapes and flow regimes of practical interest. Consequently,
continued efforts are directed toward improving drag predictions through high-fidelity simu-
lations, machine learning techniques, and targeted experiments focusing on realistic particle
geometries. We present a model capable of accurately predicting the drag coefficient (Cp)
by leveraging multiple flow and particle features, while also maintaining robustness to pre-
viously unseen data. Neural networks have demonstrated strong potential in capturing the
complex interplay between flow conditions and particle geometry, achieving high predictive
accuracy for Cp values [6, 57]. Unlike prior studies that rely on fixed or limited datasets, this
work introduces a more generalizable approach—termed the Drag Coefficient Correlation-
aided Deep Neural Network (DCC-DNN)—which integrates an expanded set of geometric
and flow-related features. Our key contributions are summarized as follows:

e We propose a novel DNN architecture that blends domain knowledge from empirical
drag correlations with deep learning to construct a generalized drag prediction model.
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e To the best of our knowledge, the dataset employed in this study is the most extensive
to date for drag modeling, and includes a wider range of physically relevant features,
as supported by prior literature.

e Through comprehensive ablation studies, we demonstrate that the combination of a
large, diverse dataset, regularization techniques, and a meta-learning framework en-
ables the proposed model to achieve high accuracy and generalize effectively to new,
unseen cases.

2 Literature Survey

To date, there exists no general analytical solution for the drag coefficient of particles beyond
Stokes” law, which is valid only for spherical particles in creeping flow conditions (very
low Reynolds number, Re). At higher Re, and especially for non-spherical particles, drag
coefficients must be determined experimentally. These experimental results have led to
the development of shape-specific empirical correlations. Consequently, each particle shape
typically has its own drag correlation, and a unified drag model that applies accurately across
a wide range of shapes and flow regimes remains elusive.

In recent years, Machine Learning (ML) has emerged as a powerful alternative for prob-
lems where the relationships between inputs and outputs are complex or unknown. Bhat-
tacharya et al. [3] showed ML models can effectively improves sediment transport model
by incorporating measurement data. Yoon et al. [58] develops an Artificial Neural Network
(ANN) model to predict time-dependent sediment suspension in the surf zone, using data
from a large-scale laboratory experiment. Oehler et al. [32] compared Boosted Regression
tree and ANN method to predict resuspension of sediment particles for nearshore study.
Goldstein et al. [17] demonstrated ML model in predicting particle’s settling velocity using
the test data from the literature.

With the advancement of Deep Learning (DL), more sophisticated models have been
developed to estimate drag-related parameters. He and Tafti [19] applied a single-hidden-
layer Artificial Neural Network (ANN) to predict the drag coefficient of spherical particles
using Reynolds number, volume fraction, and relative particle positions derived from numer-
ical simulations. Their model, trained with the Levenberg-Marquardt algorithm, achieved
a relative error below 10% for 52% of the predictions. Yan et al.[57] applied both Radial
Basis Function (RBF) and Back Propagation Neural Networks (BPNN) to predict the drag
coefficient of non-spherical particles using Reynolds number and sphericity as inputs. While
the results were accurate for spherical particles, the prediction performance degraded signif-
icantly for particles with lower sphericity. In contrast, Chen and Li[6] employed a deeper
neural network (three hidden layers) to predict particle drift velocity and drag force using
volume fraction, slip velocity, and pressure gradient as inputs. Their model, trained using
the ADAM optimizer, yielded satisfactory results across varying conditions. Balachandar [2]
used a simple linear regression model to estimate the drag force in a fluidized bed, us-
ing Reynolds number and volume fraction. Although the approach was straightforward,
it achieved only a moderate performance with an Re value of 0.64. Zhu [60] developed a
three-layer DNN to predict the drag correction factor using features such as particle size,
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pressure gradient, and volume fraction. Their model achieved a Mean Absolute Percentage
Error (MAPE) of 9.85%.

More recent efforts have explored the use of advanced architectures and input represen-
tations. Hwang et al. [22] proposed a Convolutional Neural Network (CNN) framework to
predict drag, lift, and torque coefficients of particles in low-Re regimes based on Particle-
Resolved Direct Numerical Simulation (PR-DNS) data. To handle the complexity of parti-
cle shape and orientation while minimizing computational cost, a Variational Autoencoder
(VAE) was employed to extract and compress geometric information for use in the force
prediction model. Similarly, Luo et al. [26] developed a feedforward neural network trained
on DNS data to predict drag forces using Reynolds number, volume fraction, and veloc-
ity /position fluctuations of particles. Their model was validated against empirical correla-
tions and also yielded a simplified expression based on trained weights. Rushd et al. [39]
performed a comparative analysis of multiple ML models for drag prediction and assessed
the importance of different input features, highlighting the sensitivity of ML models to input
selection and data range.

Despite these advancements, drag data for particles at finite volume fractions remains
scarce, limiting most studies to single-particle drag predictions. Furthermore, the devel-
opment of a general-purpose drag model that can adapt across a wide variety of particle
shapes, orientations, and flow conditions—while maintaining robustness to previously un-
seen scenarios—has not yet been fully realized in the literature.

