/
7

ORNL/NRC/LTR-98/9

Contract Program or Heavy-Section Steel Technology (HSST) Program
Project Title: Engineering Technology Division
Subject of this Document Fracture Assessment of HSST Plate 14 Shallow-
Flaw Cruciform Bend Specimens Tested under
Biaxial Loading Conditions
Type of Document: Letter Report
Authors:
B. R. Bass
W. . McAfee e '
P. T. Williams gw o
W. E. Pennell wme 1
v \ $
Date of Document: June 1998 O ©
Responsible NRC Individual M. G. Vassilaros (301) 415-6000
and NRC Office or Division Division of Engineering Technology,

U. S. Nuclear Regulatory Commission

Prepared for the
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555-0001
Under Interagency Agreement DOE 1886-N011-9B
NRC JCN B0119

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-8056 \
managed by
LOCKHEED MARTIN ENERGY RESEARCH CORP.
for the
U. S. DEPARTMENT OF ENERGY -

under Contract No. DE-AC05-960R22464

DISTRIBUTION OF THIS DOCUMENT 16 UNLWTED



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




ORNL/NRC/LTR-98/9

Fracture Assessment of HSST Plate 14 Shallow-Flaw
Cruciform Bend Specimens Tested under
Biaxial Loading Conditions

B. R. Bass, W. J. McAfee, P. T. Williams, and W. E. Pennell
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Manuscript Completed - June 1998
Date Published - June 1998

Prepared for the
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555-0001
Under Interagency Agreement DOE 1886-N011-9B
NRC JCN B0119

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-8056
managed by
LOCKHEED MARTIN ENERGY RESEARCH CORP.
for the
U. S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-960R22464




Fracture Assessment of HSST Plate 14 Shallow-Flaw
Cruciform Bend Specimens Tested under

Biaxial Loading Conditions

B. R. Bass, W. J. McAfee, P. T. Williams, and W. E. Pennell
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Abstract: A technology to determine shallow-flaw fracture toughness of reactor pres-
sure vessel (RPV) steels is being developed for application to the safety assessment of
RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were
developed to investigate and quantify the effects of temperature, biaxial loading, and
specimen size on fracture initiation toughness of two-dimensional (constant depth), shal-
low, surface flaws. The cruciform beam specimens were developed at Oak Ridge National
Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the
test section that approximates the nonlinear stresses resulting from pressurized-thermal-
shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load
ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading
can have a pronounced effect on shallow-flaw fracture toughness in the lower transition
temperature region for an RPV material. The cruciform fracture toughness data were used
to evaluate fracture methodologies for predicting the observed effects of biaxial loading on
shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-
based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling
model, and the Weibull approach. Applications of these methodologies based on the hydro-
static stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness;
the conventional maximum principal stress criterion indicated no effect. A three-parameter
Weibull model based on the hydrostatic stress criterion is shown to correlate the experi-
mentally observed biaxial effect on cleavage fracture toughness by providing a scaling
mechanism between uniaxial and biaxial loading states.

1. Introduction

The Heavy-Section Steel Technology (HSST) Program at Oak Ridge National
Laboratory (ORNL) is developing technology to determine the shallow-flaw fracture
toughness of steels for application to the safety assessment of reactor pressure vessels
(RPVs). In the lower transition temperature region, shallow-flaw fracture toughness data
for RPV materials exhibit mean values and scatter that are greater than those for deep flaws
because of the relaxation of crack-tip constraint [1]. Previously, uniaxial full-thickness
clad beam tests [2] were used to quantify this shallow-flaw effect in specimens (taken from




an RPV of a canceled nuclear plant) which are representative of RPV wall thickness and
material properties. However, the uniaxial beam tests did not address the issue of near-
surface biaxial stress fields produced by pressurized-thermal-shock (PTS) or pressure-
temperature (P-T) loading of an RPV [see Fig. 1(a)]. The out-of-plane biaxial stress com-
ponent has the potential to increase constraint at the tip of a shallow crack and thereby re-
duce the shallow-flaw fracture toughness enhancement.

Cruciform beam specimens [3-7] developed at ORNL introduce a far-field, out-of-
plane biaxial stress component in the test section [see Fig. 1(b)] that approximates the
nonlinear stresses of PTS or P-T loading [Fig. 1(a)]. The cruciform specimen (Fig. 2)
permits controlled application of biaxial loading ratios that can produce controlled variations
of crack-tip constraint for shallow surface flaws. The biaxial load ratio is defined as
P,/ P, , where P, is the total load applied to the transverse beam arms and P, is the total
load applied to the longitudinal arms. A special test fixture was also designed and fabricated
permitting testing under uniaxial loading, P,/ P, ratio of (0:1), and two biaxial loading ra-
tios, P,/ P, ratios of (0.6:1) and (1:1). The specimen and test fixture have been described
extensively in prior HSST publications [3-5].

Matrices of cruciform beam tests were defined within the HSST Program to evalu-
ate biaxial loading effects on the fracture toughness of 2-dimensional (2-D) (infinite-length)
[3] and 3-D (finite-length) [7] shallow surface flaws. An A 533 B steel, heat treated to
obtain an elevated yield strength, was fabricated into cruciform specimens incorporating 2-
D flaws and tested with the load ratio and temperature as independent parameters [3].
Fracture toughness tests were run with biaxial load ratios, P,/ P,, of (0:1), (0.6:1), and
(1:1). Five different temperatures through the transition temperature region for toughness
were sampled in this series. These test data are essential for validation of a cleavage fracture
methodology that can predict the observed effects of biaxial loading on shallow-flaw
toughness of RPV steels in the lower transition temperature region.

Conventional fracture-prevention technology has relied on the use of fracture cor-
relation parameters (K or J) to characterize both the applied loading and the resistance of
engineering materials to crack initiation. As documented in numerous references (for exam-
ple, see Refs. 8-12), the shortcomings of these one-parameter cleavage-fracture method-
ologies have been addressed using different strategies that share a common emphasis on in-
plane maximum principal (opening-mode) stress as the relevant criterion for unstable crack
propagation. O’Dowd and Shih [9] introduced a correlative approach based on the two-
parameter J-Q description of the crack-tip fields. In that model, the Q-stress parameter




characterizes the level of near-tip stress triaxiality (relative to small-scale yielding condi-
tions) over distances extending a few crack-tip-opening displacements (CTODs) ahead of
the crack tip. Dodds and Anderson (D-A) [10-11] employed a local fracture criterion in
their toughness scaling model to characterize the relative effects of constraint on cleavage
toughness. In the D-A model, the local fracture criterion is based on the material volume
ahead of the crack front over which the maximum principal stress exceeds a critical value.
Other stress-based local approaches adopted the Weibull stress [12] as a fracture parameter
that reflects local damage near the crack tip and reaches a critical value at material failure.
Conventional applications of the Weibull methodology utilize the maximum principal stress
as the equivalent tensile stress in the integral representation of the Weibull stress.

Initial emphasis in the HSST studies was placed on assessment of three stress-
based methodologies (J-Q formulation, D-A scaling model, and Weibull approach) as ap-
plied to the cruciform specimen and biaxial fracture toughness data. McAfee et al. [5] dem-
onstrated that the J-Q methodology and D-A toughness scaling model predicted essentially
no effect of biaxial loading on cleavage fracture toughness in the cruciform bend specimen
when the maximum principal stress is adopted as the fracture criterion. The latter result
provided motivation for considering alternative fracture criteria that are sensitive to mul-
tiaxial loading states.

A number of previous studies (for example, see Refs. 13-15) investigated alterna-
tive fracture criteria using extended weakest-link models suitable for brittle materials (e.g.,
ceramics) subjected to multiaxial loading. These models consider flaws as planar cracks,
with the loading expressed in terms of some suitably defined equivalent stress which de-
pends on the orientation of the crack plane in the local stress field. Selected equivalent
stress functions defined in terms of multiaxial stress components were used to evaluate
failure criteria through applications to measured data. Another alternative is the hydrostatic
stress function, which has been applied as a critical fracture parameter. Weiss [16] de-
scribed an experimental program in which he investigated the effects of stress biaxiality on
fracture strain and successfully reconciled measured data using a critical hydrostatic stress
fracture criterion. Also, the J-Q methodology utilized an operational definition of the Q-
stress expressed in terms of the hydrostatic stress [17], which is consistent with its inter-
pretation as a triaxiality parameter.

Recently, analyses of the cruciform specimen were performed within the HSST
Program using functions of multiaxial stress components as failure criteria in the stress-

based methodologies, in place of the maximum principal stress. Particular attention was




given to construction of a scaling mechanism between uniaxial and biaxial loading states
using a three-parameter Weibull model and the hydrostatic stress criterion. This paper pro-
vides an interim report on the results of these analyses. The following sections present a
summary of the HSST biaxial testing program, the test results and fracture toughness de-
terminations, and finally, applications of the constraint methodologies to the cruciform
specimen and measured data from the biaxial testing program.

2. Specimen Configuration and Testing Facility

A basic functional requirement for the cruciform test specimen is that stresses in the
ligament beneath the shallow flaw remain in the elastic range up to the point of fracture.
Reasons for this requirement are (a) this is the condition which exists in an RPV under PTS
loading, and (b) biaxial tests [18] have shown that when substantial plastic strains are al-
lowed to develop in the ligament, the effects of biaxial loading on fracture toughness are
lost. Thus, acceptance criteria were adopted for the cruciform bend specimen that require
the specimen to exhibit contained yielding at the crack tip at cleavage fracture under
biaxial (1:1) loading, at test temperatures in the lower transition region where biaxial load-
ing effects on fracture toughness have been demonstrated. In Ref. 19, analysis results
demonstrate that a cruciform specimen with a test section dimension of approximately
100 mm thickness is the smallest size that can meet the acceptance criteria for the heat-
treated Plate 14 material over the range of fracture toughness values of interest in PTS as-
sessments. Plots of Mises stress contours in the cruciform specimen subjected to
biaxial (1:1) loading indicate the onset of loss-of-containment in the cruciform specimen
near a K - level of approximately 200 MPaVm.

The cruciform beam specimens are fabricated with a test section that has dimensions
of 104 mm x 104 mm X 104 mm [see Fig. 2 (a)], except for three specimens that had a
reduced thickness of 96 mm [see Fig. 2(b)]. For all cruciform beams, a 2-D shallow flaw
having a flaw-depth ratio of a/W = 0.1 was fabricated into the specimen. The flaw was lo-
cated in material near the middle plane of the original plate. Load-diffusion control slots
(LDCS) were machined into the specimen loading arms to create the boundary conditions
required to achieve a uniform stress field in the central test section. For each cruciform
specimen, the shallow 2-D flaw was fatigue-sharpened and a mechanical milling process
used to relieve each corner of the sharpened flaw and remove a small region of material at
the LDCS/flaw intersection. That region had exhibited preferential crack growth during the
fatiguing process due to prior surface embrittlernent resulting from wire-EDM fabrication of




the LDCS. (Development tests [5] confirmed that initiations occurred in the central portion
of the crack front.) Next, the transverse loading arms were attached by electron-beam (EB)
welding. Measured temperature data taken during EB welding of the transverse arms imply
that temperatures produced in the cruciform test section (< 150°C) were not high enough to
initiate processes which would reduce fracture toughness, such as locally-intensified strain-
aging embrittlement. The specimen design, coupled with a statically determinate load-
reaction system installed in the ORNL testing machine, permitted the specimen to be loaded
in either uniaxial (4-point bending) or biaxial (8-point bending) configurations. Tests of
nominally identical specimens could be performed with the level of stress biaxiality as the
only loading test variable.

