

LA-UR-98-1648

Approved for public release;
distribution is unlimited.

Title:

CERAMIC-SILICIDE COMPOSITES

CONF-9806137--

Author(s):

John J. Petrovic, MST-8

RECEIVED
OCT 05 1998
OSTI

Submitted to:

World Ceramics Congress in Florence,
Italy June 1998

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (10/96)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

CERAMIC - SILICIDE COMPOSITES

John J. PETROVIC

Materials Science and Technology Division, Group MST-8, Mail Stop G770, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

The area of ceramic-silicide composites represents a merging of structural ceramics and structural silicides. Such ceramic-silicide composites can possess the desirable characteristics of both classes of compounds. Important structural ceramics are materials such as Si_3N_4 , SiC , Al_2O_3 , and ZrO_2 , which possess covalent, ionic, or mixed covalent-ionic atomic bonding. An important structural silicide is MoSi_2 , which possesses mixed covalent-metallic bonding. The arena of ceramic-silicide composites encompasses both composites where the structural silicide is the matrix and the structural ceramic is the reinforcement, and composites where the structural ceramic is the matrix and the structural silicide is the reinforcement. In the former area, MoSi_2 - SiC , MoSi_2 - ZrO_2 , and MoSi_2 - Al_2O_3 composites are discussed. In the latter area, Si_3N_4 - MoSi_2 composites are described.

1. INTRODUCTION

Above 1000 °C, the choice of materials for structural applications in oxidizing and aggressive environments is limited to the classes of structural ceramics and structural silicides. Important structural ceramics include Si_3N_4 , SiC , ZrO_2 , and Al_2O_3 . At the present time, the most important structural silicide is MoSi_2 ¹⁻⁵. Since these structural ceramics are all thermodynamically stable with MoSi_2 , there exists a significant potential for the synergistic development of ceramic-silicide composites with improved structural properties for elevated temperature applications. This paper describes interesting ceramic-silicide composites which have been explored to date.

2. SILICIDE MATRIX - CERAMIC REINFORCED COMPOSITES

The silicide MoSi_2 can best be described as a borderline ceramic-intermetallic compound¹. It possesses a combination of properties which make it attractive as a high temperature structural material. It has a high melting point of 2030 °C, with excellent high temperature oxidation resistance. Unlike the structural ceramics, it exhibits a polycrystalline brittle-to-ductile transition in the vicinity of 1000 °C, and macroscopic compressive ductility below room temperature in some single crystal orientations⁶. Additionally, MoSi_2 can be electro-discharge machined, due to its electrical conductivity. However, for MoSi_2 -based materials to be successful in elevated temperature structural applications, it is necessary to improve both high temperature strength and creep resistance, as well as low temperature fracture toughness². This has provided the motivation for the development of MoSi_2 matrix-ceramic reinforced composites.

2.1. MoSi_2 -SiC Composites

SiC has been used as a reinforcement for MoSi_2 matrix composites in both whisker⁷⁻¹¹ and particulate form¹²⁻¹⁸. SiC reinforcement has been observed to significantly improve the creep resistance and moderately improve the fracture toughness of MoSi_2 .

Effects of SiC particulate reinforcement on the compressive creep behavior of MoSi_2 -SiC composites are shown in Figure 1. Initially, the creep rate increases with increasing SiC reinforcement reaching a maximum at 20 vol.% SiC. However, at 30 vol.% SiC and especially at 40 vol.% SiC, the creep rate is markedly lower than that of pure MoSi_2 . The reason for this maximum in creep rate with SiC content is the fact that the creep behavior of polycrystalline MoSi_2 is highly sensitive to grain size^{2,19}, and the MoSi_2 grain size of the MoSi_2 -SiC composites decreases continuously with increasing SiC content¹³.