3 Data Collection

Machine learning model’s efficacy depends on the database quality and size. The non-
spherical particle’s drag can depends on the various geometric parameter such as sphericity,
aspect ratios, circularity, regular or irregular shapes etc. To understand this, it is important
to gather data of various shapes from the litrature which can cover large number of shapes
for a wide range of Reynold number. For this work single particle’s drag data reported by
the researchers using the experiments are considered. This experiments generally includes
single non-spherical particles drop in a vertical cylinder filled with liquid and the drag forces
were calculated using the particle’s terminal velocity. Song et al. [46] used similar setup
where a vertical glass chamber is filled with glycerine and particles with different shapes
such as sphere, cube, and cylinder with various dimensions and densities are tested for
the settling velocities. Additionally, the fluid properties such as density and viscosity are
varied by mixing glycerine and water. Kale [24] conducted experiments on the coal particles
which are of irregular shape. Their study uses wind tunnel testing where non-spherical
particle is suspended magnetically that allow particle to freely rotate by the action of the
aerodynamic moment. Aditionally, the report include key details such as particle volume and
photograph of the settling orientations which can help in determining important geometric
details. Baba and Komar [1] studied irregular grain particles by experimenting with larger
glass particles of sphere and ellipsoid shape to mimic the grain partilces. The experiments
reports settling behaviour of various ellipsoid. Chhabra et al. [7] studied the disk and plate-
shaped particles with glycerine, silicon oil, carboxymethyl cellulose and Methocel HG90 to
realize various kinematic conditions. The study reports highly non-spherical particles’ drag
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cofficients for the Reynolds number range 1 to 100. Pettyjohn and Christiansen [33] have
summarized non-spherical particles drag data in a single chart. This paper also helped in
referring to the original papers that have reported experimental data. Figure 2 shows the non-
linear behaviour of the particles drag coefficient due to shape. Highly non-spherical particles
are less predictive with conventional correlations. The prediction error with traditional
correlations can be as high as 300%. Therefore a general drag model cannot be developed
by traditional approach of curve fitting but it requires more sophisticated modelling such
as machine learning models that can identify complex data patterns and accurately predict
drag coefficients.

4 Machine Learning Model Development

Machine learning modelling requires a vectroization of the data with some features (inputs)
that points to some unique output. These input features selections are the most impor-
tant step in the model development, as it majorly decides the trained model’s efficacy and
usability. For the non-spherical particle drag modelling, it is clear that Reynolds number
and sphericity are the two important feature as shown by Yen et al. [57]. However, their
study has also shown very large errors for the low sphericity particles. Hence, it is important
to identify additional features that could effectively demarcate the non-spherical particles.
Another feature which was widely used by previous workers is a particle’s aspect ratio (ratio
of longest to shortest sides). To account for inertia, density ratio (solid to fluid) is also
considered which indirectly accounts for the Stokes number. The Holzer and Sommerfeld
model [21] gave two new features, crosswise and lengthwise sphericity, to account for orien-
tation. Crosswise and lengthwise sphericity are suitable features as these number depend on
the particle projection area. Crosswise sphericity is the ratio of the projected area of the
volume equivalent sphere to the projected area of the non-spherical particle perpendicular
to the flow. Lengthwise sphericity is the ratio of the projected area of the volume equivalent
sphere to the half non-spherical particle’s total surface area minus the mean projected area
of a non-spherical particle parallel to the flow. These two features by definition, requires
real-time particle’s orientation which makes it most challenging. Due to its limitations in
the calculation, for this work, the crosswise and lengthwise sphericities are calculated for
the settled particles. Hence, for a given particle’s dimensions, all the sphericities would
remain constant. The data collection and machine learning model development process is
documented by Presa et al. [35] and readers are encouraged to refer it for full model details.
Some of the key highlights of these articles are briefly discussed in the following subsections.

4.1 Particle Settling Orientation

The particle’s settling orientation would require the total aecrodynamic moment to be zero.
This depends on a number of factor such as shape, density ratio, and Reynolds number.
For a free particle, the Reynolds number remains low because it is carried by the fluid,
resulting in a low relative velocity. The settled orientation calculation would requires flow
resolving numerical model that would rotate a particle’s body in the three dimensional space.
However, this simulations can be time consuming and may not be suitable for large-scale
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Figure 2: Compile drag data on the single chart for various regular non-spherical particles.
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Figure 3: Settling orientation of a regular particles calculated using the panel method, the
black arrow is showing the relative fluid’s velocity direction. [35]

database generation. Hence, a simpler approach that uses panel method type calculations to
predict aerodynamics forces is employed. The particle position is kept fixed but it is allowed
to rotate under the action of aerodynamic moments. The particle is subjected to very low
Re flow which ensures flow is always attached to the particle surface. Flow velocity on each
particle surface is estimated based on the surface normal towards or away from the flow. A
diverging surface that pushes the fluid outward causes acceleration, whereas a converging
surface that directs the flow inward causes deceleration. Additionally, the boundary layer
behavior is assumed to follow that of a flat plate (Blasius solution), which allows direct
estimation of the local shear stresses.

Figure-3 shows the sample result from the panel method for a regular particle’s settling
orientation. The cubic particle is oriented in a diagonal position, whereas the ideal cylinder
is oriented lengthwise. The oblate particle settles in a diametric position whereas prolate
settle in a lengthwise. This behavior of prolate and oblate matches with the prediction of
Sheikh et al. [44]. The settles orientation projects a minimal area into the flow, which will
minimize the drag coefficient. However, this method does not account for the wake effect,
which will create wobbling and may not allow the particle to settle. The rate of response
of a given non-spherical particle is a function of density ratio and a Reynolds number. This
simple method provides a heuristic understanding of the non-spherical particle’s behavior in
a forced flow field such as a fluidized bed.