Instrumentation applied to the test specimens included thermocouples, strain gages,
clip gages, and displacement transducers. Both crack-mouth-opening displacement
(CMOD) and load-line displacement (LLD) were monitored continuously throughout each
of the tests. Control of the test temperature was achieved with various liquid nitrogen dis-
tribution systems. Mechanical loading is applied to the cruciform specimens using a large-
scale cruciform test fixture mounted in a 3.1 MN Instron servo-hydraulic testing machine at
ORNL.

3. Material Preparation and Characterization

HSST Plate 14 (A 533 B steel) was the source material for the cruciform bend
specimens. A chemical analysis of Plate 14 is given in Table 1. This plate was selected
primarily for its relatively high carbon content of 0.22 percent (specification for A 533 B
steel is 0.25 percent maximum), which made it more responsive to increasing the yield
strength by heat treatment and retaining relatively uniform properties through the thickness
of the plate after tempering. The base material underwent heat treatment to achieve an ele-
vated yield strength approximating that of a typical radiation-sensitive RPV steel irradiated
to a fluence of 1.5 x 10" n/cm?® (> 1 MeV). The heat treatment was performed success-
fully, providing a room temperature yield stress in the desired range. Fabrication of the
cruciform specimens has been described in Refs. 3, 5, and 6.

Characterization of the heat-treated material was performed to provide verification
of properties and data for the determination of appropriate test conditions. Tensile, Charpy,

drop-weight, and 1/2T compact tension specimens were tested. From Charpy V-notch
(CVN) testing, T,, was determined to be 56 °C (132 °F), and the drop-weight nil-ductility
temperature (NDT) was found to be 40 °C (104 °F). Thus, NDT controlled the reference




temperature, and RT,,, = 40 °C. A comparison was made between the Charpy results for
Plate 14 and data from the HSSI Fifth Irradiation Series Weld 73W [20] in the irradiated
[1.51 x 10" n/cm? ( > 1 MeV)] condition (see Fig. 3). From this comparison, it was
observed that the trend of the Charpy data for Plate 14 very nearly matched that of the irra-
diated 73W [20]. It can be concluded that the heat treatment was successful in providing the
desired material properties.

American Society for Testing and Materials (ASTM) standard 6.35-mm (0.25-in.)
gage diameter tensile specimens were machined from material near the midplane of the plate
and at four locations through the half thickness. To characterize temperature dependency,
tests were performed at four different temperatures using specimens taken from a single
layer near the mid-plane of the plate. These test temperatures — -30 °C (-22 °F), 10 °C
(50 °F), 40 °C (104 °F), and 60 °C (140 °F) -— were selected as representative of the an-
ticipated test temperature range for the cruciform specimens in the verification test matrix.
Four locations through the thickness of the plate were also sampled. The variation of tensile
properties with both temperature and location through the plate thickness was observed to
be relatively small. Temperature-dependent material properties representing stress-strain
behavior for this material at -30 °C and -5 °C are given in Table 1 and Fig. 4.

A series of 1/2T compact specimens, taken from different locations within the par-
ent plate, were tested over the range of -130 “C to room temperature. This data set was
used to determine a reference temperature T, based on the Master Curve approach [21].
First, the 1/2T data were adjusted to a 1T constraint condition using

Ky =20+(K, 5 —20) (0.5/1) 1)

The valid data were then fitted using the Master Curve equation,
K, (med) = 30+70exp|[0.019(T - T;)], [MPa/m | , )
from which a value of 7, =-37.3 °C (-35.1 °F) was determined.

4. Testing of Cruciform Specimens

Six cruciform specimens were tested at -30 °C (7 - T, = 7 °C) to provide data for
(a) three biaxial load ratios and (b) two duplicate tests at each condition. The load vs
CMOD data for these specimens are shown in Fig. 5, which compares the centerline




CMOD for each of these six specimens. The deformation résponse for all specimens was in
good agreement. The specimens exhibited very little ‘plastic deformation as measured by
both CMOD and LLD, regardless of the applied biaxial load. Failure conditions, load and
deformation (CMOD and LLD), seemed to vary randomly; i.e., there was no clear correla-
tion between applied biaxial loading and failure load or deformation. Examination of the
fracture surfaces showed that initiation occurred within the center 50 mm of flaw front, in-
dicating that the cleavage initiation toughness values were not influenced by edge condi-
tions.

The estimated toughness values for these specimens are shown in Table 2. Esti-
mates were made using CMOD and LLD results, the measured crack depth at the probable
initiation site, and the 7-factor procedures that have been used previously in estimating
toughness from shallow-flaw tests [1, 6]. The values for all these tests are near the esti-
mated lower shelf toughness for this material, which is consistent with the observed de-
formation behavior, i.e., elastic tests. For cases where primarily elastic deformation oc-
curs, biaxial loading would be expected to have little effect on constraint at the flaw tip, and
thus little effect on toughness. The elastic response of these specimens gave an indication
that the test temperature was too low (i.e., -30 °C was on or nearly on the lower shelf) to
produce a biaxial loading effect.

A second set of fifteen cruciform specimens was tested at a nominal test temperature
of -5 °C (23 °F) (normalized temperature T ~ T, = 32 °C). This higher temperature was
expected to provide a better balance between cleavage behavior and accumulated plasticity
at failure for evaluation of biaxial effects on toughness. Six specimens each were tested un-
der uniaxial (0:1) and equibiaxial (1:1) loadings, and three specimens under (0.6:1) biaxial
loading, as shown in Table 2. Deformation responses of longitudinal load vs CMOD re-
sults are shown in Fig. 6. The longitudinal load vs CMOD traces for these specimens were
comparable, but the failure deformation magnitudes and scatter exhibited a strong depend-
ence on the applied biaxial load as shown in Fig. 6. The unload/reload deformation trace of
Specimen P2B was due to initial interference with the transverse beam arm load seats. The
test was interrupted; the specimen was unloaded; and the fixture was then reconfigured
while ‘holding the specimen temperature near -5 °C. It was concluded from post-test
evaluation that this perturbation in the load histogram was insignificant as far as affecting
the final toughness results.

Additional tests were performed at higher temperatures to investigate fracture be-
havior through the lower/mid-transition curve. The uniaxial tests at -5 °C indicated border-




line plastic collapse; therefore, no additional uniaxial specimens were tested at higher tem-
peratures. Biaxial (0.6:1) and (1:1) tests were performed near 5 °C and 15 °C, as shown in
Table 2. Although scatter in the data set increased, the clear distinction between the effect
on toughness of different biaxial load ratios was retained.

S. Fracture Toughness Determination

Three-dimensional elastic-plastic finite element analyses of the cruciform specimen
were performed with the ABAQUS program [22] to generate n-factors for determination of
fracture-toughness values from test data. For the -30 °C tests, generally good agreement
was obtained for the deformation response, as expected since the tests were essentially
elastic. These analyses over-predicted the stiffness of the specimen, with this over-
prediction being greatest for the biaxial (1:1) load case. A comparison of analysis and ex-
periment is shown in Fig. 7 for this biaxial case. For the tests performed at -5 °C, the
agreement was dependent on the biaxial load ratio. Good agreement was obtained between
the biaxial (1:1) analytical and experimental results; however, comparison of the uniaxial
results showed the analysis to predict substantially stiffer longitudinal load vs CMOD re-
sponses than were measured in the test (see Fig. 8).

The estimated toughness values obtained from the Plate 14 cruciform specimens are
shown graphically in Figs. 9 and 10 for the -30 °C and -5 °C test sets, respectively. The
-30 °C specimens behaved in an elastic manner and little biaxial effect was observed. For
the six specimens tested, the toughness increased slightly with an increase in biaxial ratio.
It is expected that additional specimens would show statistically no difference between
uniaxial and biaxial loading at this temperature. For the tests performed at -5 °C, the test
data demonstrate a significant effect of biaxial loading on shallow-flaw fracture toughness,
as is shown in Fig. 10. The mean value of the biaxial (1:1) toughness resulted in ap-
proximately a 42 percent decrease from the mean uniaxial toughness (K, .,/ K, 4.1,
= 0.58).

Figure 11 is a summary of all the cruciform data generated in this test series pre-
sented as a function of normalized test temperature ( 7 — 7, ). Trend curves were devel-
oped through these data to provide a visual interpretation of the relationship between biaxial
loading and temperature. Note that these trend curves are not rigorous fits to all the data but
are intended primarily to identify and separate data sets. The curves were all normalized to
the same toughness values for normalized temperatures less than 0 °C. These toughness
values were developed using data from the 1/2T CT specimens tested on the lower shelf




which were then adjusted to a full-constraint condition using the modified Irwin J3,, ap-
proach [23]. Also, the mean of the data set for the cruciform tests at -30 °C was used as a
common point for all three curves. The trend curve for the (0.6:1) data was developed by
ratioing the biaxial (1:1) trend line upward so that it would pass through the centroid of the
(0.6:1) data set. Figure 11 shows the development of a family of curves, each corre-
sponding to a particular biaxial load ratio. The biaxial (1:1) data form a lower bound to this
data set. Based on these trend lines, the mean of the estimated toughness values from the
uniaxial tests increases much more sharply with increasing temperature than do those of the
biaxial tests.

6. Applications of Constraint Methodologies
6.1 Finite Element Models and Local Crack-Tip Fields

Three-dimensional finite-element models were developed for local crack-tip field
analyses of the cruciform bend specimens subjected to the uniaxial and biaxial loading con-
ditions represented by the test data in Fig. 10. The cruciform bend specimen shown in Fig.
2(a) is modeled in Fig. 12 and the reduced thickness specimen [Fig. 2(b)] in Fig. 13. Both
blunt-crack (20,754 nodes and 4317 20-node isoparametric brick elements) and sharp-
crack (18,775 nodes and 3886 elements) models were generated for these analyses. For the
blunt-crack model, the initial finite-root-radius at the crack tip was 0.0254 mm (0.001 in.)
(see Fig. 14). Corresponding J-integrals were calculated with the sharp-crack models to
obtain a more accurate determination of J as a function of loading. All models were ana-
lyzed with the ABAQUS code utilizing a nonlinear elastic-plastic constitutive formulation
with incremental loading of the specimen. Temperature-dependent properties were taken
from tensile characterization tests of the heat-treated Plate 14 material (see Table 1, Fig. 4
and Ref. 3). All model results reported herein assumed a specimen temperature of -5 °C,
consistent with the toughness data shown in Fig. 10. Also, these assessments neglected
the potential impact of ductile tearing observed in three of the uniaxially loaded cruciform
specimens, which were tested at -5 °C and failed at high toughness values (see Fig. 10).

Applied load vs J-integral values computed for the original and reduced-thickness
specimens are compared in Fig. 15. A similar comparison for CMOD shown in Fig. 16 il-
lustrates the increased compliance associated with a reduction in test section thickness of
the cruciform specimen.

Results generated from local crack-tip field analyses include the profiles of effective
stress, O, and total effective plastic strain, €,, depicted in Fig. 17 for the uniaxial (0:1)




and biaxial (x:1) (x = 0.6 and 1.0) loading cases. The parameters are computed at

J = 131 kJ/m? (0.75 in.-kip/in®), which corresponds approximately to a measured frac-
ture toughness data point for biaxial (1:1) loading depicted in Fig. 10. Profiles of these pa-
rameters are plotted vs distance r in front of the crack tip (=0, Fig. 14) normalized by
J/o,, where G, is the proportional limit of 512 MPa (74.2 ksi). These fields clearly dem-
onstrate that biaxial loading suppresses development of plasticity in front of the crack tip,
with the effect becoming more pronounced with increasing biaxiality ratio.