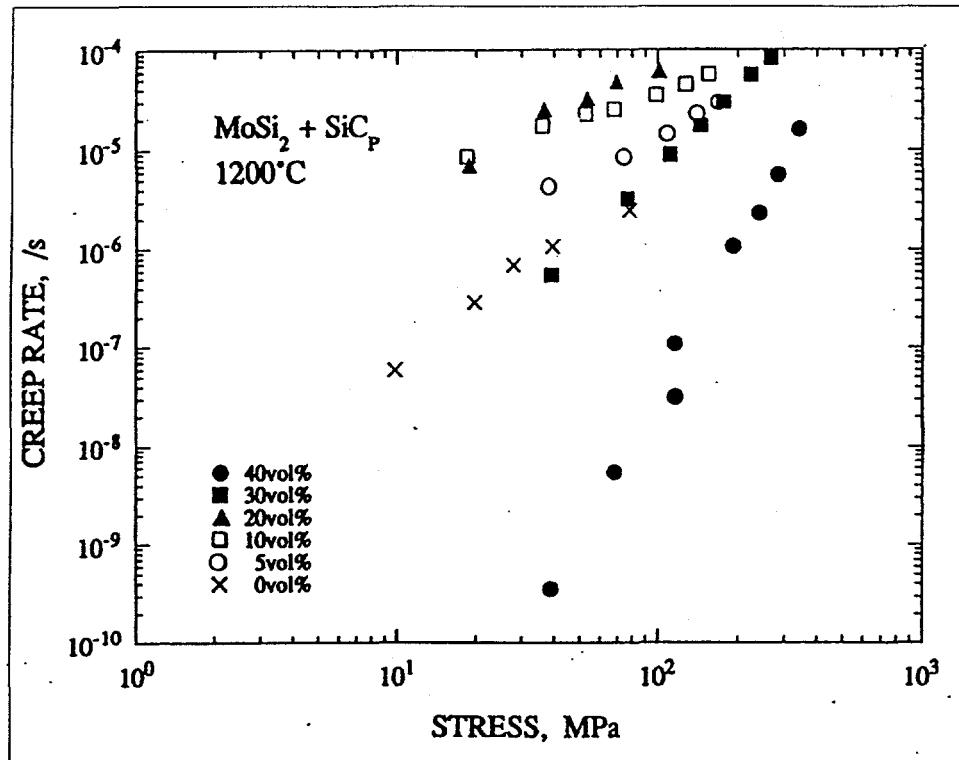


FIGURE 1

Creep rate of SiC particle-MoSi₂ matrix composites with different volume fractions of SiC phase¹⁹.

For polycrystalline MoSi₂, creep rates increase rapidly with decreasing grain size. The grain size exponent observed for MoSi₂ is in the range of 5-8. For Nabarro-Herring creep, one expects a grain size exponent of 2, while for Coble creep a grain size exponent of 3 is expected. These grain size effects on the elevated temperature deformation of polycrystalline MoSi₂ are unusual and are not fully understood at the present time. However, they also occur in other intermetallic systems as well¹⁹. For MoSi₂, elevated temperature creep appears to be controlled primarily by dislocation glide/climb processes, as well as grain boundary sliding accommodated by dislocation plasticity.

As SiC reinforcement is added, the grain size effect of MoSi₂ dominates, and creep rates increase. However, above a certain amount of SiC addition, the composite reinforcement aspects of the SiC dominate, and creep rates then decrease. Thus, in MoSi₂-SiC composites, there is a competition between grain size effects and reinforcement effects.

It should be pointed out that, at constant SiC volume fraction reinforcement, creep rates of SiC whisker reinforced composites are approximately two orders of magnitude lower than those of SiC particulate reinforced composites²⁰. This indicates that the SiC reinforcement shape morphology plays a significant role in creep resistance of the composites.

2.2. MoSi_2 - ZrO_2 Composites

Transformation toughening is an important toughening mechanism associated with zirconia²¹. ZrO_2 transformation toughening effects have been employed to toughen MoSi_2 matrix- ZrO_2 particle composites^{22,23}. Figure 2 shows the fracture toughness of these composites as a function of the amount of Y_2O_3 stabilizer in the ZrO_2 phase. Unstabilized ZrO_2 is observed to produce the maximum toughening effects in these types of composites. The unstabilized ZrO_2 tetragonal-to-monoclinic martensitic phase transformation occurs spontaneously upon cooling in the vicinity of 1100 °C. Thus, this transformation occurs above the brittle-to-ductile transition temperature of the MoSi_2 phase, where the MoSi_2 is still ductile. Since the ZrO_2 tetragonal-to-monoclinic phase transformation produces an approximately 4% expansional volumetric strain, this transformation effectively “pumps” dislocations into the MoSi_2 matrix, with potentially beneficial effects on the brittle-to-ductile transition temperature of MoSi_2 - ZrO_2 composites, as well as on improvements to the fracture toughness.

