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Abstract

We have analyzed the energy gaps and density-of-states (DOS) of layered supercon-
ductors with two inequivalent layers in a unit cell along the c-axis. In the physically
interesting parameter range where the interlayer hopping strengths of the quasiparticles
are comparable to the cntlcal temperature, the peaks in the DOS curve do ot correspond
to the order parameters (OP’s) of each layer, but del;end on the OP’s and the interlayer
hopping strengths in a complex manner. In contrast to a.BCS superconductor, the DOS
of layered systems have logarithmic singularities. Our simula.ted tunneling characteristics

bear close resemblance to experimental results.
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1. Introduction

All copper oxide based high-T. superconductors have stratified structures, in which the
quasiparticles move freely within the layers but hop weakly between layers. It has occurred
to a number of authors that the nearly two-dimensional geometry may play an important
role in the phenomenology of these materials [1-8]. Much of this effort has been stimulated
by the tunneling spectroscopy data, which exhibit far more complex structure than low-T,
superconductors. In general, the theories predict that in the weak hopping limit in which

the interlayer hopping strengths of the quasiparticles.are weak compared with the critical

temperature-T,, the DOS curves have peaks at the energy gaps or order parameters of -

individual layers [1-2]. In the strong hopping limit, however, the main features in the DOS
curve should be identified with the OP’s of the bands [3-5]. The present work carries this-
line of inquiry into the interesting and perhaps most relevant parameter range, namely,

where the hopping strengths are comparable to the OP’s or. 7. For simplicity, we limit our

work to two distinct layers in a unit cell with intralayer or interlayer pairing. It is found.. - -

that the results of both v&éak hopping and strong hopping theories are incomplete and
potentially misleading. The features in DOS are not directly identifiable with the OP’s
of the layers, but are shifted and modified by the band dispersion along the c-direction.
The singularities in DOS curves are logarithmic, which are less pronounced than those for
BCS superconductors. We conclude that the tunneling curves for layered superconductors
should be interpreted with caution.

The papers is organized as follows. Section 2 contains the analysis of a two-layer
intralayer pairing model, showing the basic algebraic steps leading to our new conclusions.
Section 3 extends the consideration to the interlayer pairing case. Section 4 discusses how

the results of the last two sections may be applied to real systems.

2. The Intralayer Pairing Model




The model consists of two conducting layers in a unit cell with identical two-dimen-
sional band structures and interlayer hopping strengths J; and J,. The quasiparticles
within the same layer interact via a phenomenological pairing interaction of the BCS type
so that the total Hamiltonian has the form H = H, + V, where the band energy term is

2
Hy = z z éO(k)’xb;:na(k)')bjna’ (k)

jko n=1

+ 3 [T18 0 (108120 (k) + ot by (0)41,10(K) + Hoc), 1

jko

where &(k) = k?/2mq — EF, k = (kz, ky), o is the spin index, n = 1,2 is the layer index

within a unit cell, and the sum on j is over all unit cells normal to the planes. The units. ..

are chosen such that A =kg = 1. The interaction term is

V=t Y donthl g (s (K (K W () @)

in ko Ko .
where we assume two unequal pair coupling strengths Ag,, both are cut off at a common
energy wjj. The éondition‘ o' = —c will be imposed, since the pair coupling mechanism
only allows singlet pairs. ‘The model has been generalized to two layeré”with different
two-dimensional band structures and different Fermi surfaces [7}], but the simpler model

considered here gives a clearer phyéical picture.

The quasiparticle Green’s function matrix elements are defined in the familiar way:

Grni(k,7—7') = —(T[¢n6(k7r)¢l’c(lf’ L))

an'(ka T T’) = (T{tbna(k’ T)Ibn',—a(—k? T')])3 (3)

where k = (k, k.), k is the crystal momentum in the c-direction, < - - - > denotes thermal

average, and

Vno (k) = Q2 Z ¢jna(k)eik‘[j’+("’l)d]. (4)

k.