6.2 J-Q Theory

O’Dowd and Shih [9] developed the J-Q methodology in which the J-integral sets
the scale of deformation at the crack tip, and the hydrostatic stress parameter, Q, quantifies
the level of stress triaxiality over distances of approximately 1 < r/(J/0,) <5 ahead of
the crack tip. The annular zone over which the family of stress fields described by

Oy _ r .
accurately determines the actual field is called the J-Q annulus. In Eq. (3), rand 0 are cy-
lindrical coordinates (Fig. 14) with the origin at the crack tip. The crack-tip stress fields
within the J-Q annulus were represented by the sum of a J-dominant reference solution and
a difference field AN O’Dowd and Shih [9] observed that the difference field corre-
sponds approximately to a uniform hydrostatic shift in the stress field in front of the crack
tip. They designated the amplitude of this approximate difference field by the letter Q,

0, =(04),,+ 2048, (6]<7/2). (4)
Two operational definitions of the Q-family of fields are presented in Ref. 17. The

first definition is given in terms of the opening-mode stress, G,,,

%= Oudwon 4 g

¢ 2, A

=2, 5)

where SSY refers to the small-scale-yielding reference solution. The second definition,
which is consistent with the interpretation of Q as a triaxiality parameter, is based on the
hydrostatic stress, G,,,
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QH _ Oy —(O'H)ssy;Q=o at 6=0,

o (/o)

=2, (6)

where O, (also known as the mean stress) is 1/3 of the first invariant of the Cauchy stress
tensor. These two operational definitions of Q-stress are applied in Fig. 18 to the local
crack-tip field analysis of the uniaxially-loaded cruciform bend specimen. Normalized
opening-mode stress vs normalized distance in front of the crack tip is compared with SSY
results for a range of J-values in Fig. 18(a); results based on the hydrostatic stress are
shown in Fig. 18(b). The SSY solution was developed using a 2-D plane-strain modified
boundary layer (MBL) [8] model with the same finite-root-tip geometry and material prop-
erties as the 3-D ﬁnite-strain model. For the uniaxially-loaded specimen, the two definitions
of O-stress provide results that are equivalent, a result confirmed previously in Ref. 17.

In Fig. 19, opening-mode stress profiles for the three loading cases under study
are plotted with the SSY solution. In Fig. 19(a), the Q-stresses calculated using the first
definition for Q , Eq. (5), do not present significant differences among the loading cases
due to the observed insensitivity of the opening-mode stress to biaxial loading. The second
definition, Eq. (6), was used in Fig. 19(b) to calculate a Q,-stress based on the hydro-
static stress profiles. At a nominal J-level of 131 kJ/m?, the Q,-stress differentiates be-
tween the different levels of biaxiality, such that the Q,-stress decreases (in absolute value)
monotonically with increasing biaxiality ratio. The peak values of normalized stress coin-
cide for the three loading cases. In contrast to the uniaxial loading case, the difference fields
for the biaxial loading cases vary with normalized distance over the range of
1 <r/(J/ic,) <5; i.e., they do not correspond to a uniform shift in the hydrostatic stress
field relative to the 2-D SSY solution.!

In Fig. 20, the two definitions of O-stress are plotted as a function of normalized J
to determine their evolution over the loading path for the three biaxiality loading ratios.
These curves terminate approximately at J-values corresponding to fracture toughness data
points given in Fig. 10 for the three loading conditions. The J-integral in Fig. 20 has been
normalized by the initial crack depth, a, and the proportional limit, 6, . For both defini-
tions of Q, the loss-of-constraint increases with increasing load. The Q-stress based on the
opening mode stress (Fig. 20(a)) shows no significant differentiation among the three
loading cases. For the biaxial (0.6:1) and equibiaxial (1:1) loading cases, the Q,, parameter

! In Section 7, it is shown that the distribution of cleavage initiation sites determined from fracture surfaces
of a limited number of the heat-treated Plate 14 cruciform specimens falls predominately in a region (0.4 <
Aal(J/o,) < 1.2) where normalized hydrostatic stress is not significantly influenced by biaxial loading ratio.
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based on the hydrostatic stress (Fig. 20(b)) diverges from the uniaxial (0:1) path as the

load level increases. A conventional interpretation of the Q,, parameter in Fig. 20(b) is that
a higher level of crack-tip constraint is maintained under increasing load as the biaxiality ra-
tio is varied from uniaxial (0:1) to equibiaxial (1:1) conditions.

6.3 Cleavage Toughness Scaling Model

Dodds and Anderson (D-A) [10-11] quantified effects of constraint on cleavage
fracture toughness using a toughness scaling model that couples the global parameter J with
a Jocal failure criterion. The D-A model adopts the material volume ahead of the crack tip,
over which the normalized maximum principal stress (¢, / 6,) exceeds a critical value, as
the local fracture criterion. See Appendix A for a discussion of some computational aspects
of the D-A model. The convention applied in this paper for ordering the principal stresses is

G, 2 0,2 0,, where G, is essentially equivalent to the opening-mode stress, G, , in the

cruciform specimen. The toughness scaling model requires that equal-stressed volumes ( or
equal areas in 2-D models) be attained ahead of the crack tip for cleavage fracture to be re-
alized in different specimens. Equality of stressed volumes implies an equal probability of
achieving cleavage fracture, even though J-values may be markedly different.

For the plane strain model described in Ref. 17, the normalized maximum principal

stress has the approximate form

Z;‘_:=ﬁ’((—17:;:j’ 9) +0 . 0
The area enclosed within the specified contour ¢,/ ¢, = C depends on J and the triaxiality
level as quantified by Q. Let A, and J, represent the area and J-value for the SSY condition
with zero T-stress and @ =0 field. If A,and J, represent corresponding values in a finite
cracked structure having a Q <0 field, then the ratio of Jf /J, for which
Ao(03/6,)=A,{(0;/0,) serves to quantify the size and geometry dependence of fracture
toughness. For the latter conditions, a ratio J,/J,> 1 implies a loss of constraint in the fi-
nite structure that is associated with an increase in measured cleavage fracture toughness.
Computational studies of shallow-flawed, uniaxially-loaded, bend specimens per-
formed by D-A [17] revealed that computed ratios of J./ J, are relatively insensitive to the
magnitude of the selected 6,/ ¢, contour (for sufficiently large values) up to large-scale
yielding. The principal stress contours were shown to exhibit a self-similarity that is im-
plied by the J-Q relation of Eq. (7); i.e., the shape of the contour is preserved with in-
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creasing load as measured by J, even though the enclosed area of the contour varies with
the hydrostatic stress 00, At high loads, this similitude breaks down and the ratio J./ J,
becomes strongly dependent on the magnitude of 6,/ G,.

Previously, McAfee et al. [5] demonstrated that the D-A toughness scaling model
predicted essentially no effect of biaxi‘al loading on cleavage fracture toughness in the cruci-
form bend specimen due to the insensitivity of in-plane maximum principal stresses to far-
field out-of-plane biaxial loading. Recently, analyses were carried out which utilized the
hydrostatic stress variable as the failure criterion in the D-A scaling model in place of the
maximum principal stress. Applications of this modified D-A model involved integrating
over the volume contained within a range of selected hydrostatic stress contours immedi-
ately ahead of the crack front for a range of applied loads as measured by J. Effective
cross-sectional areas for these contours could then be calculated by simply dividing the
computed volume by the half-length of the crack front in the finite-element model
[x, =56 mm (2.2 in.)].

Figure 21 shows the variation of the predicted fracture toughness ratio J,,/ J,

max

with 6,,/ o, for the shallow-flaw cruciform specimen subjected to uniaxial (0:1) loading.
Each curve represents a given applied J-value, normalized using the constants @ and G,.
The ratio J,,/J, is relatively insensitive to the selected G,/ G, over the interval
1.8 <0,/ 0,<2.35 for the range of applied loads considered in the analysis. In
Fig. 22, values of J,, and J
loaded cruciform specimen and in the SSY model, are plotted on separate axes. The analy-

producing equal-stressed areas of material in the uniaxially

sis is based on hydrostatic stress contours having a normalized stress ratio of
6,/ 6,=2.35. With increasing load, extensive plastic flow develops in the cruciform
specimen and more applied J is required to produce the same stressed effective area as
compared to the SSY model.

Figure 23 depicts results from a fracture toughness scaling analysis of the cruci-
form specimen for the three loading cases represented by the measured data in Fig. 10. A
value of 6,/ 6, = 2.35 was selected as the stress contour for use in the scaling model. In
Fig. 23(a), the evolution of applied loading (J) vs equal-stressed volumes within the con-
tour 6,/ 0, =2.35 is shown for uniaxial and biaxial loading conditions. The J-value re-
quired to achieve a critical equal-stressed volume within the critical stress contour decreases
with increasing biaxiality ratio. Furthermore, the uniaxial (0:1) loading condition ap-
proaches saturation beyond J = 500 kJ/m?; i.e., the volume within the critical stress con-
tour no longer increases with increasing applied J-value. In contrast, the biaxial loading
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conditions do not exhibit any tendency to saturate for the range of loadings considered in
the analysis. Analysis results from Fig 23(a) were used to produce the plots of J_, vs J,,
(x = 0.6 and 1.0) in Fig. 23(b) that correspond to equal-stressed volumes of hydrostatic
stress within the contour 6, / 6, = 2.35 for the three loading cases. The biaxial loading
values were used in place of the conventional SSY values in Fig. 23(b) in order to com-
pare the relative effects of biaxial and uniaxial loading on the crack tip fields. As demon-
strated in Fig. 23(b), the departure from the no-effect line is significant for both biaxial
(0.6:1) and (1:1) loading cases, the effect being more pronounced with increasing biaxiality
ratio. Also shown in Fig. 23(b) are the measured cruciform data for the heat-treated Plate
14 material tested at - 5 °C (Fig. 10), where biaxial data are plotted near the vertical axis
and uniaxial data near the horizontal axis. The D-A toughness scaling model, modified to
use hydrostatic stress, is shown to provide an approximate correlation of the effects of
biaxial loading on cleavage fracture toughness depicted in Fig. 10, based on a critical con-
tour 6,/ 0, =2.35. Figures 23(c) and (d) present J, (x = 0.6 and 1.0) vs equal-
stressed volume and J,., vs J,,, curve, respectively, for the cruciform specimen based on
the maximum principal stress fracture criterion (critical contour 6,/ 6, = 2.8). These re-
sults [Fig. 23(d)] incorrectly predict essentially no effect of biaxial loading on toughness at
-5 °C.

Figures 24(a) and (b) illustrate the evolution of maximum principal
(0;/0,=2.8) and hydrostatic (¢, / 0, =2.35) stress contours, respectively, ahead of
the crack tip for both uniaxial (0:1) and biaxial (1:1) loading conditions. The maximum
principal stress contours indicate some difference in enclosed area between the two loading
states for the lower J-values shown. As J increases, this differentiation decreases. For
comparable J-values, the area enclosed within the hydrostatic critical stress contour is
shown to be greater for the biaxial loading case as compared to the uniaxial case, with the
difference becoming more pronounced with increasing J-values.

The sensitivity of J)r ; V8 J,,(x =0.6 and 1.0) curves to selection of the critical
stress ratio G,,/ G, is depicted in Fig. 25 for the range 1.8 < 6, / 0, < 2.35. Increasing
the stress ratio beyond this range [toward the common peak value of 6, / 6, ~ 3.2 calcu-
lated for the three loading conditions in Fig. 19(b)] would produce a family of curves that
converges monotonically to the “no effect” line shown in Fig. 25. In Fig. 26, curves of
Jo.;/J,.; ratio (x = 0.6 and 1.0) for equivalent-siressed areas vs critical 6, / 6, ratio are
computed over a range of applied J-values. The dependence is shown to be more pro-
nounced for 6,/ 0, < 2.2. A critical stress ratio of 6,/ 6, =2.35 was selected for the
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toughness scaling analysis presented in Fig. 23(b) to provide a reasonable correlation for

the measured cruciform data given in Fig. 10.