Table 1 summarizes all the data collected from various experimental and review papers
on regular and irregular non-sphrical particles totaling more than 4000 data points. The
table also shows important features such as sphericities and aspect ratio (AR) which will be
discussed in the next section.
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Table 1: Summary of the collected data.
No. Source Data Points Shape AR Re ) R, Cp b1 Py
1 Baba & Komar, 1981% [1] 72 Trregular 1.5 - 6.1 0.04 - 2.01 0.58 - 1.00 2.0 17-790 1.4-10.5  1.1-4.0
2 Chen & Li, 2020 [6] 23 Regular 1.0 1472 - 11988 1.00 7.8 0.43 - 22.20 1 1
3 Smith & Cheung, 2003 [45] 998 Irregular  1.1-19.0 7.0 - 2645 0.34 - 1.00 2.6 0.7-10 1.1-32.2  1.0-5.6
4 Chhabra et al., 1999 [8] 20 Regular  5.5-158 0.2-0.9 0.34-0.61 8.0-9.1 66 - 451 0.2-0.4 0.2-1.5
5 Corey, 1949* [11] 39 Irregular 1.0 - 2.7 270 - 2310 0.54-1.00 2.7 1.0-3.2 0.7-2.9 0.002-0.01
6 Dioguardi et al., 2018 [13] 340 Irregular 1.1-3.2 0.03 - 9822 0.42-1.13 1.0-3.0 0.6 - 1860 0.7-3.5 0.6-1.9
7 Johnson et al., 1987 [23] 62 Regular  1.0-48.1 0.04-0.11 0.29-0.81 2.8 224 -1277 0.7-8.1 0.004-0.03
8 Kale, 1987 [24] 132 Irregular 1.0 - 2.1 0.11 - 4.05 0.71 - 0.81 1000 - 1666 32 - 999 0.9-1.1 0.5-0.6
9 Komar & Reimers, 1978 [25] 51 Irregular 1.6 - 19.4  0.14 - 2.59 08-124 27 28 - 427 1.5-132 1.2-22
10 Madhav & Chhabra, 1995 28] 64 Regular 1.25-39.5 0.12-7.1 0.37-0.69 1.25-7.68 8.2-812 0.5-15 0.5-1
11 Malaika, 1949% [30] 132 Regular 1.0 - 4.0 0.0001 - 1254 0.49-1.00 89-9.5 0.5 - 280392 0.7-6.3 0.4-2.8
12 McKay et al., 1988* [31] 103 Regular  1.0-4.9 9.6 - 5716 0.68-0.87 1.1-2.2 0.95 - 10.95 1.0-3.8 0.7-1.1
13 Melkebeke et al., 2020 [50] 140 Irregular 1.2 - 318 1.92 - 291 0.04-097 1.1-14 1.2-118 1.0-1299  0.7-7.6
14 Pettyjohn & Christiansen, 1948* [33] 577 Regular  1.0-1.4 0.00001 - 22630 0.67 - 1.00 1.3 - 12.8 0.41 - 2057343  0.85-1.0  0.76-1.0
15 Riazi & Tiirker, 2019 [37] 43 Irregular 1.0 -5.2 83 - 1814 0.73-1.00 1.6-4.6 0.57 - 3.52 1-5.5 1-2.6
16 Rong et al., 2015 [38] 28 Regular  2.0-25 1 - 400 0.89-0.91 1.6 0.34 -34 1.8-2.5 1.1-1.6
17 Schmiedel, 1928* [40] 57 Regular 1.0 - 136 0.05-73 0.1-1.00 22-174 3- 768 1-5.3 1-3.3
18 Schulz, 1954* [41] 79 Irregular 1.26 - 3.8 3 - 216 0.60 - 1.00 2.57 - 2.7 1.03 - 16.22 1.1-4.1 0.9-2.1
19 Sharma & Chhabra, 1991 [42] 44 Regular 1.0 - 4.0 0.0002 - 1.4 0.69 - 1 1.2-5.6 27 - 190596 0.5-2.1 0.44-1
20 Sheaffer, 1987* [43] 24 Regular 16 -92 0.09 - 0.41 0.23-0.46 3.0 81 - 765 4.9-11.2  0.8-1.3
21 Song et al., 2017 [46] 336 Regular  1.0-10.0 0.002 - 90 0.47-1.00 2.1-6.5 1.5 - 9326 0.9-3.8 0.7-1.4
22 Squires & Squires, 1937* [47] 72 Regular 158 - 1602 0.002 - 9.24 0.02-0.09 3.1-33 55 - 78831 0.01-0.04 0.01-0.04
23 Stringham et al., 1969* [48] 244 Regular  1.0-10.1 6 - 118000 0.47-1.00 1.1-15.1 0.4-1438 0.3-3.3 0.3-1.7
24 Tran-cong et al., 2004 [49] 73 Regular 1.7-7.0 0.22 - 2625 0.41-0.52 2.0 1.7 - 579 - -
25 Wang et al., 2009 [52] 72 Regular  1.1-2.0 27 - 13215 0.84-099 15-1.6 0.46 - 5.8 - -
26 Weidman & Lasso, 1986 [53] 50 Regular 1.0 - 8.0 0.014- 2.1 0.26 - 0.87 1.4 13 - 15622 - -
27 Wilde, 1952* [54] 230 Regular 1.0 - 5.7 4.7 - 21642 0.6-1.0 24-33 049-9 1-7.9 0.8-3.2
28 Willmarth et al., 1964 [55] 21 Regular 8- 192 328 - 6261 0.08-0.53 1.0-21.2 3.7-37 0.04-0.3  0.04-0.3
29 Xie & Zhang, 2001 [56] 28 Regular 3.4 - 88 0.07 - 0.69 0.19-0.76 8.8-10 148 - 598 0.1-12 0.6-2.0
Total
Regular Particles 2212
Irregular Particles 1990

*Particle shape and settling velocity are retrieved from Breakey et al., 2018 [4]. Other parameters

including Re and Cp are calculated by our team to ensure consistency with other data.

e 1
! Reynolds _—
& 1| | Sphericity (¢) [=>|
o v Z 8
2 | [Density Ratio |—— 52
s ! ensity Ratio [—— S
- " < g
9 :: =
é | | Aspect Ratio — S 3
g ! INEE
i) | | Lengthwise ¢ [——
N i
' Noise