In the above equation §2 is the volume of the crystal, s is the thickness of the unit cell in
the c-direction, and d is the separation between layer 1 and layer 2 within the same cell.
The separation between adjacent layers in adjacent cells will be denoted by d' = s — d.
The spin index is suppressed in the Green’s function matrix elements. We define two order

parameters Ay, for n = 1,2, by

Ap = Aon E(¢na(kl)¢n,—d(—k'))‘ (5)
k! "
The inverse of the Green’s function matrix has the form -
-t —gk) A 0
-3 . —g*(k ) w— fo(k) 0 Az
k)= | "% .
CEI=L 0 wibt  ok) | O
0 A3 g*(ky) v+ €o(k)
where the quantity
g(k;) = Jie*? + Jpem e =gy (ky)em ), (7)
with
e1(k;) = [J12 + J2 +2J1J; cos k,s]l/z, : - (8)
Josink,d' — Jysink,d ,
= . 9
¢(kz) Jocosk,d' + Jycosk.d ©)

The functions ey (k.) represent the dispersion of the two tight-binding bands in the c-
direction.
The inversion of the Green’s function matrix is tedious but straightforward. Putting -

the results in Eq.(3), we deduce the following gap equations:

81 = 25 P + 00161 + (k)0 + (84}, (10)
kv

where 8 = 1/T, T is the temperature, and the sum over v is over the Matsubara frequencies

under the constraint that |v| < w). The equation for A; is similar except for an exchange
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of indices 1 and 2. The quantity D is the determinant of the inverse Green’s function

matrix:

D = (1 + &) +26L (7 — )+ €L + (1017 +[Az) (02 +60) +€L(A Dy + A, 83)+[A1 44",

(11)

As discussed in Ref. 3 — 5, in the state with minimum free energy the two order parameters
are in phase. |

The first step toward reducing the gap equations is to integrate over the two-dimen-

sional crystal momentum k. The results appea.f more compact in terms of the following

set of new variables and parameters;

= -(Al + As), . . (12)
and
1
A-_.{: = E(A(u + A’oz). (13)
We find
™ sdk 1 c-l—A2 c—A2+e_L
Ay = — A+ N(0 A
c+ A A2
+AxN(0 s A}, 14
* ()[\/ﬂa Mbvrrrwil )
where N(0) = mgo/2xs is the density of states per band,
c=[A2A% — e (A% + 7)Y/, (15)
and )
ayx =A% + A2 — & £2c. (16)

In the last step the sum over Matsubara frequencies is analytically continued into an

integral over real frequencies w. The resulting integral equations are solved numerically

for An(T).




The critical temperature 7T, is solved from the linearized version of Eq.(14). A brief
summary of the results, which are discussed in detail in Ref. 6 and 8, is as follows. In the

limit of zero hopping the critical temperature is solved from
’\>N(0)a”(Tc0) =1, (17)

where A5 is the larger of the two A¢, and q)(T') = In(2vwy;/#T),y = 1.78. With increasing
hopping T, is lowered steadily from the zero hopping limit T¢p. In the limit of strong

hopping, i.e. Jn > wy|, the critical temperature is solved from
A+ N(0)ay(Te) =1, (18)

with A; defined in Eq.(12).

- The OP’s at zero temperature depend also on the hopping strengths. . In .the zero.
hopping limit the equations separate into two independent equations whose solutions are
the gaps for the-individual layers. With increasing hopping the larger of the two solutions,
which is de31gnated as’ Al, decreases while the smaller one, A increases. Thus, the two
layers are more similar to each other in their superconducting properties.” In the strong
hopping limit, we find that the ratio of the gaps satisfies A1 /A3 = A1 /A2. The average gap
A defined in Eq.(12) is the energy gap of the energy bands. These results are summarized
in Fig.1 for a set of parameters Ag2/Ao1 = 0.7, /\oAlN(O) = 0.5,J3/J1- = 0.3, and J1/Teo
ranging from 0.1 to 10.