6.4 Weibull Stress Applications

The methodology implemented in the WSTRESS (Version 2.0) computer code [24]
was used to study effects of biaxial loading on Weibull analyses of shallow-flaw fracture
toughness data in the lower transition temperature region. The WSTRESS code employs a
multiaxial form of the weakest link model applicable for a 3-D cracked solid; the Weibull
stress, O, , is characterized as a fracture parameter reflecting the local damage of the mate-
rial near the crack tip. The Weibull stress, 6, given by the expression

o, [41%“ Ojc;" singde do dﬂ] : (8)

is evaluated by integration of the equivalent stress, G,, over the process zone. In Eq. (8),V,
is the reference volume; m is the Weibull modulus; 6 and ¢ are curvilinear coordinates for

integration of the tensile stress; and £ denotes the volume of the near-tip fracture process
zone. Details regarding the derivation of Eq. (8) are presented in Appendix B.

6.4.1 Fracture Criteria

A fracture criterion must be specified to determine the equivalent (tensile) stress, C,
acting on a microcrack included into the fracture process zone. Three options for fracture
criteria are implemented in the distributed version of WSTRESS [24] to evaluate the critical
stress at which the crack becomes unstable: maximum principal stress (MPS), coplanar en-
ergy release (CER) rate, and normal stress averaging (NSA). Three additional fracture cri-
teria were added to WSTRESS: the principal of independent action (PIA) [25] as proposed
by Dortmans et al. [26], the noncoplanar energy release (NCER) rate [27-28], and the hy-
drostatic stress (HYDRO) criterion, developed during the present study. These criteria are
implemented using the following definitions for the equivalent tensile stress, G, :
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MPS Maximum Principal Stress 6, =max(c,,0,,0;)
o

NSA Normal Stress Averaging

o
PIA Principal of Independent Action ©_ = ((01>m +(0,)" + (0'3)'") "

%

2

CER Coplanar Energy Release Rate o, = (0',,2 + (_Zi,c_?_)
-V

NCER  Noncoplanar Energy Releasz Rate o, = (Gn4 +60,°1" + 14) 4

trc _ 6,+0,+0,

HYDRO Hydrostatic Stress o, 3 3

i

where the state of stress is defined by the principal stresses (6,, ©,, 0,) and the normal &,
and shear T stresses are calculated by

Normal Stress ~ ©, = G, sin” @cos’ 0+ 0, sin” @sin*0+ G, cos’ @

Shear Stress 1’ = 6,”sin’ pcos’ 0+ 6,% sin” @sin’ 8+ 6, cos’ 9 — G,

See the discussion in Appendix B for definitions of the angles ¢ and 6.

Figure 27 illustrates the response of the Weibull stress function for a range of m
values and two definitions of 6, when applied to the Plate 14 cruciform specimen sub-
jected to uniaxial (0:1) and biaxial (1:1) loading conditions. The equivalent stress options
selected for analysis were MPS and HYDRO. For those two choices, the values of G, are
independent of microcrack location and orientation, and the Weibull stress is, therefore,

Lt
o, —[T’; l o dQ] . ©)

In Fig. 27(a), the equivalent stress was set to MPS, and the Weibull stress was then cal-
culated for values of the modulus m = 8, 10, and 20. No significant effects of biaxial
loading were detected for the three m values using the MPS criterion. In Fig. 27(b), the
calculation is repeated with the equivalent stress taken as HYDRO. Differentiation between
uniaxial (0:1) and biaxial (1:1) loading can be observed when the Weibull modulus m is
set to values of 8 and 10. By increasing the Weibull modulus to 20, any distinction be-
tween uniaxial and biaxial loading is essentially lost. (Computations of m values appropri-
ate for the cruciform fracture toughness data in Fig. 10 are described in following sec-
tions.)
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6.4.2 Cumulative Probability of Failure
The cumulative probability of cleavage fracture (g9, ) is estimated by either a two-
parameter Weibull distribution of the form

9,(6,)=1 —epo%J } (10)

or a three-parameter Weibull distribution

G,—0C —min 5
£,(0,)=1- exp[—(——w————‘—”——] } (11)
cu - Gw—min
where the parameters of the distribution are the Weibull modulus m , the scaling stress
(scaling factor) 6, , and the minimum Weibull stress for cleavage fracture ¢

w—min *

6.4.3 Required Experimental Data and Finite Element Models

The WSTRESS code requires experimental fracture toughness data and the results
of a finite element analysis in which the stress and deformation fields ahead of the crack tip
are calculated as a function of the J-integral over a range of loading states. The toughness
data for cruciform specimens (a/W = 0.1) fabricated using Plate 14 material and tested at -
5°C are given in Table 3 and compared to the results of a finite element model in Figs. 28
and 29 for uniaxial (0:1) and biaxial (1:1) loading cases, respectively. The finite element re-
sults were obtained from the 3-D elastic-plastic models of the cruciform specimen depicted
in Fig. 12 (for calculation of “FEM” curves) and Fig. 13 (for calculation of “FEM
REDUCED” curve) using the ABAQUS [22] code. The finite element curves for the J-
integral were calculated in the ABAQUS code by the domain integral method, and the ex-
perimental J-integral values were calculated using the m-factor technique described previ-
ously [6].

6.4.4 Weibull Parameter Estimation: Statistical Inference Method

The maximum likelihood (ML) method is implemented in WSTRESS to calculate,
by statistical inference, point estimates for the parameters of the Weibull distribution. As
discussed in the previous section, the estimation of the Weibull parameters m and G re-
quires both the results of experimental fracture mechanics testing to produce a sample
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population of toughness data and the results of a finite element analysis of the specimen for
a range of loading states (as measured by the J-integral). The results of the Weibull pa-
rameter estimation calculations for each of the six equivalent stress criteria (using the two-
parameter model) are summarized in Table 4, where the sample population included all 15
toughness data points at -5°C: 6 at (0:1) loading, 6 at (1:1) loading, and 3 at (0.6:1) load-
ing. As noted in Ref. 24, despite the large-sample properties of the ML estimates, the re-
sulting Weibull parameters are biased to higher values for small sample population sizes.
The degree of bias in m is independent of the true value of (#,0, ); however, the bias is a
function of the sample size (i.e., the number of experimental fracture toughness data
points, N, ). WSTRESS calculates a corrected estimate m

exp corr

using unbiasing factors
B(N,,,) generated from an appropriate asymptotic distribution.

A comparison of Weibull parameter estimates for three sample populations is given
in Table 5 for the two-parameter model. The first two sample populations consist of the
toughness data partitioned by loading state, with 6 data points each for both the uniaxial
(0:1) and biaxial (1:1) loading cases. Table 5 demonstrates a significant dependence of the
estimated Weibull parameters on population size and loading state.

Figure 30 shows a Weibull probability plot of the cumulative failure probability
$(c,,) formulated as the log-log parameter In ln[ll (1 —p(cw))] vs the log of the Weibull
stress, ©,,, normalized by the scaling stress, ¢¢,. With this scaling, the failure probabilities
are functions only of the Weibull modulus, highlighting variations in the Weibull modulus
as demonstrated by differences in the slopes of the straight lines in the plot. As shown in
Fig. 30, the first five criteria form a relatively consistent grouping; however, the hydro-
static stress (HYDRO) criterion is separated from this group by a lower Weibull modulus.

The evolution of the Weibull stress for the six fracture criteria under uniaxial (0:1)
loading is shown in Fig. 31 for the two-parameter model. The estimated Weibull parame-
ters m given in Table 4 (based on Ny, = 15) for the MPS and PIA criteria produce es-
sentially identical Weibull stresses in Fig. 31. These two criteria also form an upper bound
for the Weibull stresses. The NCER, CER, and NSA criteria (all involving a dominant
normal tensile stress) group together with intermediate values for the Weibull stress. The
HYDRO criterion provides a lower bound. The 15 toughness data points are plotted in
Fig. 31 along the abscissa to demonstrate the range of the distribution.

Figure 32 compares the biaxial (1:1) and uniaxial (0:1) normalized Weibull stress
curves for the (a) maximum principal stress (MPS) and (b) hydrostatic stress (HYDRO)
fracture criteria. The MPS response is typical of the PIA, NCER, CER, and NSA criteria in

18




showing no significant sensitivity to the loading state. HYDRO is the only fracture criterion
tested that is responsive to the out-of-plane stress field.

A three-parameter Weibull distribution was also investigated using the HYDRO
fracture criterion. The minimum Weibull stress for which cleavage is assumed to be possi-

ble, ¢ is calculated from the functional relationship between the Weibull stress and

the loading parameter, the J-integral, that evolves during the iterative process within
WSTRESS. The third parameter ©,,_,,.,
culated from the intercept of the o, =F(J,m) curve at K,=20MPa—+/m =

J=2.05kJ/m® . Table 6 presents a comparison between the two- and three-parameter

(continually updated during the iterations) is cal-

model parameters for the partitioned biaxial (1:1) and uniaxial (0:1) sample populations and
the mixed sample population of 15 toughness data points.

The WSTRESS code offers an alternative approach for calculating point estimates
for the Weibull distribution parameters that involves a stochastic simulation of the fracture
toughness data. In this approach, a statistical sample of fracture toughness is generated
from a Weibull distribution. The fracture parameter, J., is assumed to be described by ei-
ther a two-parameter Weibull distribution of the form

p(]c)=1_e)<p[_(%)a] (12)

or a three-parameter Weibull distribution

so(fc)=1—exp[—(%lja} (13)

where a, B, and 7y are the shape, scale, and threshold parameters of the distribution, re-
spectively. The shape and scale parameters can be input explicitly or can be estimated by
the maximum likelihood method based on the experimental toughness data set. The thresh-
old parameter must be input as problem data if a three-parameter Weibull distribution is to
be applied. The WSTRESS code uses a Monte Carlo simulation with inverse transforma-
tion to generate a large statistical sample. This Monte Carlo simulation has the form

Toieom = B[=In(1=T)] " +7 (14)

where U is a random variate uniformly distributed between [0,1]. Table 7 presents a com-
parison of Weibull parameter point estimates based on Monte-Carlo-generated sample
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populations of 10,000 data points for both two- and three-parameter Weibull distributions
of the toughness data. For the three-parameter models, the threshold value of

v = 2.05 kJ/m? corresponding to a K,,,;, of 20 MPa-Vm is explicitly specified. Figure 33
compares the resulting Weibull distributions in terms of the associated Weibull probability

density function
f(Jc,a,B,7)=%(iﬁl‘fJ exp{—(ﬁ—g’—yj ] (15)

In Fig. 33, the two curves that represent a partitioning of the data by loading state
(Nexp = 6) demonstrate that the highest (1:1) and the lowest (0:1) data points are located in
the tails of their respective distributions.