2.3. MoSi_2 - Al_2O_3 Composites

Al_2O_3 is an interesting ceramic reinforcement for MoSi_2 , due to the fact that its thermal expansion coefficient is a very close match to the thermal expansion coefficient of MoSi_2 . This means that laminate geometries of MoSi_2 - Al_2O_3 composites may be fabricated without problems of residual stresses due to thermal

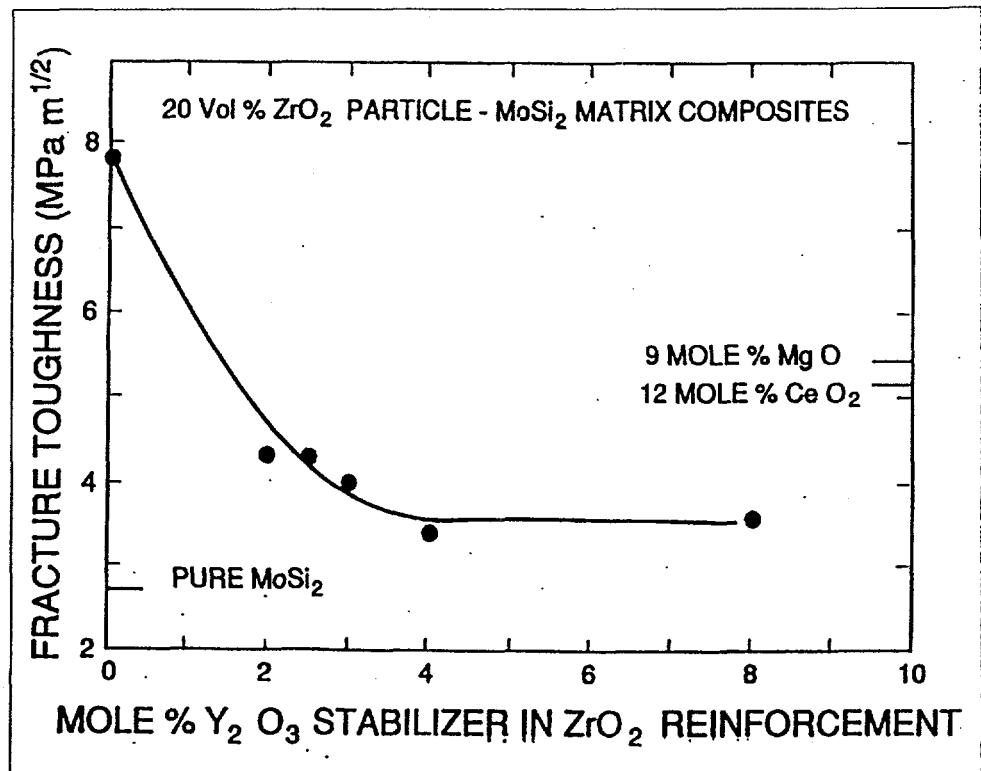


FIGURE 2

Fracture toughness of ZrO_2 particle- MoSi_2 matrix composites as a function of ZrO_2 stabilizer²².

expansion coefficient mismatches. Such MoSi_2 - Al_2O_3 laminate composites have been fabricated by plasma spray forming²⁴. These laminate composites exhibit "graceful failure" at elevated temperatures, as shown in Figure 3. Here, a four-point bend test of the laminate composite was performed at 1400 °C. Rather than