In Fig.2 we show A,(T), n = 1,2, for the same of model parameters except that
J1/Teo = 1. For these parameters the critical temperature T, = 0.92T,. The dominant
OP A; has the typical BCS behavior. The lesser OP A initially behaves as if it is heading
toward a critical temperature lower than T., but turns around to follow A; above 0.6T,
where superconductivity in layer 2 is induced by the proximity effect. This result is typical

for systems with two or more coupled order parameters.
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The density-of-states in the superconducting state is calculated in the standard way:

Ns(w) = %’ Z Imc'nn(k: V)'u—»—-iu-!—&a (19)
kn

where § = 0%. After integrating over k, we find

_ sdk,  —iv, c—é€ c+é
N’(w) —N(O)/ o Im % [\/V2+a+ + \/Vg_‘_a_]y—-»—iw-i-&’

where the quantities ¢ and a4 are defined in Eqs.(14) and (15). We show in Fig.3 a set

(20)

of total DOS curves at zero temperature for the same set of model parameters in Fig.1
with J; /T ranging from a weak hopping value of 0.1 to a strong hopping value of 5.
The ca.lcu}ated Aj,2 are marked on'the -graph with two kinds of arrows. The four curves
are displaced vertically by 2 units- suécessively. It can ‘be seen that in the weak hopping
case; thé 'bottomrﬁost‘c_ufve, the DOS. has two sets of peaks corresponding to the OP’s of
the two layers, in agreement with the conch.1sion_s of Refs. 1-and 2. Each set resembles
the BCS result. ’I‘he system mé.y be réga.rded as two nearly independent superconductors, .. -
each with its own energy gap. The strong hopping case, the topmost curve, the peaks are
situated halfway between Al and A, i.e. -the position of A, in agreement with Refs. 3-5.

The two middle curves for intermediate hopping do not conform to either physical picture.

In particular, for J; /Teo = 1, we find N,(w) = 0 for w < wy = A+\/1 —- A2 [(J1— 2)2.
[In calculating the curves in Fig.3 we have put in a nonvanishing § = 0.3 — 0.5 in Eq.(20)

to smooth out the curves, and this results in a small and nonvanishing DOS inside of the

threshold]. The first peak. occurs at wj = A.;.\ﬁ- A? /(Jy + J2)2. In the limit of § = 0,

the peak is a logarithmic¢ singularity, i.e.
Ny(w) = At ln|w —wg| + By, (21)

where Ay, By are nonsingular in w and = refer to the high or low side of the singularity.

A second logarithmic singularity occurs at w = wl, = \Kh + J2)? + A% + A_, which is
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outside of wy. Both singularies are less sharp than the (w — A)™?! singularity of a BCS
superconductor, and a dip in the DOS curve occurs between them. The detail of this
analysis will be given in the Appendix. It should be noted that the two sets of peaks only
occur when Ag; # Agz. For equal coupling strengths we find that A; = A; and the DOS
follows the standard BCS behavior [3-5]. |

The tunneling characteristics at various temperatures are calculated by convoluting

the DOS curve with the Fermi distribution factor:

dI(V) Beb

/N (w— eV)( Bo Tt 1)2dw (22)
whe;re e is quasipa.ri;icle charge and V is the bias. We show in Fig.4 a .se‘t of tunneling
characteristics for the same set of material parameters used in Fig.2. The temperatures.. -
are marked on the curves.- At elevated temperatures the fine details of the DOS curves -
tend to be smoothed away, \'vith-only a shallow dip left around zero bias. These: curves -
resemble qualitatively the ab-direction tunneling data of BSSCO [9,10].
High-T. materials all have short coherence lengths in the c-direction. Consequently, -

when tunneling in this direction, the data may be more representative of the topmost layer

then the bulk. We simulate this effect by projecting out the DOS of the individual layers:

—iv . —e2 2
Ngn)(w)zN(O)/SdkzI v —efl +cEALA_ + €L +cFALA (23)

m= [ m m ]u_.'_.iu+6’
where the upper (lower) sign applies to n = 1(2). The tunpeling characteristics based on
the projected DOS are shown in Figs.5 and 6. These curves are visibly different from those
in Fig.4, especially the relative weight of the two peaks. Thus, depending which layer
is exposed, the c-axis tunneling data may differ considerably from sample to sample and

from the ab-axes data. In the next section we extend these considerations to the interlayer

pairing model.