6.4.5 Weibull Parameter Estimation: Gao-Ruggieri-Dodds (G-R-D) Method
— Multiconstraint Mapping to SSY Weibull Stress Space

A new calibration scheme has been proposed by Gao, Ruggieri, and Dodds [31] to
determine unique values of the Weibull parameters (m,c,) by applying toughness data
measured under low and high constraint conditions at the crack front. This new scheme (G-
R-D Method) arises from the authors’ experience [31] with calibration methods based on
statistical inference (as discussed in Sect. 6.4.4) in which they observed a strong sensitiv-
ity to the number of toughness data values (J,) comprising the sample population. They es-
timated that reliable estimates for the shape parameter, o, in the Weibull distribution of the
toughness data (see Egs. (12) and (13)) would require many tens of J.-values; however,
fewer J_-values (approximately 6-10) might be required to establish the median value of the
distribution, B. This new scheme involves mapping the available toughness data back to a
small scale yielding (SSY) Weibull stress space where o takes on the theoretical values of 2
or 4 for Weibull distributions expressed in terms of J. or K., respectively. In the SSY
Weibull stress space, the scheme requires iterations with the Weibull modulus m to deter-
mine a unique value of B and thereby a unique m-value. The calibration process employs
large scale yielding (LSY) toughness data from two sample populations that represent dis-
tinctly different levels of crack tip constraint. The procedure then seeks the unique m-value
that, upon mapping the two LSY sample populations back to the corresponding SSY
Weibull stress space, results in constraint-corrected toughness distributions that have the
same statistical properties, specifically the same SSY Weibull distributions as described by
the (0,) parameters.
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In addition to elastic-plastic analyses of the LSY specimens, the G-R-D calibration
scheme also requires the results of a finite element analysis of a stationary crack under
small scale yielding conditions. The plane-strain, modified boundary layer (MBL) model
[8,32] provides asymptotic crack-tip stress fields which have the general form

Ff ©)+78,3,, , (16)

where K is the stress intensity factor. The special case of 7 = 0 corresponds to the small
scale yielding limit. An MBL finite-element model (see Fig. 34) was obtained from the
authors of Ref. (31) and converted into an ABAQUS model with the same material prop-
erty data used in the analyses of the Plate 14 cruciform specimens at -5 °C. Small scale
yielding solutions, corresponding to an applied Mode I loading of the finite-root-tip crack,
can be obtained by imposing the displacements

u,(R,0)= K, (1+V)\/- ( )[3 4v —cos0]
u,(R9) = —(i—;—"—)\/% in(—z—)[3—4v——cos6]

along the outer circular boundary (r = R) of the model, where the stress intensity factor X
is related to the J-integral by the plane-strain formula

E
K, = (1”2)1 : (18)

The MBL model shown in Fig. 34 has one layer of 2,671 3-D elements (20-node
isoparametric) with plane-strain constraints (z, =0 imposed on all 5708 nodes). The
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Weibull stress for the plane-strain case is

1
m

cw-{v f]-r; rdrd@} , (19)

000

" where B is the finite thickness of the model and r* is the radius of the fracture process
zone. To be consistent with the Weibull stresses calculated for the cruciform specimen, the
reference volume, V, that is input to the WSTRESS code for the MBL model should

maintain the same B'/V, ratio implied by the geometry of the cruciform specimen. The




MBL model had a thickness B = 0.0254 mm, and the thickness and reference volume for

the 1/4 model of the cruciform are B* = 55.88 mm and V,” = 1.0 mm3, respectively;

therefore, the reference volume input to the WSTRESS code for the MBL model calcula-
tions was

*

V,=B VO* = 0.0254(-1&) =0.00045455 mm” . (20)
B 55.88

The G-R-D calibration scheme proceeds by the following steps:

Step 1. Test two sets of specimens with different levels of crack tip constraint. In the
terminology of Ref. [31], the biaxial (1:1) data are designated as Configura-
tion A (high constraint), and the uniaxial (0:1) data are designated as Configu-
ration B (low constraint).

Step 2. Perform detailed 3-D finite element analyses for Configurations A and B and for
a plane-strain SSY model with a reference thickness adjusted to be consistent
with the specimens in Configurations A or B. The nature of this adjustment is
described above.

Step 3. Assume a trial m-value, and calculate the &, vs J histories for Configurations A
and B and the SSY model. Constraint-correct the Configuration A and B tough-
ness data by mapping the data points on the ¢, vs J curves back to the SSY
curve as shown in Figs. 35(a) and (b) such that J__;, — J ;) -

Step 4. Estimate B ,,, and B, in SSY Weibull stress space for the two configurations
by the maximum likelihood point estimate relation

I 2
B= ;;Z(J(i)—SSY) 03))
i=1
and calculate a relative error R(m) by
R(m) - (B(O:l) - B(l:l)) (22)

B(l:])

Step 5. Repeat Steps 3 and 4 for a range of trial m-values and determine the m-value
that produces an acceptably small relative error R(m).
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The scaling stress, G, can be calculated from the converged SSY-(0,,_g, vs J) curve by

C,=0, syatJgy = B(O:I) = B(m) . (23)

For the 3-parameter Weibull distribution, the third parameter, & ,__.., is calculated from the
intercept of the G, s, vsJ curve at J = 2.05 kJ/m2 (K; = 20 MPa-+/m ).

The G-R-D calibration scheme was carried out using the toughness data presented
in Table 3 for the uniaxial (0:1) and biaxial (1:1) cruciform tests. As noted in Table 3,
two of the uniaxial (0:1) specimens experienced precleavage ductile tearing. These tests
produced the two highest toughness data values in the sample population. However, finite
element ABAQUS solutions were unobtainable for these two high ductile tearing data
points. At these high 10ading levels, the nonlinear elastic-plastic problem in ABAQUS
failed to converge. As a result, two approximations were tested to assess the sensitivity of
the calibration scheme to uncertainties in the Weibull stresses calculated for these two
uniaxial (0:1) points. For the first approximation, a form of censoring was applied to the
uniaxial (0:1) sample population by estimating the Weibull stresses for the two highest data
points (specimens P9A and P2B.2) by a horizontal line extended to the right of the highest
calculated Weibull stress (specimen P17A) as shown in Fig. 35(b). With this approxima-
tion, the iterations were carried out over a range of m-values with a converged solution ob-
tained at m = 8.45 as presented in Figs. 35(c) and (d). The second approximation in-
volved a linear extrapolation of the uniaxial (0:1) &, vs J curve, using the final two cal-
culated (J,,0,, ) data points (specimens P19B and P17A) to estimate the slope of the linear
extrapolation, as shown in Fig. 36(b). The G-R-D iterations resulted in a convefged solu-
tion of m = 7.45 as depicted in Figs. 36(c) and (d). The biaxial (1:1) &, vs J curves
shown in Figs. 35(a) and 36(a) demonstrate that although the biaxial (1:1) loading state is
considered a high-constraint condition relative to uniaxial (0:1) loading, biaxial (1:1)
loading of the cruciform specimen still results in a significant loss of constraint relative to
the idealized high-constraint condition of the SSY MBL solution. As a result, the impor-
tance of mapping both sets of toughness data back to a common SSY Weibull stress space
should be emphasized. In Ref. (31), the option of replacing the SSY solution with a deep
flaw, high-constraint model is discussed as a possible alternative calibration procedure. As
applied to the cruciform data where both loading states involve shallow flaw geometries,
however, this option did not prove to be feasible.
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The m = 8.45 and m = 7.45 solutions for the cumulative probability of cleavage

fracture as a function of the J-integral are presented for the two sample populations parti-
tioned by loading state (uniaxial (0:1) in Figs. 37(a) and 38(a) and biaxial (1:1) in
Figs. 37(b) and 38 (b) , respectively) and the combined populations expressed in terms of
the SSY constraint-corrected toughness data (in Figs. 37(c) and 38(c) , respectively). Both
the two- and three-parameter Weibull model results are plotted. The probability of cleav-
age fracture for the experimental toughness data is calculated from the rank ordering rela-

tionship
pi =t~ 0.3

= 24
N,,+0.4 %)

where the experimental toughness data are ordered in ascendingrank by 1<i<N, . As
shown in these figures, the three-parameter Weibull model discussed in Sect. 6.4.2 more
closely fits the experimental data, relative to the two-parameter model, for all cases.

Figure 39 presents a comparison of the probability density distributions of the par-
titioned data sets (see Fig. 33) to the converged SSY Weibull stress space distribution cor-
responding to an m-value of 8.45. Scaling toughness models are shown in Fig. 40 for
m = 8.45 and 7.45. The biaxial (1:1) and uniaxial (0:1) toughness data are plotted along
the ordinate and abscissa, respectively, in Figs. 40(b) and (d) within their partitioned
probability density distributions. The curves in Fig. 40 demonstrate that the Weibull cor-
relative approach produces a scaling model that captures the significant effect of biaxial
loading on shallow flaw fracture toughness.

7. Cleavage Initiation Sites

Fractographic studies were conducted on a subset of the Plate 14 cruciform beam
specimens listed in Table 2 to identify locations of cleavage initiation sites (CISs). Results
from these measurements are depicted in a plot of Aa vs test temperature [Fig 41(a)],
where Aa is defined as the measured perpendicular distance from the CIS to the fatigue pre-
crack front [Fig. 41(b)]. The CIS values for specimens tested at -30°C under three differ-
ent biaxiality ratios are tightly clustered, while those data for specimens tested at higher
temperatures exhibit substantially greater scatter. In Fig. 42, measured cleavage fracture
toughness is plotted as a function of measured distance to the CIS for the same set of
specimens. These data imply that increasing fracture toughness correlates with increasing
distance of the CIS from the fatigue precrack front. Anderson et al. [29], in their discussion
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of the micromechanics of cleavage fracture, observed that lower toughness is associated
with cleavage triggering particles located near the crack tip, whereas substantially higher
toughness is measured when the cleavage triggers are farther away. Similar trends were
observed in measured CIS data obtained by Herrens et al. [30] from CT specimens of a
pressure vessel steel.

In Fig. 43, fracture toughness and CIS distribution are plotted vs normalized dis-
tance Aa/(J/c,) to the CIS. The majority of data points are grouped in the interval 0.4 <
Aal(Jic,) < 1.2 [see Fig. 43(a)]. The latter observation is further emphasized in the plot
of Fig. 43(b), which depicts the distribution of CIS vs normalized distance to the CIS.
Also included as an inset in Fig. 43(b) is a plot of normalized hydrostatic stress vs nor-
malized distance in front of the crack tip, with applied J a parameter, for the uniaxially
loaded cruciform beam [taken from Fig. 18(b)]. In a previous section, peak values of the
normalized hydrostatic stress were shown to be insensitive to biaxial loading ratio [see
Fig. 19(b)]. The normalized distance to the peak CIS distribution is approximately the
same as that to the interval of peak normalized hydrostatic stress shown in the inset of
Fig. 43(b). Thus, for this limited data set, the CIS distribution falls predominately in a re-
gion where normalized hydrostatic stress is not significantly influenced by biaxial loading
ratio.

The CIS distribution in Fig. 43 provides an interesting correlation with results of
an unpublished study recently conducted at ORNL. In that study, a penny-shaped mi-
crocrack (7, =10pum) embedded in a unit-cell model was used to estimate the recoverable
elastic strain energy available to grow a microcrack in the cruciform specimen. Analysis re-
sults indicated that, for a normalized distance ahead of the cruciform macrocrack of 0.7
Sr/(J/6,)< 1.4 and at a fixed biaxial J. of 121.5 kJ/m?2 (corresponding to specimen
P15A in Table 2), biaxial loading produces a higher elastic strain energy release rate than
the uniaxial loading state. Farther into the blunting region (r/(J/c,) < 0.5) this biaxial ef-
fect disappears. These preliminary results provide some indication that, at the mesoscale
level, biaxial loading offers a more favorable stress/strain state (relative to uniaxial loading)
for continued growth of an initiated microcrack.

The three-parameter Weibull methodology represented by the results in Figs. 35-40
provides a correlative model of biaxial loading effects on cleavage fracture toughness for
the Plate 14 material (at -5°C). Further study is required to reconcile the cruciform CIS dis-
tribution in Fig. 43 with this Weibull model based on hydrostatic stress. Conclusions in-
ferred from the data set given in Figs. 41-43 may be premature, since a limited number of
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the Plate 14 cruciform specimens listed in Table 2 have been subjected to CIS measure-
ments. Currently, fractographic studies are under way at ORNL to compile a CIS data base
that includes all of the specimens in Table 2. The various elements of the current CIS data
base summarized in Figs. 41-43 will be updated as soon as these additional measurements
become available.