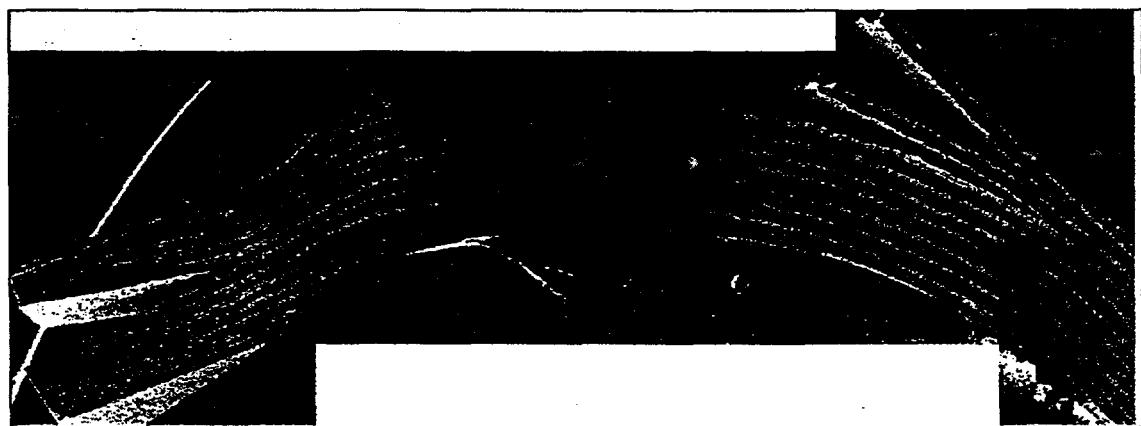


FIGURE 3

Bend test performed on a MoSi_2 - Al_2O_3 laminate composite at 1400 °C. The light layers are MoSi_2 and the dark layers are Al_2O_3 ²⁴.

exhibiting catastrophic fracture, the $\text{MoSi}_2\text{-Al}_2\text{O}_3$ composite showed considerable plastic deformation and an "onion skin" type of failure. This was due to a combination of plasticity in the MoSi_2 layers and debonding at the $\text{MoSi}_2\text{-Al}_2\text{O}_3$ interfaces.

3. CERAMIC MATRIX - SILICIDE REINFORCED COMPOSITES

Silicides may be employed as reinforcements in ceramic matrix composites, to improve the properties of these materials. Two significant problems with structural ceramics are the following. First, ceramics are brittle materials. Structural ceramics such as Si_3N_4 and SiC are brittle over the full temperature range from room temperature to their elevated use temperatures. Second, it is difficult to machine these structural ceramics. Typically, expensive diamond machining is required, which increases the cost of ceramic components.

MoSi_2 possesses some characteristics pertinent to the above ceramic problems. It has a brittle-to-ductile polycrystalline transition in the neighborhood of 1000°C . Thus, it is a ductile material at the elevated temperatures of use of structural ceramics. Essentially, at high temperatures, MoSi_2 represents a ductile, oxidation-resistant reinforcement phase for ceramic matrix composites. Additionally, MoSi_2 is an electrically conductive material, unlike the structural ceramics which are insulating. This means that if a ceramic matrix composite contains a suitably large volume fraction of the MoSi_2 phase, then the composite will become electrically conductive enough to be machinable by electro-discharge machining techniques, which are less costly than diamond machining.

3.1. $\text{Si}_3\text{N}_4\text{-MoSi}_2$ Composites

The addition of a MoSi_2 phase to a Si_3N_4 matrix has the potential to produce composites with both improved fracture toughness and improved machinability, as

well as improved oxidation resistance. MoSi_2 and Si_3N_4 are thermodynamically stable phases²⁵. The Si_3N_4 phase is high temperature creep resistant, whereas the MoSi_2 phase may provide both low temperature toughening as well as high temperature ductile-phase toughening. The oxidation mechanisms of MoSi_2 and Si_3N_4 are similar because both form SiO_2 protective phases^{26,27}. At suitable volume fractions of MoSi_2 phase, MoSi_2 - Si_3N_4 composites can be electro-discharge machined because of the electrical conductivity of the MoSi_2 phase²⁸.

Because of the above advantages, the Si_3N_4 - MoSi_2 composite system has seen an increasing interest²⁹⁻³⁴. Figure 4 shows the microstructures of Si_3N_4 - MoSi_2 composites containing 30 vol.% MoSi_2 phase. It is interesting to note that despite the substantial thermal expansion coefficient mismatch between Si_3N_4 and MoSi_2 , no microcracking is observed in the composite. This lack of microcracking is due to stress relief in the MoSi_2 phase as a result of plastic deformation upon cooling of the composite from the fabrication temperature³².