Fully Connected
Block

=
%g“
=8z
<
=1
Lho,_}
O

GeLU

Figure 4: Architecture of the proposed single-model DNN. The input and output dimensions
of each block are shown in the boxes. [35]

4.2 Deep Neural Networks

Neural networks are a class of machine learning models inspired by the biological mecha-
nisms of the brain. They have received considerable attention in recent years due to their
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outstanding performance in areas such as image classification, speech recognition, and nat-
ural language processing [34]. Deep learning, in particular, relies on hierarchical feature
extraction, where multiple layers automatically learn representations from raw input data.
Each layer transforms the data into a new representation, enabling increasingly linear sep-
arability of the features. Figure 4 presents the proposed DNN model designed to predict
Cp from an expanded feature set. During training, a noise augmentation layer introduces
Gaussian noise to the input features, improving robustness to measurement errors and un-
certainties in the data. The network architecture consists of four fully connected blocks,
each containing a dense layer, an activation function, and a dropout layer for regularization.

4.2.1 Activation Function

The activation function determines how each neuron transforms its input before passing it to
subsequent layers. Our model employs the Gaussian Error Linear Unit (GELU), a relatively
recent nonlinear activation function, that has shown superior empirical performance. Unlike
the widely used Rectified Linear Unit (ReLU), which thresholds values based on their sign,
GELU weights inputs by their magnitude. Prior studies demonstrate that GELU often
outperforms ReLLU and Exponential Linear Unit (ELU) across diverse datasets, making it a
strong candidate for this work [20].

4.2.2 Loss Function

Training a neural network involves minimizing a loss function, which quantifies the discrep-
ancy between predicted and true values. Loss functions not only measure model accuracy
but also guide the optimization of trainable parameters. For the regression task considered
here, three loss functions were evaluated for their robustness to noise and outliers: Mean
Absolute Error (MAE), Log-Cosh, and Huber loss. While all three minimize the average de-
viation between predictions and targets, each exhibits strengths under different conditions,
making them well-suited candidates for this problem.

4.3 Model Regularization

Regularization techniques aim to mitigate overfitting by improving the model’s generaliza-
tion ability without significantly increasing training error. In this work, we use two strategies
to ensure the model learns the underlying relationships in the data rather than memorizing
noise. Training on small or irregular datasets can lead to overfitting, as the model may
capture spurious details rather than generalizable patterns. To address this, zero-centered
Gaussian noise [36] is added to the input features during training, introducing small pertur-
bations that improve robustness to experimental uncertainties. Additionally, a dropout layer
is applied after each fully connected block (Figure 4). Dropout randomly removes neurons
during training [34], forcing the network to rely on multiple pathways rather than memoriz-
ing specific activations. Together, noise augmentation and dropout provide complementary
mechanisms to reduce variance, yielding a more generalized and reliable predictive model.
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4.4 Drag Coefficient Correlation-aided Deep Neural Network (DCC-
DNN)

Classical drag correlations in the literature are primarily derived for spherical particles and
are often valid only within narrow ranges of shape and flow conditions. To overcome these
limitations, we propose the Drag Coefficient Correlation-aided Deep Neural Network (DCC-
DNN), which incorporates empirical correlations into a deep learning framework using meta-
learning techniques. Specifically, four well-established correlations [18, 9, 59, 21] are inte-
grated into the DNN to enhance prediction accuracy. Two meta-learning approaches are
explored: Stack Generalization (SG) and Mixture of Experts (MoE). These methods allow
the model to combine insights from both empirical correlations and the DNN, dynamically
adapting to different flow regimes and particle shapes.

4.4.1 Stack Generalization

Stacked Generalization (SG), or stacking, is an ensemble learning approach that combines
multiple predictive models to improve accuracy. The core idea is that aggregated predictions,
which leverage the complementary strengths of individual models, often outperform any
single predictor. As illustrated in Figure 5, SG consists of two hierarchical levels. The
first level includes several base models, which in this study are the Deep Neural Networks
(DNNs) and traditional correlation-based models. Their predictions f(z); serve as inputs to
the second level, known as the meta-model. The meta-model learns how to optimally weight
the contributions of the base models by assigning constant coefficients w; through linear
regression, as expressed in Equation 1. To prevent overfitting, a separate data fold is used
when training the meta-model. This methodology has been applied in related work, such
as Rushd et al. [39], who explored stacking to integrate multiple classifiers for predicting
terminal settling velocity. A limitation of SG, however, is that it only learns static weights,
which may restrict its ability to generalize across diverse conditions.

Hw) =Y wi- f(a) 1

4.4.2 Mixture of Experts

The Mixture-of-Experts (MoE) framework [27] extends the ensemble concept by allowing
dynamic rather than static weighting of models. Unlike SG, which assigns fixed weights,
MokE assumes that each predictor excels in specific regions of the input space. For example,
while DNNs generally perform best across the full dataset, certain empirical correlations
may yield superior accuracy at low Re, where their experimental basis lies. MoE employs a
gating network to determine the relative importance of each expert for a given input. Both
the raw features and the outputs of the base models are provided to this gating network,
which produces a set of weights G(z;) corresponding to each expert f(x;). These weights are
passed through a Softmax activation o, ensuring that they sum to one and can be interpreted
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Figure 5: Architecture of Stacked Generalization: predictions from selected correlations and
the single-model DNN are combined by the meta-model to produce the final output [35].

as probability-like confidence scores. The final prediction is then obtained as a weighted sum
of all expert outputs, as shown in Figure 6 and defined in Equations 2 and 3.