8. Conclusions

e For Plate 14 cruciform beam tests performed at -5 °C, the test data demonstrate
a significant effect of biaxial loading on shallow-flaw fracture toughness. The mean value
of the biaxial (1:1) toughness resulted in approximately a 42 percent decrease from the
mean uniaxial toughness (K, ;.;,/ K,

c

«0:1) = 0.58). Essentially no biaxial loading effect on
fracture toughness was observed in tests performed at -30°C.

e The Q,-stress parameter, based on hydrostatic stress, implies that a higher level
of crack-tip constraint is maintained under increasing load as the biaxiality ratio is varied
from uniaxial (0:1) to equibiaxial (1:1) conditions.

e The D-A toughness scaling model was shown to provide an approximate corre-
lation of the effects of biaxial loading on cleavage fracture toughness for a limited data set,
based on a critical contour 6,/ ¢, = 2.35.

e A three-parameter Weibull model based on the hydrostatic stress criterion is
shown to capture the experimentally observed biaxial effect by providing a scaling mecha-
nism between uniaxial and biaxial loading states. Other fracture criteria employed in the
Weibull model, including that of maximum principal stress, indicated essentially no effect
of biaxial loading on fracture toughness.

e Experimental and analytical results presented herein provide the motivation to
reconsider micromechanical models of cleavage fracture initiation and to develop a metal-
lurgically-based argument for 6, as a driver of cleavage fracture under multiaxial loading
conditions.

e Tests scheduled in 1998 of large-scale Plate 14 cruciform beam specimens, fab-
ricated with a 140 mm test section and crack depth ratio of /W = 0.1, will provide addi-
tional fracture toughness data for calibration of parameters in the biaxial Weibull model cur-
rently under development within the HSST Program.
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Table 1. Properties of Heat-Treated Plate 14 Cruciform Specimens

(a) Chemical composition of ASTM A 533 B Composition (%)
Requirement HSST Plate 14

Carbon, max 0.25 0.22
Manganese:

Heat Analysis 1.15-1.50 NA

Product Analysis 1.07-1.62 1.44
Phosphorous, max 0.035 0.005
Sulfur, max 0.035 0.003
Silicon:

Heat Analysis 0.15-0.40 NA

Product Analysis 0.13-045 0.20
Molybdenum:

Heat Analysis 0.45-0.60 NA

Product Analysis 0.41-0.64 0.36
Nickel:

Heat Analysis 0.40-0.70 NA

Product Analysis 0.37-0.73 0.62
(b) Tensile Properties Temperature

-30 °C (-22 °F) -5 °C (23 °F)

Young’s Modulus [MPa (ksi)] 182,720 (26,500) 182,720 (26,500)
Poisson’s Ratio 025 0.25
Proportional Limit [MPa (ksi)] 534 (77.5) 511 (74.2)
0.2% offset yield strength [MPa(ksi)] 669 (97.0) 653 (94.7)
Ultimate Strength [MPa (ksi)] 848 (123) 828 (120.2)
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Table 2. Summary of Heat-Treated Plate 14 Cruciform Specimen Test Results

Spec. Test Biaxiality Failure Failure Failure K, from K, from
Temp. Ratio Load LLD CMOD P-LLD P-CMOD
°C (°F) kN mm mm MPavm MPaVm
(kips) (in.) (in.) (ksiNin) _(ksivin)
P2A! 38 (100) 0:1 1785.2 29.561 2.0269 NA® NA" .
| (401.3) (1.1638) (.0798)
| P12B  -30(-22) 0:1 638.4 1.938 1372 76.3 88.0
| (143.5) (.0763) (.0054) (69.5) (80.1)
P3A =31 (-24) 0:1 736.1 2.276 1753 97.2 103.0
(165.5) (.0896) (.0069) (88.4) 93.7)
P14B  -31(-24) 0.6:1 508.2 1.504 1118 99.6 70.3
(134.6) (.0592) (.0044) (90.7) (64.0)
P7B -30(-22) 0.6:1 965.8 2.802 2362 129.2 136.3
(217.1) (.1103) (.0093) (117.6) - (124.0)
P13B -28 (-18) 1:1 840.4 2.398 2032 97.9 112.1
(188.9) (.0944) (.0080) (89.1) (102.0)
P4A -29 (-21) 1:1 1026.7 2.936 .2946 139.7 141.2
(230.8) (.1156) (.0116) (127.1) (128.5)
P9A -3 (26) 0:1 1529.0 14.575 1.6916 362.7 399.8
(343.7) (.5738) (.0666) (330.1) (363.3)
P2B.1 -4 (24) 0:1 1351.0 7.330 7036 245.3 261.5
(303.7) (.2886) (.0277) (223.2) (238.0)
P2B.2 -3 (26) 0:1 1504.4 13.774 1.4173 351.3 379.7
(338.2) (.5423) (.0558) (319.7) (345.5)
P3B -4 (24) 0.6:1 1449.6 8.440 7645 273.0 269.8
(325.9) (.3323) (.0301) (248.5) (245.5)
P12A -6 (21) 0.6:1 13494 5.923 5715 2140 225.8
(303.4) (.2332) (.0225) (194.8) (225.8)
PI5A -4 (25) 1:1 1072.6 3424 3150 155.9 154.6
(241.1) (.1348) (0124) (141.9) (140.7)
P6B -4 (24) 1:1 1096.0 3.637 .3505 166.9 162.3
(246.4) (.1432) (.0138) (151.9) (147.8)
P4B 6 (42) 1:1 1118.5 4.651 .3430 183.2 167.5
(251.5) (.1831) (.0132) (166.7) (152.5)
P6A 4 (40) 0.6:1 1255.12 5.210 3384 204.3 195.2
(282.2) (.2051) (.0161) (186.0) (177.6)
P10A 8 (46) 0.6:1 1570.8? 10.714 0.9042 308.1 2974
(353.2) (.4218) (.0356) (2804) (270.6)
P7A 15 (60) 1:1 1303.7% 6.012 .6121 248.3 229.3
(293.1) (2367) _(.0241) (226.0) (208.7)
'Test discontinued, no cleavage.
*Failure load based on equivalent 254 mm (10 in) beam arm length.
*Reduced thickness specimens.
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Table 2. Summary of Heat-Treated Plate 14 Cruciform Specimen Test Results

(continued)
Spec. Test Biaxiality Failure Failure Failure K, from K, from
Temp. Ratio Load LLD CMOD P-LLD P-CMOD
°C (°F) kN . mm mm MPaVm MPaVm
(kips) (in.) (in.) (ksiVin) (ksivin)
P9B 15 (60) 0.6:1 1500.9? 9.766 .8204 294.7 281.9
(337.4) (.3845) (.0323) (268.2) (256.5)
P11B 17 (62) 1:1 1456.5* 9.934 .1090 352.8 325.5
(327.5) (.3911) (.0429) (321.0 (296.2)
P10B -6 (22) 1:1 1246.2° 5.260 4801 230.2 204.6
(280.2) (.2071) (.0189) (209.5) (186.2)
P15B -4 (25) 0.6:1 1431.12 7.537 - .5803 248.1 2324
(321.7) (.2967) (.0228) (225.8) (211.5)
P13A -6 (21) 0:1 1035.7° 5.251 3910 2173 184.2
(232.8) (.2067) (.0154) (197.8) (167.6)
P17B -5 (24) 1:1 829,02 4.170 0.2455 202.0 129.5
(186.4) (.1642) (.0097) (183.8) (117.8)
P5A -3 (26) 1:1 1269.4 5.479 0.4597 228.3 210.0
(285.4) (.2157) (.0181) (207.8) (191.1)
PSB -4 (26) 1:1 1469.9° 10.251 1.0719 351.7 316.1
(330.5) (.4036) (.0422) (320.1) (287.7)
P18A3 327 0:1 1329.9? 10.630 0.8560 302.6 280.5
(299.0) (4185) (.0337) 275.4) (255.3)
P17A3 -2(28) 0:1 1421.0? 13.904 1.1684 348.8 321.7
(319.5) (.5474) (.0460) (317.4) (292.8)
P19B? -2 (28) 0:1 1342.22 11.984 0.9982 319.6 302.3
(301.7) (4718) (.0393) (290.9) (275.1)

Test discontinued, no cleavage.
*Failure load based on equivalent 254 mm (10 in) beam arm length.
*Reduced thickness specimens.

33




Table 3. Cruciform Toughness Data from FEM Model and Experimental Data

Test Biaxiality Failure Toughness, J,. Toughness, K
Specimen Temp. Ratio’ Load, P, FEM? CMOD* FEM? CMOD*
°C kN KJ/m2 KI/m2 MPavVm MPaVm
P2B.2 DT’ -3 0:1 1504.4 433.8 638.65 290.8 352.8
PY9A DT -3 0:1 1529.0 469.8 747.84 302.6 381.8
P13A2 -6 0:1 1165.1 177.5 156.71 186.0 174.8
P17A%* -2 0:1 1421.0 539.9 530.94 324.4 321.7
P18A* -3 0:1 1329.9 370.9 403.72 268.9 280.5
P19B** -2 0:1 1342.2 388.6 468.84 275.2 302.3
P3B -4 0.6:1 1449.6 272.7 363.53 230.5 266.2
P12A -6 0.6:1 1349.4 212.2 256.57 203.4 223.6
P15B? -4 0.6:1 1431.1 260.3 277.04 225.2 232.4
P15A -4 1:1 1072.6 118.5 121.50 152.0 153.9
P6B -4 1:1 1096.0 125.2 135.22 156.2 162.3
P17B? -5 1:1 932.6 80.5 85.98 125.2 129.4
P5A’ -3 1:1 1269.4 208.9 226.30 201.8 210.0
P5B’ -4 1:1 1469.9 404.2 512.64 280.7 316.1
P10B? -6 1:1 1246.2 193.9 214.72 194.4 204.6

'Biaxiality ratio is the ratio of the transverse to longitudinal beam arm loads: P7/Py,

*Failure load based on equivalent 254 mm (10 in.) beam arm length.
*Calculated using finite-element sharp-crack model of cruciform specimen with 254 mm (10 in.)
beam arms

“Experimental values calculated from CMOD data
Reduced specimen test section a/W=0.1; ¢ = 9.65 mm (0.38 in.); W =96.0 mm (3.78 in.)
DT indicates precleavage ductile tearing

Table 4. Parameter Estimates for the Weibull Modulus using
Statistical Inference and Two-Parameter Model

: Weibull Parameters

Case Criterion m meoyy Ou MP2)
1  Maximum Principal Stress (MPS) 12.65 11.48 2851
7 Principal of Independent Action (PIA) 12.31 11.18 2903
3 Noncoplanar Energy Release (NCER) 12.12 11.09 2546
4  Coplanar Energy Release (CER) 12.04 10.93 2521
5  Normal Stress Averaging 11.89 10.80 2500
6  Hydrostatic Stress (HYDRO) 10.27 9.33 2304
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Table 5. Comparison of Weibull Parameter Estimates Between Three Sample
Population Sizes using Statistical Inference and a Two-Parameter Model
Experimental | Weibull Parameters
Case Equivalent Stress Criterion Nexp/Loading mcorr Ou , (MPa)

la | Maximum Principal Stress (MPS) 6/(1:1) 15.41 2321
Ib 6/(0:1) 10.21 3216
Ic 15/(mix) 11.48 2851
2a | Principal of Independent Action (PIA) 6/(1:1) 15.36 2326
2b 6/(0:1) 10.17 3224
2¢ 15/(mix) 11.18 2903
3a | Noncoplanar Energy Release Rate (NCER) 6/(1:1) 15.25 2110
3b 6/(0:1) 9.90 2848
3c 15/(mix) 11.09 2546
4a | Coplanar Energy Release Rate (CER) 6/(1:1) 15.08 2090
4b 6/(0:1) 9.75 2821
4c 15/(mix) 10.93 2521
S5a | Normal Stress Averaging (NSA) 6/(1:1) 14.94 2074
5b 6/(0:1) 9.63 2799
5c 15/(mix) 10.80 2500
6a | Hydrostatic Stress (HYDRO) 6/(1:1) 12.98 1888
6b 6/(0:1) 8.29 2646
6¢ 15/(mix) 9.33 2304