The room temperature fracture toughness of Si_3N_4 - MoSi_2 composites is shown in Figure 5. Room temperature toughening is sensitive to the size of the MoSi_2 phase. While the small MoSi_2 phase size produces relatively little fracture toughening, the larger MoSi_2 phase size produces substantial toughening, especially at the higher MoSi_2 volume fraction levels. This fracture toughening is thought to be due to internal stresses in the Si_3N_4 - MoSi_2 composites which result from their thermal expansion coefficient mismatch³³.

The impression creep behavior of Si_3N_4 - MoSi_2 composites is shown in Figure 6. With regard to creep behavior, the fine MoSi_2 phase composite exhibits better creep resistance than the coarse MoSi_2 phase composite. The fine phase composite is nearly as creep resistant as pure Si_3N_4 up to 30 vol.% amount of MoSi_2 phase. The reasons for this phase size effect on creep in Si_3N_4 - MoSi_2 may be related to phase

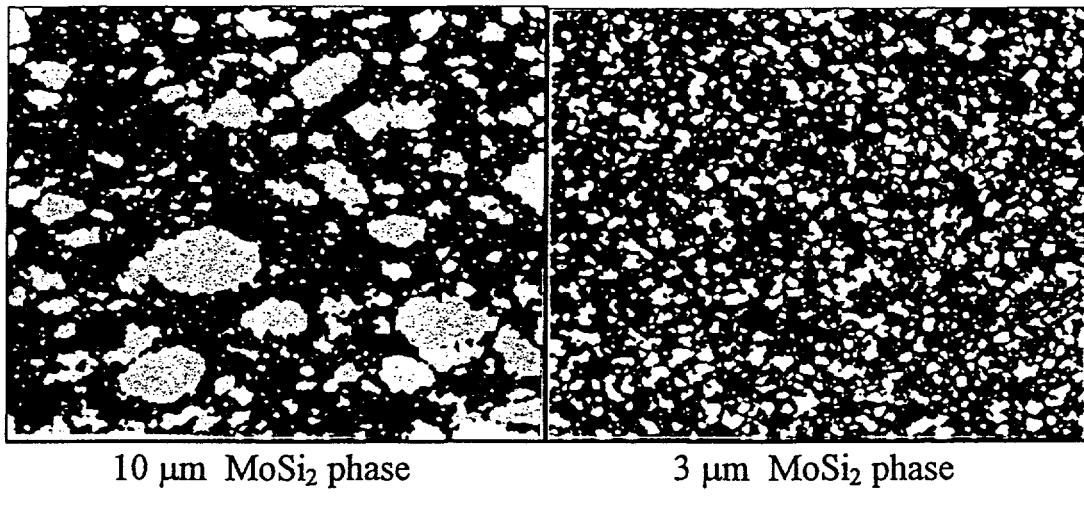


FIGURE 4

Microstructure of Si_3N_4 - MoSi_2 composites containing 30 vol.% MoSi_2 phase. The light phase is MoSi_2^{32} .