H(z) =3 o (G () e f (), (2)
eG(i)
o (G (2) = =x

—_— 3
Zj:l eG(Ij) ( )

4.4.3 Data Preparation

Since both Re and Cp exhibit skewed distributions, a logarithmic transformation is applied
to approximate normality before normalization. All features are standardized by removing
the mean and scaling to unit variance using statistics computed from the training set. This
ensures consistent feature scaling across training and evaluation [34]. To evaluate perfor-
mance robustly, a 10-fold cross-validation scheme is employed. The dataset is partitioned
into k = 10 subsets, with (k—1) folds used for training and the remaining fold for validation.
Importantly, folds are constructed to prevent overlap of experimental sources between splits,
ensuring that validation evaluates true generalization across experiments. Missing geometric
features (cross-wise and length-wise sphericity) are handled using iterative imputation [5].
Extra-Trees regression [10] predicts missing values based on correlated geometric attributes
such as overall sphericity, aspect ratio, and principal-axis lengths. The procedure is iterative,
updating imputed values across passes to refine estimates and improve feature completeness.

4.4.4 Performance Evaluation

Model performance is assessed using multiple regression metrics to provide a comprehensive
evaluation and allow comparisons with both DNN-based and empirical models. For each
metric, y; denotes the true value, y; the predicted value, and N the number of samples.
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Root Mean Squared Error (RMSE): Measures the standard deviation of residuals,
indicating how closely predictions align with observed values.

RMSE = % > (v — 00)? (4)

i=1

Mean Relative Absolute Error (MRAE): Captures average relative error, though
it is highly sensitive to small denominators and outliers.

N
1 ’yi - 3)@‘
MRAFE = — - 5

Normalized Residual Sum of Squares (NRSS): Quantifies residual variance rel-
ative to the target values, with smaller values indicating better fit.

NRss =Y W) (6

2
=1 Yy

Sum of Squared Log Error (SSLE): Provides robustness to outliers by evaluating
squared differences in logarithmic space.

SSLE =Y (log(y:) — log(#)) (7)

i=1

Coefficient of Determination (R?): Measures the proportion of variance in the
target explained by the model.

P2 _q_ Z%l(yi — i)’
> imi (v — )?

(8)
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Table 2: Performance measures of predicting Cp using cross-validation among tra-
ditional correlations (TC), well-known machine learning (ML) methods, and different
deep learning (DL) configurations including the proposed DCC-DNN, in which S
< Re,9,¢.,9), AR, R, >, represents the full feature set.

Type Method Input Features RMSE MRAE NRSS SSLE R?
Haider & Levenspiel, 1989 [18] < Re,¢ > 37.93+12.13  30.08+11.08 56.06£54.48  19.524+21.10  0.7146+0.38

Te Chien, 1994 [9] < Re, ¢ > 49.46+12.29 38.5949.06 92.21490.81  26.14£29.03  0.625940.40
Yow et al., 2005 [59] < Re, ¢ > 200.914£92.01 164.10£85.42 2001.56+2686.58  31.47+34.76  -1.5375+7.44

Holzer & Sommerfield, 2008 [21] < Re, ¢, ¢1,¢) >  55.13428.29  46.26+24.90 111.614+127.72  46.39+£51.91  0.1171£1.71

ML  Random Forest [10] S 48.52+12.73 34.70£9.08 121.77+190.37  19.85+20.62  0.5426+0.33
Gradient Boosting [10] S 45.12+14.10 33.01£8.21 108.76+£152.78  18.23£20.01  0.589140.31

DL  Baseline < Re,¢ > 36.38+£9.72 28.59£6.16 62.14£87.10  11.844+13.33  0.7971+£0.22
S 37.09£8.92 27.05£5.18 72.66£116.09 72.66+116.09  0.782240.20

Single-Model DNN < Re,¢ > 31.544+12.89 23.60+9.41 42.624+49.90 8.314£9.76  0.750840.30

S 26.63+10.63 17.434+6.29 40.83+62.95 6.96+£10.50  0.811840.25

DCC-DNN (SG) S 44.66+12.47 33.92£7.29 76.41£81.48  13.224+12.52  0.8150+0.19
DCC-DNN (MoE) S 25.98+10.18 17.05+6.03 38.00+58.17 6.76+10.02 0.8569+0.20

4.4.5 Proposed Model Comparison

Table 2 presents the performance of different predictive approaches, including traditional
correlations (TC), machine learning (ML), and deep learning (DL). For each method, the
reported values correspond to the mean and standard deviation of the metrics defined in
Section 4.4.4, obtained through 10-fold cross-validation. The table also specifies the input
features used by each model. Comparisons with previously established correlations high-
light the improvements achieved by the proposed method. Overall, DL-based models deliver
superior accuracy, particularly when trained on the full feature set (S), underscoring the
importance of richer input information for predicting C'p. Simply put, the more informative
data the model is exposed to, the better its predictive performance. Unlike ML and DL
models, TC methods are not trained on the dataset. Their results therefore reflect direct
evaluation on the cross-validation test sets, ensuring a fair basis for comparison. Among ML
techniques, Random Forest (RF) and Gradient Boosting (GB)—two widely used tree-based
algorithms—show competitive performance, consistent with prior studies [10]. However,
their limited generalization capacity becomes evident when applied to unseen data. The
DL results include several configurations, beginning with the baseline model (a single hid-
den layer of 64 ReLU-activated neurons optimized using Mean Squared Error loss). Even
this simple architecture outperforms RF and GB, though it shows reduced robustness when
learning from the expanded feature set S. On the performance of ensemble strate-
gies: The DCC-DNN model performs worse under Stack Generalization (SG). Although
both SG and the Mixture of Experts (MoE) rely on meta-learners to combine predictions,
their strategies differ. SG assigns static weights to each model, limiting adaptability across
varying input spaces. By contrast, the MoE framework dynamically adjusts the contribu-
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Figure 7: Illustration showing the predicted accuracy of the proposed model. The plot’s
marker style and color representing the shape and sphericity of the particle samples follow
the format described in Figure 2.

