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ABSTRACT

A mathematical model for fluid-damping-controlled instability of tubes
presented in this paper is based on the unsteady flow theory. Motion-dependent
fluid forces are measured in a water channel. From the measured fluid forces,
fluid-stiffness and fluid-damping coefficients, are calculated as a function of
reduced flow velocity, oscillation amplitude, and Reynolds number. Once these
coefficients are known, the mathematical model can be applied to predict
structural instability due to fluid damping. Many cases are considered: single
tube, twin tubes, tube row, triangular array, and square arrays. The results
show the instability regions based on the fluid damping coefficients and provide
the answers to a series of questions on fluidelastic instability of tube arrays in

crossflow.

1. INTRODUCTION

Several theories have been used to study the vibration and stability of tubes in
crossflow, quasistatic, quasisteady, and unsteady flow theories (Chen 1987a &
1987b, Price 1993). In some parameter ranges, both quasistatic and quasisteady
flow theories have certain advantages because of the simplicity in obtaining
motion-dependent fluid forces. However, only the unsteady flow theory can be
applied in any range of parameters. In this study, the unsteady flow theory is

used.

One of the frequently asked question is the stability of a flexible tube among a
rigid tube array subjected to crossflow. In the original stability criterion
developed by Connors (1970) about a quarter century ago, at least two flexible tubes
are needed to have fluidelastic instability. In the case considered by Connors, the

instability was due to fluid-stiffness-controlled instability and a minimum of two



degrees of freedom are needed. Tests by various experimentalists found that a
single flexible among tube arrays show instability in some cases while it is stable
in other cases (Chen 1983a, Price et al. 1986, Price and Paidoussis 1987). Chen
(1983a and 1983b) about 15 years ago developed a mathematical model based on the
measured motion-dependent fluid forces by Tanaka and his colleagues (Tanaka
1980, Tanaka and Takahara 1981, Tanaka et al. 1982) to characterize the
difference of the two mechanisms which provide the theoretical basis of the
occurrence of different stability mechanisms. In the past, because of the limited
amount of fluid-force coefficient data available, the theory can not provide

quantitative answer on the stability of tubes in various situations.

Recently, extensive tests of motion-dependent fluid forces have been
performed (Chen et al. 1994, 1995, 1996, Zhu et al. 1995, 1996). Using the unsteady
fluid forces and unsteady flow theory, it will provide some answers to the
frequently asked questions on fluidelastic instability. The purpose of this paper is

study fluid-damping-controlled instability of tubes in different situations.
2. UNSTEADY FLOW THEORY

Consider a tube oscillating in crossflow as shown in Fig. 1. The tube may
stand alone or surrounded by other rigid tubes. The fluid is flowing at velocity U.
When the tube is held stationary, it is subjected to drag and lift forces. The
displacement components of the tube in the x and y directions are u and v,
respectively. Once the tube starts to move, additional fluid forces, called motion-
dependent fluid forces, will be induced due to tube motion. The motion-dependent
fluid-force components per unit length that act on the tube in the x and y

directions are f and g, respectively, and are given (Chen 1987a and 1987b) as
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where p is fluid density, R is tube radius, t is time, and o is circular frequency of
tube oscillations. «, B, 6, and © are added mass coefficients, o, B, ¢’, and 1’ are

fluid-damping coefficients, and ", B", ¢", and " are fluid-stiffness coefficients.
Various methods can be used to measure fluid-force coefficients. In this
study, the unsteady flow theory is used. Fluid-force coefficients can be determined

by measuring the fluid forces acting on the tube as a result of its oscillations. If

the tube is excited in the x direction, its displacement in the x direction is given by

u = d, cos wt, 3

where d, is the oscillation amplitude. The motion-dependent fluid-force

components acting on the tube in the x and y directions are
1 ..2
f= EPU €y COS((!)t+ Oy )do 4)
1 .2
g= 5pU eq cos{wt + 64)d,, ®)

where e; and eq are the fluid-force amplitudes and ¢ and ¢q are the phase angles

by which the fluid forces acting on the tube lead the displacement of the tube.