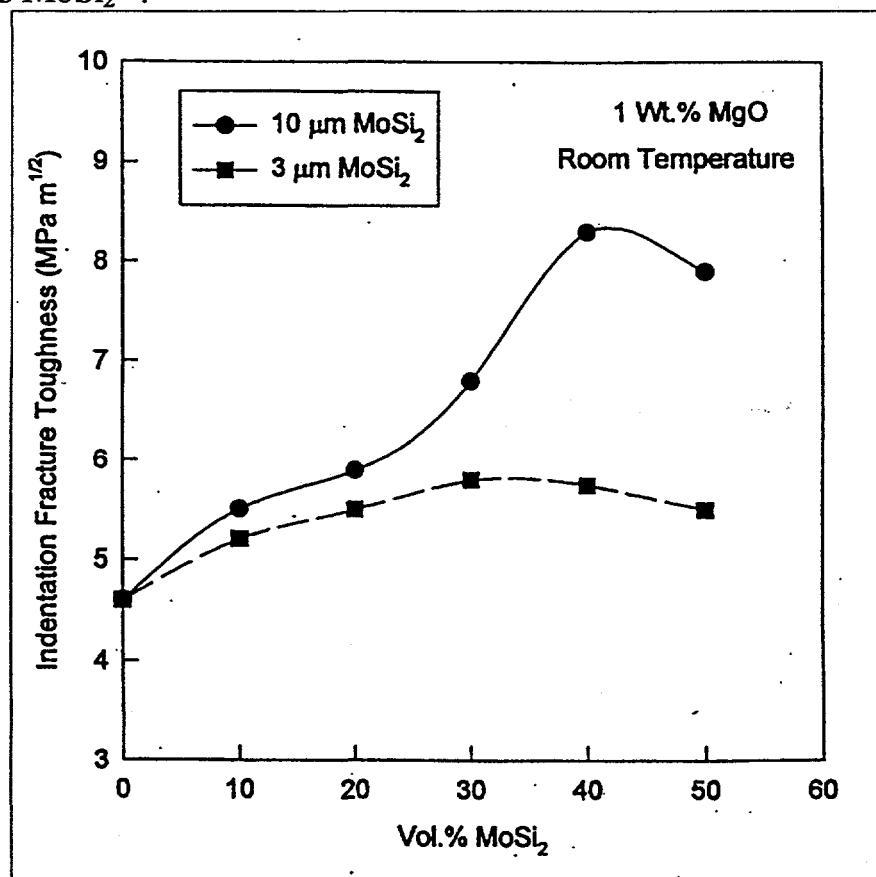


FIGURE 5

Room temperature fracture toughness of Si_3N_4 - MoSi_2 composites, as a function of vol.% MoSi_2 phase³³.

boundary cohesion acting to minimize grain boundary sliding processes in both the Si_3N_4 and MoSi_2 phases, as the phase size is reduced. Increases in the phase

boundary surface area/unit volume might also make dislocation climb/glide processes in the MoSi_2 phase more difficult because of the formation of dislocation pileups at the phase boundaries.

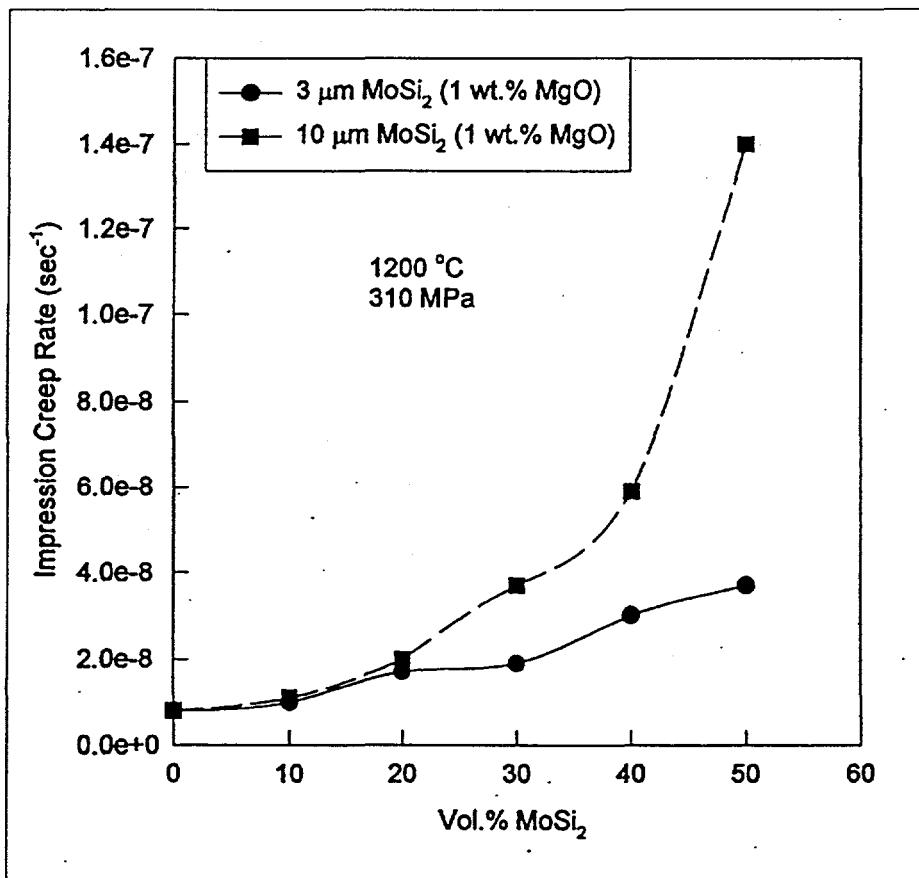


FIGURE 6
Impression creep behavior of Si_3N_4 - MoSi_2 composites, as a function of vol.% MoSi_2 content³³.