Table 6. Comparison of Weibull Parameter Estimates Between the Two- and
Three-Parameter Models using Statistical Inference with the Hydrostatic Stress Criterion

Loading Data Mmcorr Cu Ow-min
Nexp (MPa)  (MPa)

(1:1) 6 12.98 1888 0
1:1 6 10.17 2126 751
o1 6 8.29 2646 0
(0:1) 6 7.60 2825 700
0:1) 15 9.33 2304 0
©:1) 15 8.42 2427 692
(1:1) 15 8.42 2427 712
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Table 7. Comparison of Weibull Parameter Estimates Between the Two- and Three-Parameter
Models using Statistical Inference with the Hydrostatic Stress Criterion and a
Stochastically Simulated Sample Population Size of 10,000

Loading Data o B ¥ m Ou Ow-min
Ny (kJ/m?) (kJ/m?) (MPa) (MPa)
(1:1) 6 2.04 225 0 18.08 1757 0
(1:1) 6 2.04 225 2.05 13.90 1839 754
(1:1) 6 2.0 225 2.05 13.69 1848 752
O:1D 6 2.97 550 0 11.14 2296 0
0:1) 6 2.97 550 2.05 10.16 2309 701
O:1) 6 2.0 550 2.05 9.75 2260 697
0:1 15 1.86 388 0 10.75 2145 0
0:1) 15 1.86 388 2.05 0.64 2199 696
O0:D 15 2.0 388 2.05 9.77 2198 697
(1:1 15 1.86 388 0 10.75 2145 0
(1:1) 15 1.86 388 2.05 9.64 2199 723
(1:D 15 2.0 388 2.05 9.77 2198 724
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Fig. 1 (a) PTS loading produces nonlinear biaxial stress in an RPV wall with one of the
principal stresses aligned parallel with the tip of the constant-depth shallow
surface flaw; (b) 8-point bending in the cruciform specimen produces a linear
approximation of the PTS biaxial stress field.
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Fig. 2 Geometry of the cruciform shallow-flaw biaxial fracture toughness test
specimen: (a) test section thickness - 104 mm; (b) test section thickness -
96 mm.
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Fig. 4 Stress-strain behavior for plate 14 material measured at -30°C and -5°C.
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Fig. 7  Comparison of predicted and measured CMOD for biaxially (1:1) loaded
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Fig. 13 Finite element model of cruciform beam specimen with reduced test section




symmetry plane

Fig. 14  Detail view of the finite-root-radius crack tip, with root-tip radius
p, =0.0254 mm (0.001 in.).
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Fig. 15 Comparison of finite element model results for original and reduced cruciform
test section: P, vs J-integral for uniaxial (0:1) loading.
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Fig. 18 Comparison of uniaxial (0:1) to SSY solution profiles of (a) opening mode ,

0., and (b) hydrostatic, ¢, , stresses near the crack tip for J = (66, 147, 272,
470 kJ/m?).

50



(b)

Fig. 19  Sensitivity to biaxiality for Q-stress based on (a) opening mode , 6, , and
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Fig. 20  Evolution of Q-stress at r/(J/c,) = 2 based on (a) opening mode , G, , and
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Fig. 21 Ratios of J,,/J for equivalent areas contained within 6, / G, contours.
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Parameter estimation by statistical inference.
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Monte-Carlo generated Weibull probability density distributions for three sample
populations of cruciform fracture toughness data (Nggp, = 10,000). Parameter

estimation by statistical inference.
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(a)

(b)

06/15/98.5 ptw

Fig. 34 Small-scale-yielding (SSY) plane-strain modified boundary layer (MBL) finite-
element model: (a) global mesh layout with 16 fans, 2671 elements, and
5708 nodes; (b) close up of finite root tip with p, = 2.54 um; p,/R=107".
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and (b) (0:1) mappings for m = 8.45; (c) estimated B(x'. 1) values as a function
of trial m; and (d) relative error R(m) as a function of trial m. Censoring applied

to uniaxial (0:1) toughness data.
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Weibull parameter estimation by mapping to SSY Weibull stress space: (a) (0:1)
and (b) (1:1) failure probabilities for m = 8.45; (c) failure probabilites with
toughness data mapped to SSY Weibull stress space. Censoring applied to
uniaxial (0:1) toughness data.
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Fig. 38 Weibull parameter estimation by mapping to SSY Weibull stress space: (a) (0:1)
and (b) (1:1) failure probabilities for m = 7.45; (c) failure probabilites with
toughness data mapped to SSY Weibull stress space. Linear extrapolation
applied to uniaxial (0:1) toughness data.
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Fig. 41 Fractographic data describing measured distance to CIS for Plate 14 cruciform
beam specimens: (a) measured distance, Aa, to CIS versus test temperature; and

(b) definition of measured distance, Aa, to CIS.
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Fig. 42 Measured cleavage fracture toughness versus measured distance to CIS for Plate
14 cruciform beam specimens.

71




800

LA SR S A

; oPOADT ]
r 0:1 N
700 o N N
- B (0s1)| ]
600 o (11 |
—~  f o"® :
ol — _l
£ 500f ]
S L 0 o~ ]
3 400:_ - PaB -30 "C < Test Temp. < +15 C.:
o = -
- [ PUAE 3
3000 M g p7a ]
- PEA ]
200¢C ]
P&B ]
:945‘.,)P13A P15A ]
1000 Op4p 7
5 o P12B P14B T
0'. i Y (S SRS VOO SR JUNY WUV ST SR SN ST TS SR SHY WO ket SIS TR NN
( ) 0 1 2 3 4 5
a Aa/(J / 05/01/98.K2 ptw
(0:1) a/(J fo,)
5 (0.6:1)
H (1)
6 T T
"-30 °C < Test Temp. < +15°C
5 i_ 4 T T Y v
4

Frequency

2 ) 4
r/(J/O'o) T114B7.K2 pw

LB S B s B S s B S S B

PRSUTYRNN YORT AN AN AT YO SN JUSTUUS DU HNY YO N WUUT U0 WO O NOOT SN S W S SO N

0 N s , K »
(b) 0 1 2 3 4 5
Aa/(J /o ) 05/20/98.K3 ptw
c 0 05/20/98.2 ptw

Fig. 43 Plots of cleavage fracture data versus normalized distance to CIS: (a) fracture
toughness versus distance; and (b) distribution of CIS versus distance.
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Appendix A: Computational Aspects of Dodds-Anderson Cleavage
Toughness Scaling Model

The Dodds-Anderson cleavage toughness scaling model requires the calculation of
selected material areas or volumes within a predefined fixed fracture process zone ahead of
the crack tip. These area/volume calculations are carried out computationally at the Gauss-
point level with stress and strain data extracted from ABAQUS results files (*.fil) as a post-
processing operation. For each loading increment being tested, the post-processing code
loops over all the elements in the model and samples the Gauss points within each finite
element. After determining that the Gauss point is located within the process zone, the
stress and/or strain data from the ABAQUS run are compared to the selection criteria. If the
stress/strain data satisfy the criteria, then the area/volume associated with the Gauss point
being sampled is calculated from the determinant of the transformation Jacobian (det J) and
added to the area/volume sum. Typical test criteria involve the level of maximum principal
stress, hydrostatic stress, and/or equivalent plastic strain.

A.1 Calculation of Equal-Stressed Areas in 2-D Plane-Strain Analyses

For 2-dimensional (2-D) plane-strain problems, the finite element used to construct
the model is an 8-node isoparametric element. The node and Gauss numbering conventions
applied by the ABAQUS code are shown in Fig. Al. The area of the element, A®, is
calculated in parametric space by the relation

A© = j dQ = flr]detj(&,n)‘“’dn e | (A1)
-17-1

Q(e)
where the transformation Jacobian, J, defined by

e T T (e)
pou[Ir ] % 8 OB BN
dx  dy N »
X

RSN E | SRy

:
m

maps the physical data from R? Euclidean space to parametric space. This mapping is one-
to-one and onto its range if the Jacobian is nonsingular, i.e., the determinant of J is not
equal to zero. In Eq. (A2), {N,} is a column vector of polynomial interpolation functions;
{x,} and {y,} are column vectors containing the x and y locations of the nodes; and (§,n)
are coordinates in parametric space. The determinant of J is easily determined by




det]:(JHJZZ ) a{N} { }B{N} { } a{N { }a{N} {yl} (A3)

For an 8-node incomplete quadratic finite-element, the interpolation functions {N} are

~3(1-8)(a-n)(1+&+n) |

~$(1+&)(1-n)(1-&+m)

—+(1+E)(1+m)(1-&-n)

~4(1-g)(t+m)(1+E-)

{N(&n)}= i-g)i-n) [ (Ad)

J(1+8)(1-n)
$(1-8%)(1+n)
H1-¢)(1-n%)

and their derivatives with respect to the parametric coordinates are

’1(1 n)(2&+m) | [ H1-&)(2n+8) ]
$(1-n)(2&-n) $(1+8&)(2n-¢8)
4U+n)@§+n) $(1+8)(@n+8)
a{m}_| H0em)@e-m) | - afmp_| H0-9en-8)| o
% | -t [° Tom -4(1-8) [
3(1-m’) (1+&)n
~(1+1)§ 31-¢7)
-3(1-n’) [ (=&

In Egs. (A4) and (AS), the ABAQUS node numbering convention of Fig. Al has been
followed. As evident by the definitions of {M},NN‘%;, and ¥, 7 , the interpolation
functions and their derivatives are functions of the parametric coordinates (§,1). Due to
their complexity, however, the area integration of Eq. (Al) is carried out by numerical
quadrature, typically Gaussian integration. Equation (A1) is approximated by

A=Y wow,det JE M )¢ (A6)

p=1g=1

where n represents the order of the quadrature rule, w, and w, are the Gauss weights, and

(& 2N p) are the Gauss sampling points. In ABAQUS, a reduced integration rule of (2x2)
is recommended as optimal for solution stability where the Gauss weights are w, = w, =1
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and &,=m, ==V, &,=1, =+ V5. At each Gauss point (éq,np), therefore, a
subelement area can be calculated by

SA(E,m, )" =ww, detd(8,m,)" . (A7)

The position of the Gauss point (§ M p) relative to the global coordinate system can be
calculated by taking the inner products of the interpolation functions with the nodal (x,y)
coordinates:

R LR DR AN LR DS DA (A8)

The Gauss-point position is then tested to determine if it is located within the process zone.
The stress/strain data at the Gauss point (f; 2N p) are then checked to see if they meet the
criteria for the Dodds-Anderson analysis. Upon passing these tests, the subarea
SA(?; o0 p)(e) is calculated and added to the running total of the critical area.