By using Egs. 1-3, we can also write the fluid-force components as
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Using Egs. 4 and 6 and Eqs. 5 and 7 yields
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where Ur is the reduced flow velocity (Ur = tU/wR). The added mass coefficients
o and T can be calculated from the potential flow theory (Chen 1987a). They can
also be measured directly from the excitation of the tube in stationary fluid. Other
fluid-force coefficients, B, B", o', and 6", can be obtained in a similar manner by

exciting the tube in the y direction.
3. MOTION-DEPENDENT FLUID-FORCE COEFFICIENTS

A water channel was used to measure motion-dependent fluid forces. The
test setup and measurement technique are presented in an earlier paper (Chen et

al. 1994).



Many cases were considered in this study (Fig. 2). Different tube arrays are
described by the tube pitch in the drag direction P and lift direction T and tube
diameter D (D = 2.54 cm).

e (Case a - Single Tube: The tube was located in the middle of the water
channel. Various flow velocities were tested, 0.064, 0.11, and 0.127 m/s.
The tube was excited to various oscillation amplitudes in the lift

direction.

¢ Caseb - Two Tubes Normal to Flow: T/D = 1.35. Five flow velocities were
tested, 0.05, 0.07, 0.113, 0.146, and 0.166 m/s. The tube is excited in the
lift and drag directions.

e Case c - Two Tubes in Tandem: P/D = 1.35 (Case c.1), 2.70 (Case c.2), and
4.05 (Case c.3). For Case c.1, the upstream tube was excited at three flow
velocities in the lift and drag directions, 0.07, 0.11, and 0.15 m/s. For the
downstream tube in Cases c.1, ¢.2, and c¢.3, the flow velocity was set at

0.11 m/s and the excitation amplitude was set to various values.

e Case d - A Tube in the Wake of Another Rigid Tube: Three cases are
tested: Case d.1- P/D = 2.7, T/D = 1.35; Case d.2, P/D = 4.05, T/D = 1.35;
and Case d.3, P/D = 4.05, T/D = 2.70. The flow velocity was set at 0.11 m/s

and the excitation amplitude was set to various values.

e (Case e - Tube Row: T/D = 1.35 (Case e.1) and 2.7 (Case e.2). Four flow
velocities, 0.063, 0.092, 0.125, and 0.131 m/s, were set for Case e.1. The
flow velocity was set at 0.11 m/s and the excitation amplitude was set to

various values for Case e.2.



e Case f - Triangular Array: T/D = 1.35. The tube may be located in the
upstream (Case f.1), middle (Case f.2), and downstream (Case f.3) of the
tube array. Tests were performed at U = 0.07, 0.11, and 0.16 m/s.

e Case g - Square Array with P/D = T/D = 1.35: The tube may be located in
the upstream (Case g.1), middle (Case g.2, Case g.3), and downstream
(Case g.4) of the tube array corresponding to 1, 2, 3, and 4 shown in
Fig. 2.2. Tests were performed at U = 0.1 m/s and tests were repeated for

each case.

e Case h - Square Array with P/D = T/D = 1.42: The tube was located in the
middle of the tube array. The flow velocities were set at 0.06, 0.11, and
0.16 m/s.

e Casei - Square Array with P/D = T/D = 1.46: The tube may be located in
the upstream (Case i.1), middle (Case i.2), and downstream (Case i.3) of
the tube array. Two flow velocities were tested for Case 1.1 (U = 0.11 and
0.165 m/s) and Case i.3 (U = 0.125 and 0.18 m/s) and three flow velocities
were tested for Case ¢.2 (U = 0.06, 0.11, and 0.16 m/s).

The flexible tube in various cases was excited in the lift (x) or drag (y)
direction, with a displacement u(t) = d, cos wt. The fluid forces acting on the tube
f(t) and g(t) are measured simultaneously with the displacement. From the time
histories of fluid forces, fluid-damping coefficients, o' and 7', and fluid-stiffness
coefficients o" and 1", were calculated from Eqs. 8 and similar equations for B,

c', B", and ¢" in the drag direction.

Fluid-force coefficients are a function of flow velocity, excitation frequency,

and excitation amplitude. In each case, when the flow velocity is set at a specific



value, the tube is excited at a frequency (0.2-2.0 Hz) with a series of amplitudes d
(0.6-3.5 mm), where d is the RMS value of u(t), given in Eq. 3. Reynolds number
Re varied from about 1500-4500 based on the gap velocity U.