ACKNOWLEDGEMENTS

The support of the U.S. Department of Energy Advanced Industrial Materials Program, the U.S. Department of Energy Office of Basic Energy Sciences, and the Office of Naval Research for various aspects of this research is gratefully acknowledged.

REFERENCES

1. J.J. PETROVIC, "High Temperature Structural Silicides", Ceram. Eng. Sci. Proc., **18** (1997), 3.

2. J.J. PETROVIC, "Mechanical Behavior of MoSi₂ and MoSi₂ Composites", Mater. Sci. Eng., **A192/193** (1995), 31.
3. J.J. PETROVIC AND A.K. VASUDEVAN, "Overview of High Temperature Structural Silicides", Mater. Res. Soc. Symp. Proc., **322** (1994), 3.
4. J.J. PETROVIC, "MoSi₂-Based High-Temperature Structural Silicides", MRS Bulletin, **XVIII** (1993), 35.
5. A.K. VASUDEVAN AND J.J. PETROVIC, "A Comparative Overview of Molybdenum Disilicide Composites", Mater. Sci. Eng., **A155** (1992), 1.
6. K. ITO, H. INUI, Y. SHIRAI, AND M. YAMAGUCHI, "Plastic Deformation of MoSi₂ Single Crystals", Phil. Mag. A, **72** (1995), 1075.
7. F.D. GAC AND J.J. PETROVIC, "Feasibility of a Composite of SiC Whiskers in an MoSi₂ Matrix", J. Amer. Ceram. Soc., **68** (1985), C200.
8. W.S. GIBBS, J.J. PETROVIC, AND R.E. HONNELL, "SiC Whisker-MoSi₂ Matrix Composites", Ceram. Eng. Sci. Proc., **8** (1987), 645.
9. D.H. CARTER, W.S. GIBBS, AND J.J. PETROVIC, "Mechanical Characterization of SiC Whisker-Reinforced MoSi₂", p. 977 in Proceedings of the Third International Symposium on Ceramic Materials and Components for Engines, The American Ceramic Society Inc., Westerville, Ohio, c. 1989.
10. J.J. PETROVIC AND R.E. HONNELL, "SiC Reinforced-MoSi₂/WSi₂ Alloy Matrix Composites", Ceram. Eng. Sci. Proc., **11** (1990), 734.
11. J.J. PETROVIC AND R.E. HONNELL, "SiC Reinforced-MoSi₂ Based Matrix Composites", Ceramic Transactions, **19** (1991), 817.
12. J.J. PETROVIC, R.E. HONNELL, AND A.K. VASUDEVAN, "SiC Reinforced-MoSi₂ Alloy Matrix Composites", Mat. Res. Soc. Symp. Proc., **194** (1990), 123.
13. A.K. BHATTACHARYA AND J.J. PETROVIC, "Hardness and Fracture Toughness of SiC-Particle-Reinforced MoSi₂ Composites", J. Am. Ceram. Soc., **74** (1991), 2700.