A.2 Calculation of Equal-Stressed Volumes in 3-D Analyses

Extension of the Dodds-Anderson toughness scaling model to three dimensions
follows easily upon definition of a suitable 3-D finite element. The 3-D transformation
Jacobian is defined as

AR R et O
1Oy gy gy =(3 R E| =B} LY B e
od sl 808 8] | S0 g

with its determinant equal to
detJ = Ju(-’zz I3 = I3, -123)_ -712(-]21 I3 =y J23)+ J13(J21 Iy — J31]22) . (A10)
The 3-D element employed is the 20-node hexahedron (see Fig. A2) with its incomplete

quadratic interpolation functions and their corresponding derivatives presented in
Egs. (A11) and (A12):




H{1-8)(1-m)(1-g)(-2-&-n-¢) ~3(I-n)(1-g)(-1-285-n-{)
F(1+8)1-n)(1-(-2+&-1-¢) #H(1-m)(1-8)(-1+26-n-g)
H1+E)( 1+n)(1 O(-2+&+n-¥) F1+m)(1-g)(-1+28+n-0)
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H1-8%)(a-n)(1-9) -3&(1-7m) (1-8)
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' 3(1- a2)<1+n)<1 0) 73 51+ 1) (1-) A
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+H1-8)a-n)(1+¢) —3&(1-m) (1+8)
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Extending Eq. (A1) to three dimensions, the volume of the element is

+1 41 +1
vO= [dQ= j j j det J(€,1,¢) 7 dE dn dg (A13)
Q@ -1 -1 -1
which can be approximated by
VO=Y>> w,ww,detJE 1,0, (A14)
m=1 p=1 g=1

where a reduced (2x2x2) quadrature rule is recommended for solution convergence and
stability. A subvolume & V(& ,1,,§,,) © can be calculated from

(e}
SV(E ,M,8,) =W, w,w, detJE ,M,.0,) . (A15)

The position of the Gauss point (5 . np,é’m) relative to the global coordinate system can be
calculated by taking the inner products of the interpolation functions with the nodal (x,y,z)
coordinates: '

x(gq’ e o) {N,(gq,ﬂ,,,(;m)}T{ X; }(e);
y( &g Npo Cm ) { Ni(gfﬂnp’cm) }T{ Y: }(e); _ (A16)
Z(Em’ n,» Cm) {Ni(gq,np,cm)}T{ Z }(e)

The Gauss-point position (5 o ,Cm) is then tested to determine if it is located within the
process zone. The stress/strain data at the Gauss point are then checked to see if they meet
the criteria for the Dodds-Anderson analysis. Upon passing these tests, the subvolume

o V(§ N6 m)w is calculated and added to the running total of the critical volume. An
effective cross-sectional area results by dividing the critical volume by the thickness of the
process zone.




X

Fig. Al. Ordering of node numbers and Gauss points for an 8-node isoparametric
quadrilateral finite-element.

Fig. A2. Node number ordering for a 20-node isoparametric hexahedral finite element.
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Appendix B: Theoretical Formulation of the Weibull Stress

This appendix presents a formal discussion of the assumptions that are applied in
the development of the Weibull stress based on the treatment given in Ref. B1. See
Table B1 for a summary of the nomenclature used in this appendix.

Propositions, Definitions, and Assumptions

(B1) Let the fracture process zone €2 (see Fig. B.1) be defined as the volume of
material ahead of the macrocrack tip contained within a maximum principal stress
contour (isosurface in 3D) set equal to some arbitrarily defined cutoff point
0, =A0,, typically A=2. The location and size of this fracture process zone
changes with loading state. The process zone is assumed to consist of the union of

N nonoverlapping unit volumes V', i.e.,

N
Q=Jr? where VO NV® =0 V jzk (B1)

J=t
(B2) For the unit volume V7, the state of stress is defined by the principal stresses
(0'1,0'2 ,0'3) which are assumed uniform (in magnitude and direction) within the
volume. In the presence of steep stress gradients, this assumption may be
somewhat weak, since V7 is finite.

(B3) Each of the unit volumes V¢ is assumed to consist of the union of n
nonoverlapping elemental volumes &V, such that

v =| oV, where V,no, =D Vizk (B2)

i=l

(B4) Failures occurring in these elemental volumes &6V, are assumed to be statistically
independent events. The strength of this assumption has also been questioned in the

literature.

(B5) The probability of failure for the elemental volume 8V, is assumed proportional to
its volume such that

50, =[I g(a)da]ﬁlc ®3)
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(B6)

(B7)

where the proportionality constant J gla)da is the average number of microflaws

with a > a, per unit volume; gl(a)da is the number density of microflaws with size

a<a <a+da;and a, is a critical microflaw size. It follows that the probability

of no failure is
1-69, =1—(fg(a)ia]5Vi (B4)

From a Taylor series expansion of the exponential function, it can be shown that

e =1—x for small x; therefore, Eq. (B4) becomes
1-6g, = epo j gla )da]t‘)‘V,.:' B5)

Weakest Link Assumption No. I: Let the failure of unit volume ¥ consist
of a chain of statistically independent events, namely, the failure of the elemental
volumes 6V;, where the failure of any elemental volume produces a failure of the
whole chain; therefore,

P, = l-ﬁ(l_aggi) =1—ﬁexp|:—-[]:g(a)da}5Vi} (B6)

Equation (B6) relies on the assumption of statistical independence of dg,

(Assumption B4) in order to apply the Product Law for Independent Events to

n

calculate the probability of the joint event [[(1-8,). Noting that

i=1

e'e” .. e = "™ Eq. (B6) becomes

i={ a,

0, = l—exp[—i(ajg(a)ia V,] B7

The number density distribution of the largest-sized microflaws is assumed to have
the following asymptotic form [B2,B3]

k B
g(a)=—Vl—(7:—) (B8)
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(B8)

where V, is a reference volume, and [ and k, are the parameters of the

distribution. Specifically, B is the dimensionless shape parameter, and %, is a

scaling parameter with the dimensions of [L(ﬁ_l) g ]

Substituting Eq. (B8) into Eq. (B3) and carrying out the integration results in

B-1
- 3V, - ko)ﬁ &V, kP (1
.= . =t — g X —_— B
842, =8V, g(a)da 7 L(a do= T 5o (BY)

for the elemental probability of failure of the elemental volume.

An explicit relationship between the critical flaw size and corresponding fracture
stress is assumed by employing the linear elastic fracture mechanics relation

1 , K1 B10)
‘=Y 57 % 7 q (

where K is a stress intensity factor, 0, is an equivalent tensile (opening mode)
stress acting on the microcrack plane, and Y is a geometry factor. (N.B. This
assumption is fundamental to the analysis in that it assumes that all microcracks are
Griffith cracks which fail in a linear elastic manner even in the presence of
significant plastic deformation and nonlinear material behavior.)

Substituting Eq. (B10) in Eq. (B9) and collecting terms, one obtains the following
relation for the probability of failure of the elemental volume

G m .
Ssoi=i(—-"—] 5V, B11)
Yo\ O,
where
m=2p-2
_(B-1y K
o) W%

0

or (B12)

w[E]




(B9)

The relations in Egs. (B12) give us some insight into the nature of the eventual
Weibull modulus m and the scaling stress &,. One observes that m is directly
related to the shape parameter of the microflaw size distribution and should,
therefore, only be a function of those variables that affect that distribution
(Eq. (B8)), e.g., material conditions, temperature, loading history, and possibly
loading rate (but not the quasi-static far-field state of stress). The scaling stress,
O, , in addition to the microflaw distribution, is also related to the assumed mode of
fracture at the microcrack level (linear elastic Mode I) and the assumed geometry of
the microflaw (Y geometry factor).

Returning to Eq. (B7), insert Eq. (B11) and take the limit as n — o to obtain

P, = lim{l - exp[—i[j g(a)da}BVi jl}
. e i=1\ g
, 1 ¢(o, Y
800(1) =i- exp[_ VO va) { GZ ) dv}

The integration over the unit volume V7 is carried out by assuming the volume is a

(B13)

sphere such that

(21

\4 000

%0 | detJdrdode
(03

u

A
detJ =r* sing;for V=1 =g-1tr3 =r= (.é_)

4r
()"
3
J- rdr=" 4

0

(3/4m)l/3

1
. T
where “det J ” is the determinant of the Jacobian J (not the J-integral) of the
coordinate transformation. This last step assumes that o # f(r) (see
Assumption (B2)) but may be a function of ¢ = f((p,e), thus allowing the
sensitivity of the orientation of the microcrack (since the integration is carried out
over all possible solid angles within the sphere) and the directional dependence of
the equivalent tensile stress acting on the microcrack plane to be incorporated into
the final implementation. We now have the following form for the failure
probability of the unit volume ¥?
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. 1 "
D) =1 exp| —— v
#o P Vo j( ) :]

_ (B14)
2nm .
0 =
0,7 =1—exp| - ypes _”{ ] sin@do de}

0 o0
(B10) Weakest Link Assumption No. 2: To extend the analysis to the complete
fracture process zone €2, the Weakest Link Assumption is applied for the second

time. Applying Assumption (B1) and assuming that the failures of the unit volumes
V) are also statistically independent, then the probability of failure for the proceés

zZone is
N

0o =1-T]1-p,/ )50
J=1
. 27% S m
2| &
Pq=1- Hexp[ Iy, 2‘)‘2‘;(6”) sm(pd(pdGSQZl

j=1

2w 0.
=1- in@do d6 dQ B15
Po= exp[ 41:%”(0] sindo } (B15)
N 1 2nm G m
1- - —2 | sin@dop do o2
oo tim-od T2 o]
Po=1—exp|— % msin do d6 dQ
[ p 2y, Jaddl 5, ¢do

Recognizing that the scaling stress ¢, is a constant, the Weibull stress, ¢, as
introduced by the Beremin group [B4], can now be defined by

c, [4Wj fj sin(pd(pdeQT (B16)

and the probability of failure for the process zone can be rewritten in the two-

parameter form as
G m
Pq=1 —exp[—[G—W) } B17)




Summary

Equation (B17) is the final form for a two-parameter Weibull distribution. Among

the key assumptions in its formulation are:

(B4& B10)  The elemental and unit volume failure events are assumed to be statistically

independent.
(B6 & B10) The Weakest Link assumption is applied twice, at both the micro- and
mesoscale levels.

(BS) The probability of failure for the elemental volume is assumed proportional to its
volume.

(B7) A specific form (Eq. (B8)) is assumed for the number density distribution of
microflaw sizes. The Weibull modulus m is directly related to the shape parameter
of this distribution.

(B8) An explicit relationship (Eq. (B10)) is assumed between the microflaw size and the
applied tensile stress at fracture. The microflaws are treated as sharp cracks that fail
under the assumptions of linear elastic fracture mechanics. The Weibull modulus m
is not dependent on this assumption directly, but the scaling stress ¢, is derived in
part from this Griffith crack assumption.

The two-parameter Weibull distribution for the probability of failure by cleavage fracture

ool {e]]

where the Weibull stress, ¢, , emerges as a critical parameter

o, (4nvj jzj )" sinpde do dQ);

has the form
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Fig. B.1. Description of the fracture process zone, Q, unit volume, V?,

and elemental volume, 6V, (adapted from Ref. B1).
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' Table B.1 Nomenclature employed in theoretical development of the Weibull stress

d a
Ge

g(a)da
k ¢
K

m

56,
500(1')

Pa
o,

V( 3’)
14

Y
Greeks:

size of microcrack [L]
critical flaw size resulting in fracture under applied tensile stress o, [L]

number density of flaws with size a<a” <a+da [L7]

scaling parameter for flaw size number density distribution [L(’H) p ]

stress intensity factor in relation between o, and a. [F L*L'?]

Weibull modulus = 23 -2 [e]

probability of failure by cleavage fracture for material within elemental volume
57, [+]

proBbability of failure by cleavage fracture for material per unit volume ¥
[L™]

probability of failure by cleavage fracture for material within Q [e]

elemental volume within unit volume V') [L?]

unit volume within Q [L?]
reference volume containing uniform number of microcracks with varying
distribution of flaw sizes [L’]

geometry factor in relation between o, and a, [e]

shape parameter for flaw size number density distribution [e]

cutting parameter used in defining fracture process zone [e]
equivalent tensile (opening mode) stress acting on microcrack plane [F L]

principal stresses where 0, £ 0, < 0, ; assumed uniform within ¥’ [F L]
yield stress of material [F L]

Weibull scaling stress [F L?]

Weibull stress [F L?]

volume of fracture process zone ahead of crack tip [L’]
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