Figures 3-15 show the experimentally determined fluid-force coefficients. All
fluid-force coefficients were plotted as a function of reduced flow velocity Ur
(= UAD; U = gap velocity, f = @/2x, D = tube diameter). The following general

characteristics of the fluid-force coefficients were observed:

e At high reduced flow velocity, the coefficients were almost independent
of reduced flow velocity and excitation amplitude. This characteristic is
similar for all tube arrays and other geometries (Chen 1987b).
Therefore, at high reduced flow velocity, the fluid-force coefficients are
much easier to quantify. Once, they are determined at a specific set of
parameters, they can be applied to various values of flow velocity,

excitation frequency, and excitation amplitude.

e  Drastic changes in the fluid-force coefficients occurred in the region at

low reduced flow velocity (Ur < 10).
e In the critical region corresponding to the lower reduced flow velocity,
the magnitudes of the coefficients also depend on the excitation

amplitude.

The following additional characteristics were noted for each case.



Single Tube (Fies. 3 and 4

From Figs. 3 and 4 as well as additional data not included here, a' is positive
for Ur varying from about 5 to 11 and its value decreases with excitation

amplitude. The range depends on Reynolds number and oscillation amplitude.

Reynolds Number: At lower Re, o' become positive at lower Ur. At higher
Re, o' becomes positive at higher Ur. However, its range varies from about

4.8 to 5.4. As Ur is increased, o' becomes negative again.

Oscillation Amplitude: At lower oscillation amplitude, o' become positive at
lower Ur. At higher oscillation amplitudes, o' becomes positive at higher
Ur. However, its range also depends on Re. As Ur is increased, the effect of

oscillation amplitude is small.

The value of " is positive for smaller Ur and becomes negative as Ur is
increased. The crossing point varies from Ur equal to 5.4 to 6. At high reduced
flow velocity, both o' and o" are approximately independent of Re, Ur, and
oscillation amplitude. The values of Ur corresponding to the peak values of o’ and
o" increase with the excitation amplitude and Re, and the peak values of o' and

o." were approximately the same for various values of Re.
Two T Normal to Flow (Fig.

B' is always negative throughout the whole range of Ur. o' is negative at
lower Ur; its range depends on Reynolds number. Comparing Fig. 5 with Fig. 3,
the region for negative o' is at lower Ur for Case b. As Reynolds number

increases, the region of negative a' shifts to higher Ur and its range increases



slightly. However, the peak magnitude of o' decreases with Re. This is similar to

that of a single tube as shown in Fig. 3.

Two Tubes in Tandem (Figs. 6 and 7)

In Case c.1, o' becomes positive as soon as Ur reaches a certain value which
is equal to 6 to 7 for the tube in the upstream, Fig. 6. The precise crossing point
depends on Re and o' continues to be positive at high Ur (in this case, test has
been performed for Ur up to 60). On the other hand, B' is always negative for all
Ur.

When the tube is in the downstream of another tube, the force coefficients are
given in Fig. 7. o' is positive at lower Ur while B' is negative only in a small
range. As P/D increases, the magnitude of o' decrease and the region of positive

o' shifts to larger Ur.

A Tube in the Wake of Another Tube (Figs. 8a and 8b)

The general characteristics of o', o, p', and B" are similar for the tube
located at three different positions in the wake of the upstream tubes. B'and B"
are negative in the reduced flow velocity range tested. However, a' is positive at
the lower reduced flow velocity. The peak values of o' depend on the location and

it value can be much larger than that of a single tube.

Tube Row (Figs. 9-11)

The general trend of a' and o" in Cases e.1 and e.2 are similar to those of a
single tube. However, the region of positive o' for Case e.1 is at lower reduced flow

velocity. This can be seen clearly from Fig. 9. At lower Re, the effects of
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oscillation amplitude appear to be smaller than those for the larger Re. In Case
e.2, the pitch-to-diameter ratio is much larger and the general characteristics of

o' and " are about the same as those of a single tube.