3. The Interlayer Pairing Model

The interlayer pairing model postulates that the Cooper pairs always reside in adjacent
layers. The interaction Hamiltonian V which leads to this type of pairs is of the form

V=- Z Z Z [Al¢;1a(k)¢;2al (=K)¥ 20 (=K' Yb;1,(K')

J ko ko’

+ A2y (% 41 100 ()% 41 100 (=K Y10, (K], (24)

where A; 2 are the intracell and intercell coupling strengths, both are cut off at a common
energy wj. It has been shown in Refs 3-5 that the interlayer pairing interaction favors:
- singlet pairing, although in a cert;in range of parameter space the triplet pairing may
emerge at a temperature below T,. We will concentrate in this paper the.large region of -
the parameter space in which the triplet state can be ignored altogether.

The quasiparticle Green’s function matrix elements are defined the same way as in

Eq.(3). We define two order parameters

A=\ Z(¢jla(k')¢j2,—a(“k'))’ - (25)
K’ A |
Dy =Xy Z(¢j2,—a(“k’)¢j+1,1a(k'))- - (26)
kl
We can then write the inverse Green’s function matrix as
iv—Eo(k)  —g(ks) 0 —Age—itlke)
—1 | —g*(k) iv—Eo(k)  —Apetdks) 0
G ky) = 0 —ApE) nigl) gk |0 @D
_azeta g (k) v+ oK)
with »
Aa — Al e'[kzd+¢(kz)] + Aze—i[kzdl_‘ﬁ(kz)], . (28)
Ab — Ale_i[kzd+¢(kz)] + Azeilkzd"¢(kz)]. (29)
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The physical meaning of A,, and A, will be discussed later. In the ground state where A;
and A, are in phase and real, we have Ay = A}. The gap equations as derived in Ref.8

are:
A= E A2 + €010 + G (k)AL + AP AgJem T dtE, - (30)
Az * i .
Bo=—5 g ‘1'5{[1/2 + & )]As + €] (k)AL + [Ba[ A, Jeflke 8k, (31)
The sums over v are cut off at wi. The quantity D has the expression
D= +&) +21 (v — &) + €l +2AP(° + € + (AL + A7) + At (32)

After integrating over the two-dimensional crystal momentum k, we obtain

A J=A1N(0)EE/ 'SS-’” e T dtalk, - (33)
B4 ™
8 =0NOF 3 / e frgeled s, (3)
where the integrand
3y zeL(kz) 1 iey (k) 1
I k = + Aa - - 35
(k:) = 2{ = byt SR C

These equations have structures similar to the intralayer pairing case, but the various ..

quantities therein have different definitions: -

c= [+ (ReAa)2]1/2,
and

azx = |A.> — €& +2ie ¢ ' (36)

We review briefly here the behavior of the the critical temperature as a function of
hopping as discussed in detail in Refs.6 and 8. In the limit of zero hopping the critical

temperature is determined by the stronger of the two coupling constants via the equation

AsN(0)ay(Teo) =1, (37)
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where, in analogy with Eq.(18), a1 (T') = In(2yw1/#T). With increasing hopping, the
critical temperature T, diminishes steadily from T. In the strong hopping limit, the

asymptotic T, is solved from
- 1
IN©@ar(Te)] ™ = 2{M + (2= + [\ - 22 - 3 dz + (2 - CPA]2), (38)

with ¢ = Ji/J;. At zero temperature and zero hopping, only A; , which corresponds to
the larger coupling strength J;, is nonvanishing. For stronger hopping A; diminishes while

A2 grows, similar to the intralayer pairing case shown in Fig.1.