tion of each expert, enabling better specialization across feature domains. This conditional
weighting accounts for the superior performance of MoE compared to SG. Prediction ac-
curacy and uncertainty: Figure 7 illustrates predicted versus actual Cp values. The
clustering of points around the regression line demonstrates strong agreement between pre-
dictions and observations. The shaded 95% prediction interval conveys the expected range
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of predicted values for a given true C'p. Nonetheless, the figure also reveals limitations in
predicting certain particle geometries (e.g., cylinders, cuboids, and disks), which merit fur-
ther investigation. The proposed DCC-DNN (MoE) model achieves the highest coefficient
of determination, R? = 0.8569, explaining nearly 86% of the variance in the test data. At
the same time, it yields error magnitudes that are substantially lower than those of all other
tested methods, as summarized in Table 2.

5 CFD Study for Volume Fraction Data

The drag forces on non-spherical particles in a fluidized bed setup is influenced by neighboring
particles. The close packing of particles can significantly increase flow resistance due to
restricted flow passages which can amplify drag forces by several times. For this study,
solid volume fraction or porosity, is used to quantify the local bed packing which can be
used as an additional variable for drag modelling. Unfortunately, drag force information
in such situations does not have sufficient experimental data. In addition, experimental
information primarily reports average pressure drops and does not provide local drag forces
due to measurement challenges. To address this, numerical simulations were used to generate
drag force data in a packed bed arrangement with various solid volume fractions. In the
first approach, spherical particles are arranged in a BCC lattice structure with at least
10 layers along the flow and 5 layers in the lateral directions as shown in Figure 8. The
pressure drop along the fixed bed is compared against Ergun’s correlations. Additionally,
the velocity distribution in the bed is compared against nuclear measurement reasoning
(NMR) measurements reported in the literature. The established methodology is then used
for various non-spherical particles to generate data for a range of volume fractions. 350
total datapoints have been generated which are uniformly distributed along the Re and
volume fraction vector. The result provided a reasonable pattern with the volume fraction
for different shapes. The detailed numerical study is documented by Mahyawansi et al.[29]

Figure 9 shows the flow field in the fixed bed of non-spherical particles (spheroid and
tetrahedron). The left and right image shows the impact of particle shape on the overall
flow resistance offered by a bed. The tetrahedron particles, having sharp corners, results in
stronger recirculations, which can give larger drag coefficients, whereas streamline particles
such as spheroids, have low flow resistance. The flow resistance can increase or decrease
depending on the packing arrangement. Figure 10 shows the compilation of all the non-
spherical particles studied using this technique. The color pattern clearly shows a linear
pattern in the log of drag coefficient verses the solid volume fraction for various particle
sphericity.

A total 350 data points were generated using this method which aided in building an
additional DNN model that could take input as single particle drag and estimate amplified
drag coefficients for a given solid volume fraction. The volume fraction based DNN model
was found to be highly accurate for the fluidized bed, however, it overpredicted drag forces
for the unfluidized bed, i.e, for higher solid volume fractions. This error is probably due to
low training data. The high turnaround time makes it practically challenging to generate a
large number of data points with the current CFD methodology. Hence, another approach is
designed where non-spherical particles are randomly arranged similar to the fluidized region
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Figure 8: Non-spherical paraticles arranged in a BCC structure for numerical simulations.

a) Spherical particles, b) Spheroid, ¢) Tetrahedron and d) Cube.
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Figure 9: Resolved flow field in the bed of spheroid (left) and tetrahedron (right) particles.[29]

using the physics solver in the Blender animation tool.

5.1 Randomized Particle Arrangement

Figure 11 shows a sample of a random arrangement of cylinderical particles in a realistic
situation similar to a fluidized bed. These randomly arranged particles can have a wide
range of volume fraction for a given case. Hence, in a single simulation, multiple data points
can be generated. Figure 12 shows the drag data generated using the randomized particle
arrangement. Approximately 3000 new data sets were generated using this approach which
is used for retraining the volume fraction-DNN.
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Figure 11: Randomly arranged cylindrical particle for the numerical simulations.
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6 Integration with CFD

The trained drag model for CFD applications requires integration with a CFD package. The
National Energy Technology Laboratory’s (NETL) CEFD tool, MFiX—developed primarily
for particle flow simulations to meet energy industry requirements—is an open-source soft-
ware package that allows users to modify or add functions for custom applications. The
package is written in FORTRAN, whereas the trained drag model is implemented in Python,
as most machine learning libraries are available in Python. This presents a major challenge
in compiling the drag model with the CFD package. This section briefly discusses the in-
tegration method used in this study. The MFiX software package offers various particle
simulation models, such as:

e DEM (Discrete Element Model): Tracks all individual particles in the domain,
assuming spherical shapes and including collision models.

e CGP (Coarse-Grained Particle): Tracks groups or clusters of particles to reduce
memory requirements, making it suitable for full-scale industrial problems.

e PIC (Particle-in-Cell): Treats groups of particles as computational parcels, omitting
some particle dynamics such as collisions.

e GSM (Glued-Sphere Model): Similar to DEM, but allows for non-spherical particle
shapes by gluing spherical particles together.

e TFM (Two-Fluid Model): Treats the solid phase as a fluid, solved using an Eulerian
approach.
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To minimize modeling limitations, the DEM model is found to be the most suitable for this
study.