Damping coefficients o' and B’ shown in Figs. 12a and 12b show that in
Cases f.1 and £.2 when the tube is in the upstream and middle of tube array, they
are negative at all reduced flow velocity. The only case in which o’ becomes
positive is at low reduced flow velocity in Case f.3 when the tube is in the
downstream. The general trend of ', B, and B" as a function of reduced flow

velocity are similar for the three cases.

ravs (Figs. 13 14, and 1

Figures 13-15 show that fluid force coefficients, a, o', B, and B", depend on

pitch-to-diameter ratio and tube location.

e P'is positive for the tube at any location and regardless of pitch-to-

diameter ratio.

e o"and B" are similar for the tube at various location and different pitch-

to-diameter ratio.

e o depends on tube location and pitch-to-diameter ratio. When the tube
is upstream, a'is negative except at very small Ur. At large Ur, 1t 1s
always positive. The crossing point from negative to positive values
depends on Reynolds number, pitch-to-diameter ratio, and tube location.

For a fixed Reynolds number, the crossing point of o' from negative to
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positive is the smallest for the upstream tube and the largest for the

downstream tube. This can be seen clearly from Fig. 15a.
4. FLUID-DAMPING-CONTROLLED INSTABILITY

Once motion-dependent fluid forces are known, the response of the tube can
be predicted. As an example, consider a single tube supported by springs. The
tube is subjected to a crossflow uniformly along its length £. The equation of
motion in the lift direction is

d2u du p1tD2 o d2u pU2 du

—+C—+Ku+

m s +CH 7 Y2 o o' —-pU%"u = —pUZDCL cos(wgt), (9

where K is the spring constant, C is the tube damping coefficient, m is the tube
mass per unit length, C is the fluctuating lift coefficient and g is the circular

frequency of vortex shedding.

The in-vacuum variables, i.e., natural frequency fy and modal damping ratio
{v, can be calculated from the equation of motion or from an in-vacuum test

(practically in air). Let

u(z,t) = Dq(t),

Ur= (10)

U
fD,

_ an2
4m

2

where f is oscillation frequency and U is gap velocity. Substituting Egs. 10 in Eq. 9,

one obtains



where
o =oy(1+y CM)_0’5,
(=2 [(1+ YCu)*° - Yurza'], (12)
1+ 2L, >
Cpqy=0+ UI;;O‘" :

Note that ® and { are the circular frequency and modal damping ratio,
respectively, for the tube in crossflow. Cy is called an added mass coefficient for
the tube in flow; when Ur = 0, it is equal to &. When Ur # 0, CMm depends on Ur as

well as on o, which in turn, depends on Ur and oscillation amplitude.

For motion in the drag direction, Eqs. 11 and 12 are applicable as long as the
fluid force coefficients o, o', and o', are replaced by B, B, and B", and the lift
coefficient CL' and vortex shedding frequency ws are replaced by Cp’ and 2 os
respectively. The system response due to vortex shedding and other excitation can
be obtained by solving Eq. 11. Note that inasmuch as the fluid-force coefficients o'
and o are a function of Ur, the natural frequency ® and modal damping ratio {
are a function of the reduced flow velocity Ur. The unsteady flow theory can form
the basis for calculating a complete response due to flow. The calculation will

require an iteration technique.
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When modal damping becomes negative, the tube becomes dynamically
unstable and high-amplitude oscillations will develop. As the oscillation
amplitude increases, other nonlinear effect may become important and the
system may be stabilized. The critical flow velocity of dynamic instability can be

calculated from

¢ =0. (13)

From Egs. 12 and 13, the critical reduced flow velocity at which the modal

damping ratio is zero can be calculated from

05
0-5 " 1" 2
Ur=ayzn[3) |2 (E)s [ B2 ) 2] 14)
o 1:2 o 1:3 o 4

where 8 is a mass-damping parameter (8 = 2rn (y m/pD?2). This is the critical flow

velocity for fluidelastic instability in the lift direction. Similarly, the critical flow

velocity for motion in the drag direction is

0.5

0.5 " w\2
oo 3 [5(E () 2]

From Egs. 14 and 15, the critical flow velocity for fluid-damping-controlled can be

calculated. Since o, B, a", and B" depend on Ur, the calculation requires an

iteration process.

5. DISCUSSIONS AND NUMERICAL EXAMPLES

The modal damping ratio given in Eq. 12 shows that it consists of two parts,

tube damping and fluid damping. Tube damping is always positive while fluid
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damping may be positive or negative. In order to make the total damping ratio, o'
or B' must be positive. Based on the fluid-force coefficients given in Figs. 3 to 15,

the potential instability regions are summarized in Table 1.