In Fig.7 we show the results of the numerical solutions of the finite temperature gap - - - -

equations, Eqs.(33) and (34), for a set of parameters A2/A; = 0.5, \;N(0) = 0.5, J3/J; =

0.8, and J;/Te = 1. For these parameters T. = 0.95T:9. The dominant OP A; has = .

the BCS temperature dependence, while the subordiné.te OP A2 is small over the entire
temperature range. This is the general behavior for weak to intérmediately hopping, that -
one OP dominates over the other nearly completely. The pattern changes when hopping is
increased, as shown in Fig.S for a set of parameters Ay /A1 = 0.8, A1 N(0) = 0.5, J;1/J2 = 0.4,
and J2/Teo = 2. It can be seén that A, is the stronger OP.at low temperatures but loses its
dominance at high temperatures. This type of competition between OP’s, not seen in the
intralayer pairing case, arises from the fact that the OP’s are nonlocal and interact more
effectively through the c-axis band dispersion than the local OP’s of intralayer pairing..
The nonlocal nature of the OP’s also manifests itself in additional structures in the DOS
and tunneling characteristics to be discussed next.

The expression for the DOS in the superconducting state as calculated from Eq.(19)

is found to be, after integrating over k:

N,(0) = N(0) / s;l::zlm(——iv){[l+ 7 :E(;g Wil \/V21+ =

_ 1€y ] 1 }
Vi 4 (ReD )2 /v2 +a_ ) v——ivts

+[1 (39)
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A set of DOS curves is shown in Fig.9 for model parameters used in Fig.7 except that
J1/Teo ranges from 0.1 to 5. The bottommost curve for weak hopping is BCS-like, with
peaks at +A;, i.e. the dominant OP. The topmost curve for strong hopping has threshold -
at £(A; — Az) and main peaks at £(A; + Az). The DOS curve increases continuously
between the threshold and the peak on both sides. The origin of these features has been
discussed in Ref.3-5, and is reiterated here using a different language. Recall the definition
of A, and its complex conjugate A; in Eqs.(28) and (29). The real part of A, or Ay given
by:

Red = Ay coslked + $(k:)] 4 Ag coslked — g(k)] . (40)

which is an even function of k,, is the intraband OP discussed in early papers,®~° while

the imaginary part, an odd function of &k, given by: -

ImA, = A, sin[k.d + §(k.)] — Dy sin[d' — $(E)], . (41)-

is the interband OP. It can be shown without much difficulty that the imaginary part van-. .
ishes in the strong hopping‘limit,- leaving the intraband OP as the only ordeg parameter. A
little algebra yields that-the extremal values of the right-hand-side of Eq(39) are A; £ A,
obtained at k, = 0 and k, = 4 /s respectively. Therefore, the inner structure reflects the
c-axis versus ab-plane anisotropy of the gap function [3-5]. The main peaks are logarith-
mic singularities because of the k, dependence of the gap function. In the intermediate
‘hopping regime. vthe- DOS curves exhibit two sets of peaks in addition to structures inside
of the inner peaks. It will be discussed in the Appendix that both sets of peaks are loga-
rithmic singularities, but it is not straightforward to write down analytic expressions for
the threshold and the positions of the singularities. Nonetheless, one can establish that,
just like the intralayer pairing case, the outer peaks are associated with interband pairing.

In contrast to the intralayer problem, however, the interband peaks may be stronger than
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the intraband peaks, as demonstrated in Fig.10. The interpretation of the DOS curve is.
further complicated by the fact that both band dispersion and gap function dispersion
contribute to the shape of the inner structure.

A set of simulated tunneling characteristics is shown in Fig.11. The general behavior is
similar to the intralayer pairing case, that all features are smeared by thermal broadening,.
" 'The curves bear close resemblance to the actual data on YBCO [10,11].

4. Summary and Conclusion

" . We have demonstrated that, simply as a result of the layered structure, the copper-
oxide superconductors may have multiple peaks in their density-of-states and tunneling
characteristics. Careful analyses of high quality tunneling data may shed light on the
pairing mechanism. Because the short c-axis coherence lengths, the preférred- way to take
- data is by tunneling out of the a and b-planes. -