6.1 Features Collection in the DEM Loop

In the DEM model, particles are explicitly tracked after each fluid time step. The particle
time step is dynamically calculated to satisfy the collision model requirements. This time
step is typically on the order of 1 x 107%s, whereas the fluid time step is approximately
1 x 10~*s. Based on this, the drag model assumes that the drag coefficient remains constant
during DEM time steps. Therefore, the drag model is invoked before the DEM loop to
update the drag coefficient for all particles. Figure 13 shows the block diagram for drag
model integration. Before every DEM loop, a user-defined subroutine is called to collect
each particle’s data, such as relative velocity and volume fraction. Other parameters, such
as sphericity, crosswise sphericity, and lengthwise sphericity are defined during initialization
via a text file and stored as common block (global) variables. The list of particle data required
by the machine learning model is made available to the drag model subroutine. However,
since the new drag model is written in Python, it is not directly readable in FORTRAN.

6.2 FTorch

The drag model requires the PyTorch Python library to correctly read and predict drag
values. Recently, the Cambridge Institute of Computing and Climate Science (Cambridge-
ICCS) developed the FTorch library—a Fortran-compatible version of PyTorch. This library
must be compiled within the MFiX environment for use with the MFiX code. FTorch enables
reading the new drag model stored in pickle format. As a result, the trained drag model can
now be called within the MFiX environment to predict drag values. Once the drag values are
computed, they are saved in a common block array. The usr_drag subroutine—the default
user-defined drag subroutine invoked by both the DEM and flow solvers—can retrieve the
updated drag values using each particle’s ID.

7 CFD Validations

To establish the credibility of the proposed deep learning-based drag model, it is essen-
tial to validate its predictions against experimental observations using computational fluid
dynamics (CFD). This section presents a systematic validation strategy in three stages.
First, single-particle simulations are performed using the discrete element method (DEM)
to confirm that the model can capture terminal velocities for particles of varying shapes and
densities. Next, the drag model is tested in fluidized bed simulations, which represent a
more complex multiparticle environment and serve as the primary application for the model.
Finally, a retrained version of the drag model, enriched with additional volume fraction data,
is assessed to address limitations observed in the earlier cases. Together, these validation
steps provide a comprehensive assessment of the model’s performance across increasingly
challenging flow conditions.
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Figure 13: Drag model integration with MFiX.

7.1 Single Particle DEM

Song et al.[46] conducted experiments with non-spherical single particles of various materials
to calculate the terminal speed for estimating drag coefficients. The MFiX CFD simulation is
setup with the DEM approach to replicate this experimental observation for a single particle.
Single particle drag does not depend on the volume fraction and hence its the simplest CFD
problem to test the drag model.

Figure 14 compares numerically calculated DEM particles’ terminal velocity with that
of the experiments. DEM particle motion is influenced by gravity and the new drag force
model. The first five cases represent spherical particles. Cases 6 to 12 are for cubic particles
of different solid and fluid density. Similarly, cases 14 to 25 are for ideal cylinders with
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Figure 14: Single particle DEM study in MFiX compared against experiments
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Figure 15: Fluidized bed experimental setup and CFD domain used for this study.

various density ratios. The remaining cases are for longer cylinders. The CFD values closely
match with the experimental values with the error increasing with decrease in sphericity.
The error is the highest for the lowest sphericity particle with the highest density (case 41).
The results show the new drag model works as intended in the MFiX environment and closely
predicts drag forces for the non-spherical particles.

7.2 Fludized Bed Simulations

The new drag model is primarily developed to model the fluidization of non-spherical parti-
cles” bed. For this, Vollamari et al. [51] experiments are most suitable data, as they are at
lab scale, so there are fewer particles and it covers a wide range of particle shapes. Figure 15
shows the setup details such as the domain width and pressure probe locations. The CFD
domain is designed based on these details, and probe points are placed at Z = 0 and 0.31
m. The domain height is kept higher than the experimental setup to prevent particles from
escaping the domain. The domain’s bottom boundary is treated as the velocity inlet, and its
top boundary is open to the atmosphere (ambient pressure). All the remaining boundaries
are treated as no-slip wall conditions. The bed is initialized with 0.531 kg of particle mass
as per the experiments and subjected to the gas flow from the bottom. The air velocity, also
known as superficial velocity for such system, is increased from 0.4 to 2.4 m/s with steps of
0.1 m/s for a parametric study. Figure 16 shows sample calculations of pressure drop for
a given velocity condition. The fluidized bed is simulated for six seconds as the pressure
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Figure 16: Statistical averaging of the pressure drop across the fluidized bed for a given
velocity condition. The bottom plot shows an instantenous pressure drop with time whereas
the top plot shows the average pressure drop with time.

drop pattern shows repeating pattern after one second and does not deviate for the next
five seconds. The recorded pressure at the two probes is used to calculate the average drop
across the domain. Due to high variation in the first second of the simulation, the average
calculations starts after two seconds.

In the DEM simulations, the particles are treated as spheres due to simplicity, however the
drag model predicts drag values for a given non-spherical particle to realize the dynamics
of nonspherical particle beds. Figure 17 shows three conditions of the cube particle bed:
1) bed unfluidized, 2) bed beginning to fluidize, and 3) fluidized. These conditions match
closely with the experimental observations. The bed is almost unresponsive to low superficial
velocities from 0.4 to 0.8, after which it begins to fluidize. Figure 18 shows the pressure drop
comparison against the test data. The pressure drop initially increases steeply with the
superficial velocity during which the particle does not show any visible movement. The
model underpredicts pressure drop for the unfluidized region and slightly overpredicts for
the fluidized region. In the fluidized region, the current model shows reasonable agreement
with the test data.

Figure 19 shows the three conditions for the fluidized simulations for the cylindrical
particles. The fluidized bed height varies in a similar manner to that of cube particles.
However, as shown in Figure 20 the pressure drop predictions closely follow the test data for
the higher velocity conditions. For the lower velocity, the pressure drops are at least 20%
over-predicted.