14. U. RAMAMURTY, A.S. KIM, S. SURESH, AND J.J. PETROVIC, "Micromechanisms of Creep-Fatigue Crack Growth in a Silicide-Matrix Composite with SiC Particles", *J. Am. Ceram. Soc.*, **76** (1993), 1953.
15. U. RAMAMURTY, S. SURESH, AND J.J. PETROVIC, "Effect of Carbon Addition on Elevated Temperature Crack Growth Resistance in (Mo,W)Si₂-SiC_p Composite", *J. Am. Ceram. Soc.*, **77** (1994), 2681.
16. J.D. FRENCH, S.M. WIEDERHORN, AND J.J. PETROVIC, "Tensile Creep and Creep Rupture of SiC-Reinforced MoSi₂", *Ceram. Eng. Sci. Proc.*, **16** (1995), 129.
17. D.P. BUTT, D.A. KORZEKWA, S.A. MALOY, H. KUNG, AND J.J. PETROVIC, "Impression Creep Behavior of SiC Particle-MoSi₂ Composites", *J. Mater. Res.*, **11** (1996), 1528.
18. Y. SUZUKI AND K. NIIHARA, "Effect of SiC Reinforcement on Microstructure and Mechanical Properties of MoSi₂", *Sci. Eng. Comp. Mat.*, **6** (1997), 85.
19. C.R. FENG AND K. SADANANDA, "Grain Size Effect on the Creep Behavior of Monolithic MoSi₂", *Mat. Res. Soc. Symp. Proc.*, **364** (1995), 1053.
20. K. SADANANDA AND C.R. FENG, "A Review of Creep of Silicides and Composites", *Mat. Res. Soc. Symp. Proc.*, **322** (1994), 157.
21. D.J. GREEN, R.H.J. HANNINK, AND M.V. SWAIN, *Transformation Toughening of Ceramics*, CRC Press Inc., Boca Raton, Florida, c. 1989.
22. J.J. PETROVIC, A.K. BHATTACHARYA, R.E. HONNELL, T.E. MITCHELL, R.K. WADE, AND K.J. MCCLELLAN, "ZrO₂ and ZrO₂-SiC Particle Reinforced MoSi₂ Matrix Composites", *Mater. Sci. Eng.*, **A155** (1992), 259.
23. Y. SUZUKI, T. SEKINO, AND K. NIIHARA, "Effects of ZrO₂ Addition on Microstructure and Mechanical Properties of MoSi₂", *Scripta Metall. Mater.*, **33** (1995), 69.
24. A.H. BARTLETT, R.G. CASTRO, D.P. BUTT, H. KUNG, J.J. PETROVIC, AND Z. ZURECKI, "Plasma Sprayed MoSi₂/Al₂O₃", *Industrial Heating*, January 1996.

25. E. HEIKINHEIMO, A. KODENTSOV, J.A. VAN BEEK, J.T. KLOMP, AND F.J.J. VAN LOO, "Reactions in the Systems Mo-Si₃N₄ and Ni-Si₃N₄", *Acta Metall. Mater.*, **40** (1992), S111.
26. T.A. KIRCHER AND E.L. COURTRIGHT, "Engineering Limitations of MoSi₂ Coatings", *Mater. Sci. Eng.*, **A155** (1992), 67.
27. C.E. RAMBERG, P. BEATRICE, K. KUROKAWA, AND W.L. WORRELL, "High-Temperature Oxidation Behavior of Structural Silicides", *Mater. Res. Soc. Symp. Proc.*, **322** (1994), 243.
28. O. THOMAS, J.P. SENATEUR, AND R. MADAR, "Molybdenum Disilicide: Crystal Growth, Thermal Expansion, and Resistivity", *Solid State Commun.*, **55** (1985), 629.
29. J.J. PETROVIC AND R.E. HONNELL, "MoSi₂ Particle Reinforced-SiC and Si₃N₄ Matrix Composites", *J. Mater. Sci. Lett.*, **9** (1990), 1083.
30. M.-Y. KAO, "Properties of Silicon Nitride-Molybdenum Disilicide Particulate Ceramic Composites", *J. Am. Ceram. Soc.*, **76** (1993), 2879.
31. L.O. NORDBERG AND T. EKSTROM, "Hot-Pressed MoSi₂-Particulate-Reinforced Alpha-SiALON Composites", *J. Am. Ceram. Soc.*, **78** (1995), 797.
32. J.J. PETROVIC, M.I. PENA, AND H.H. KUNG, "Fabrication and Microstructures of MoSi₂ Reinforced-Si₃N₄ Matrix Composites", *J. Am. Ceram. Soc.*, **80** (1997), 1111.
33. J.J. PETROVIC, M.I. PENA, I.E. REIMANIS, M.S. SANDLIN, S.D. CONZONE, H.H. KUNG, AND D.P. BUTT, "Mechanical Behavior of MoSi₂ Reinforced-Si₃N₄ Matrix Composites", *J. Am. Ceram. Soc.*, **80** (1997), 3070.
34. H. KLEMM, K. TANGERMANN, C. SCHUBERT, AND W. HERMEL, "Influence of Molybdenum Silicide Additions on High-Temperature Oxidation Resistance of Silicon Nitride Materials", *J. Am. Ceram. Soc.*, **79** (1996), 2429.