Our theoretical results, though limited in scope, may be applicable to real materials.
Consider the case of YBCO with two identical CuO layefs. If these are the only supercon- -
ducting layers and the ﬁa&ring mechanism is intralayer, we would conclude that the DOS
should be BSC-like, in disaéreement with the experiments {10,11]. We speculate, there-
fore, that either the CuO chains form another superconducting layer, or that the pairing
mechanism is interlayer. One may be able to distinguish between the two possibilities by
a detailed examination of the inner structure of the ab-plane tunneling data. The BSSCO
sysvtem is inherently more complex owing to the additional BaO layers, which may be su-
perconducting. Without solving the more than two layer ;nodel, we anticipate that the
main DOS peaks are due to intraband pairing and should be logarithmic singularities. On
the other hand, there should be more than one interband pairing features each associated
with a different pair of bands, resulting in a less clear outer peak. Only the dip outside of

the main peak remains as indication of the multilayer nature of the material. Again, any
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additional structure inside the main peaks may hint at interlayer pairing. On the other
hand, the absence of inner feature does not necessarily rule out interlayer pairing for the fol-
lowing reason. It has been shown in Ref.8 that if the hopping strength between two layers is
stronger than the OP’s, the two layers would act like one layer with intralayer pairing even
though the pairing between the two layers in interlayer. In view of these complications, we
would urge extra care in interpreting the tunneling data of high-T. superconductors. It
is interesting to note that the layered organic superconductor k-(BEDT-TTF),Cu(NCS),
displays the same double peak tunneling characteristic although'its critical temperature is
merely 11 K [12]. We view this as added evidence that the crystal geometry, rather than -
the coupling mechanism, is the cause of the observed complex gap structure.
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Figure Captions

1.

10.

The dependence of the layer order parameters on the hopping strengths for a two-layer
model with intralayer pairing. The model parameters are displayed in the graph.
The temperature dependence of the layer order parameters for a two-layer model with
intralayer pairing. The model parameters are displayed in the graph.

A set of density-of-states (DOS) curves at zero temperature for a two-layer model with
intralayer pairing. The model parameters are given in Fig.1. The curves are displaced

vertically by 2 units successively.

. Simulated tunneling characteristics for the two-layer model whose model parameters

are in Fig.2. The curves are displaced vertically by 2 units successively.
Simulated tunneling characteristics from the layer 1 of the two-layer model studied in’

Figs.2 and 3. The curves are displaced vertically by 2 units successively.

. Simulated tunneling characteristics from the layer 2 of the two-layer model studied in

Figs.2 and 3. The curves are displaced vertically by 2 units successively.

. The temperature dependence of the interlayer order parameters for a two-layer model

with interlayer pairing. .The_model parameters are displayed in the graph.

. The temperature dependence of the interlayer order parameters for a two-layer with a

different set of model parameters. The model parameters are displayed in the graph.
The OP A, dominates at low temperatures but becomes less than A, near T,.

A set of DOS curves at zero temperature for a two-layer model with interlayer pair-
ing. The model parameters aré such that A\ /A = 0.;‘:'),/\1N(0) = 0.5,J1/J2 = 0.8,
and Ji1/Tc ranging from 0.1 to 5. The curves are displayed vertically by 2 units
successively.

A set of DOS curves at zero temperature for a two-layer model with interlayer pair-

ing. The model parameters are such that A;/A\; = 0.8, \;N(0) = 0.5,J,/J2 = 04,
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and Jy /T ranging from 0.1 to 5. The curves are displayed vertically by 2 units
successively.
11. Simulated tunneling characteristics for a two-layer model with interlayer pairing. The

model parameters are given in Fig.9.
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Appendix

We analyze here the structure of the DOS curves for the two-layer model with in-
tralayer or interlayer pairing. The expression for N,(w) for the intralayer model is given
in Eq.(20). After making the analytical continuation to real frequencies, we find that
the right-hand side of Eq.(20) have singularities determined by the zeros of the factors

a4 —w?,a_ —w?, and ¢, where

c= \/A?*_A?_ + €& (w? — AZ), (A1)

and ay are given in Eq.(16). The factor ¢ has a zero at

: [ az '
Wo = A+ 1—- :2——, (A2)
L

which is real for ) > A_. The 'quantity ¢, , given in Eq.(8), is a function of of the c-axis

momentum k.. Consequently wq varies from its maximum wj = Ay \/ 1—- A2 /(J1 + T2)%

obtained at k; = 0 to its minimum w; = A4 '\/I- A? [/(Jy — J2)? obtained at k, = *x/s.