In the case of low-sphericity particles such as 7mm class elongated cuboid, the fluidized
bed heights are relatively higher than the high-sphericity particles as shown in Figure 21.
The low sphericity particles’ drag can amplify significantly in the high volume fraction pack-
ing which could be the reason for the higher bed height. Figure 22 shows pressure drop
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Figure 17: 7Tmm cube shaped particles in unfluidized, begin to fluidized and fluidized state
for superficial velocity 0.4, 1.2 and 2.4 m/s respectively.
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Figure 18: Pressure drop predictions for the 7Tmm class cube. Errors are high in the low
velocity (unfluidized) region.
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Figure 19: 7mm cylinder shaped particles in unfluidized, begin to fluidized and fluidized
state for superficial velocity 0.4, 1.2 and 2.4 m/s respectively.
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Figure 20: Pressure drop predictions for the 7mm class cylinder.
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Figure 21: 7mm cuboid shaped particles in unfluidized, begin to fluidized and fluidized state
for superficial velocity 0.4, 1.2 and 2.4 m/s respectively.
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Figure 22: Pressure drop predictions for the 7mm class cuboid. Errors are high in the
unfluidized region.
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predictions across the cuboid particle’s bed. The numerical results match closely with the
test data for the fluidized conditions. For the low velocity region, pressure drop is over-
predicted. Omne possible reason for this is the difference in the solid volume fraction for
the spherical particles used by DEM and actual non-spherical particles in the test. This
difference in packing arrangement can impact drag values.
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Figure 23: 7mm elongated shaped particles in unfluidized, begin to fluidized and fluidized
state for superficial velocity 0.4, 1.2 and 2.4 m/s respectively

Figure 23 shows similar conditions for the elongated cylinder which is also a highly non-
spherical particles. The fluidized height is lower in this case but higher for the intermediate
velocity (1.2 m/s). Figure 24 compares pressure drop predictions with the test data that
shows close agreement in the fluidized conditions but overpredicts pressure drop for the low
velocity region. In summary, the new drag models performed well for the fluidized bed
applications, however, the unfluidized conditions require more improvement to reduce the
pressure drop error.

7.3 Retrained Model

The shortcoming of the drag models is addressed by generating additional volume fraction
data which reinforced the DNN model. The new method of randomized particles as discussed
in Section 5 generates a large number of data points. The retrained drag model with volume
fraction is tested for two particles of the 5 mm class and discussed below.

Figure 25 shows the original drag model and retrained drag model performance with
respect to the test data. The retrained model outperforms its predecessors in the low velocity
conditions without comprising the high velocity conditions. Similar improvement is also seen
in the highly non-spherical particles, elongated cube of the 5 mm class as shown in Figure 26.
For this particle, the pressure drop matches closely with the test data except for the fluidized
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Figure 24: Pressure drop predictions for the 7mm class elongated cylinder. Errors are high
in the unfluidized region.
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Figure 25: Pressure drop predictions for the 5mm class cube with retrained model.



Project Report 30

Pressure drop (Pa)

2751

250 1

B Experiments
—e— MFiX
225 - —A— Retrained

0.50 ©0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Superficial Velocity (m/s)

Figure 26: Pressure drop predictions for the 5mm class elongated cube with retrained model.

region, which still have large errors. The retraining exercise shows the model improves with
a larger and diverse database. Hence, the model can be continuously improved with the
additional availability of the volume fraction data. The new drag model used for fluidization
of 7mm and 5mm class particles shows the efficacy of the model with different particle sizes
and shapes. The drag model can now be implemented for the Eulerian models where the
solid phase is treated as a fluid to avoid a large number of particle tracking. The domain
sizes in industrial applications are much higher than the lab-scale test. The number of
particles can be in the millions which can be computationally challenging. However, with
the advancement of GPU processing and MFiX high-fidelity modeling, DEM modelling of
such large number of particles has been demonstrated using a laptop computer [14]. The
new drag model can complement these advancements and continue to improve modelling
capabilities of gas-solid flows.

8 Conclusion

This study developed a data-driven framework for predicting drag forces on spherical and
non-spherical particles in gas—solid multiphase flows. A novel DCC-DNN architecture, aided
by empirical correlations and ensemble learning strategies, was trained on an extensive
dataset that included experimentally measured and numerically generated drag coefficients.
Comparative analysis demonstrated that deep learning models consistently outperformed
traditional correlations and machine learning baselines, particularly when leveraging a full
feature set of particle and flow descriptors.
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The research extended beyond single-particle predictions by addressing the role of par-
ticle packing and local solid volume fraction. Using high-fidelity CFD simulations with
randomized particle arrangements, additional training data were generated to capture drag
amplification in dense regimes. Retrained models incorporating this information showed no-
table improvements, especially under fluidized conditions, where predictions aligned closely
with laboratory-scale experiments.

Successful integration of the drag model into the MFiX solver via the FTorch library
further highlights its practical utility. CFD-DEM validations confirmed the model’s applica-
bility for simulating both individual particle settling and complex fluidized beds, establishing
a foundation for broader adoption in energy and process engineering applications.

Despite these advances, challenges remain. Prediction errors persist under unfluidized,
high-volume-fraction conditions due to limited training data. Similarly, while the frame-
work accounts for a wide range of shapes, extreme irregularities still pose uncertainties.
Future work should focus on expanding the dataset through additional experiments and
high-resolution simulations, improving orientation-resolved modeling, and exploring hybrid
physics—ML approaches that embed conservation laws directly into the neural network.
In summary, the project demonstrates that deep learning can significantly enhance drag
modeling accuracy while reducing computational costs, offering a scalable pathway toward
industrial-scale simulations of gas—solid multiphase systems. The combination of physics-
based CFD, advanced neural architectures, and GPU-accelerated computation positions this
methodology as a promising tool for future energy, environmental, and materials processing
applications.
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