2

The zeros of a+ — w? are more subtle. One can show after some manipulations that

(e —(e-—wt) = @ —wWR —w?), T (43)

where

wi = [ (k) + O £ A_. C(44)

Thus the zeros of ax — w? are contained in the set +w+. Further analysis reveals that

2 2

wy is a zero of ay — w? only. The quantity w_, however, is a zero of ay —w? or a— — w?

depending on whether € is greater than or less than the following quantity:

b=A_ /e + AL (AS5)

Bear in mind that e is a function of k., it follows that both ws vary between their

"

maximum values w)y = \/(Th + J2)2 + A% £A_ at k; = 0 and minimum values wy =
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\/(Jl —J2)2 + A-2i- + A_ at k; = *n/s. The zero at w_ may shift from one term in
the square bracket of Eq.(20) to the other depending on the value of k,. The following
inequality wy > w_ > wy is satisfied for all values of k..

We will make use of this set of information to analyze the DOS curves. In the weak
coupling limit the quantity c is real for all values of w, and the quantities w4 = A;,Aq
respectively. Therefore, the singuarities of N,(w) are the order parameters of the individual
layers. In the strong hopping limit the quantity wg = A4 and w4 are so large that they

are out of the picture. The only singularity in DOS corresponds to the energy gap in

the band representation. For intermediate hopping one must study the singulai' behavior - -

on individual basis. As an example, consider the case J1 /T, =.1 in Fig.4. The input .
data are, AN = 1.7416,A, = 1.2927, J; = l,jz = 0.3, all in units of T,g. From these we ..
determine at k, = 0 that w!, = 2.2823,w' = 1.8333 and w} = 1.2131. The inequality
€% > b is satisfied, b is defined in Eq.(A5). At the zone boundary, k, = +x/s, we find

w:_ = 1.9191,w’ =‘1.0211,w;" = 0.9917, and €4 < b. Thus, the following picture emerges.

For w < w, the factor c is'real and N,(w) = 0 because the integrand in Eq(20) vanishes. .- -

In the numerical calculation a small but finite & = .05 is used to help smooth the curves, -
but this also causes the N,(w) curves to appear nonvanishing inside of the threshold. For
w just beyond the threshold, the DOS increases rapidly because a larger range of k, near
the zone boundary now contributes. This trend continues until w reaches wy where the
entire zone of k, contributes to the integral in Eq.(20). It is not difficult to show that
the k, integral actually diverges logarithmically, which impli:es the asymptotic property of
Ny(w) in Eq.(21). It should be noted that the main peak is contained in the factor c, as
in the strong hopping case.

A similar reasoning applies to the second logarithmic singularity at w/, . This singu-

larity is contained in the factor at — w?, reminiscent of the weak hopping case except that
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the band splitting contained in the expression for wy (Eq.(A4)) is not negligible. For this
reason as well as that this feature disappears in the strong hopping limit, we identify it
as the interband pairing contribution to N,(w). Because w}) > w__ the singularity at w_ is
overwhelmed by the main peak.

The singularities for the interlayer pairing problem are investigated in the same man-
ner. The expression for N,(w) is given in Eq.(39), with a4 in Eq.(36). One singularity can
be readily identified as wy = |ReA,(k;)|, which is the intraband gap function. As in the

intralayer pairing model, the k, dispersion of this singularity determines the threshold, the

inner structure and the nature of the main peak in the strong hopping case. Additional - -

singularities are found from the relation:
(as —w?)(a- —w?) = (W} —w?)(W? —w?), o (48)
where
-~ wi = (ReA.)? + (e £ImA,)>. : (A7)

The k, dependence of wydepends on both the gap function dispersion and the band
dispersion, making the outer peak difficult to locate analytically. Numerically, we find
that the outer peak is at the maximum value of w4, which occurs in the middle of the

c-axis Brillouin zone.
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