From Table 1, several conclusions are noted:

*  The motion in the drag direction is much more stable. Practically it will
not become unstable by fluid-damping-controlled instability in the drag

direction for various tube arrays.

*  For triangular array, fluid-damping-controlled instability is not possible
for the upstream tube and tube in the middle of tube array because the

fluid-damping coefficients o' and B’ are negative.

*  For the upstream tube of two tubes in tandem and the upstream tube or
tube in the middle of a square tube array, once the reduced flow velocity

reaches a certain values, the damping coefficient o' becomes positive.

The effects of several parameters on the fluid-damping coefficient, o”, are

considered in detail:
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Table 1. Regions with positive o' and B' in which fluidelastic instability may

occur
Pitch-to-Diameter
Cases Ratio Lift Direction Drag Direction
a (single tube) 5<Ur<11 Not Measured
b (two tubes normal to flow) T/D = 1.35 2<Ur<6 None
c.1 (two tubes in tandem) P/D =135 7<Ur None
Upstream Tube
c.1 (two tubes in tandem) P/D=135 35<Ur<8 22<Ur<3.6
Downstream Tube
¢.2 (two tubes in tandem) P/D=2.70 36<Ur<74 None
Downstream Tube
c.2 (two tubes in tandem) P/D =4.05 53<Ur<20 None
Downstream Tube
d.1 (a tube in the wake of another P/D =2.7 42<Ur<10 None
tube) T/D = 1.35
d.2 (a tube in the wake of another P/D=4.05 52<Ur<95 None
tube) T/D = 1.35
d.3 (a tube in the wake of another P/D=4.05 47<Ur<93 None
tube) T/D = 2.7
e.l (tube row) T/D = 1.35 1.1<Ur<4.0 None
e.2 (tube row) T/d = 2.70 5<Ur<9.5 None
f.1 (triangular array) P/D =135 Ur>25 None
Upstream Tube
f.2 (triangular array) PD =135 None None
Middle of Tube Array
£.3 (triangular array) P/D =135 1.5<Ur<55 Ur > 30 (Re = 1760)
Downstream Tube Ur > 50 (Re = 2760)
Ur > 62 (Re = 4010)

g.1 (square array) P/D=135 1.5<Ur None
Upstream Tube
g.2 (square array) P/D =135 2.0<Ur None
2nd Row of Tube
g.3 (square array) P/D =135 2.0<Ur None
2nd Row from Downstream Tube
g.4 (square array) P/D=1.35 2<Ur<6 None
Downstream Tube
h (square array) P/D =142 15<Ur None
Middle of Tube Array
i.1 (square array) P/D =146 1.7<Ur None
Upstream Tube
i.2 (square array) P/D =146 2.1<Ur None
Middle of Tube Array
i.3 (square array) P/D = 1.46 31<Ur«7 None

Downstream Tube
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1. Tube Location

Fluid-force coefficient, o', depends on tube location in a square array (P/D =
1.46). As an example, Fig. 16 shows o' for tube at upstream, middle, and
downstream of tube array. When Ur reaches a certain value, o' becomes positive.
The crossing point depends on tube location. The sequence is upstream, middle,
and downstream tubes. At high Ur, the middle tube has positive o for all large
Ur while for the upstream and downstream tubes, they become very small and
become negative again. Based on o', it can be seen that in a square array, the
upstream tube will become unstable first and then the middle tube and finally the
downstream tube. This was noticed in an earlier experiment of square array
(Chen and Jendrzejczyk 1981, Chen 1984). For the middle tube, the instability will
be sustained throughout all Ur. The effect of tube location for triangular arrays

can be seen in Fig. 12a; the downstream tube can become unstable.

2. Tube Pitch

Fluid-force coefficients depend on pitch-to-diameter ratio. Figure 17 shows o
for three different values of P/D (1.35, 1.42, and 1.46) for square array. For the
upstream and middle tubes, the crossing point of o’ is almost independent of P/D
while the downstream tube is approximately the same as that of a tube row (Chen
et al. 1994). The value of o' at high Ur for the upstream and middle of tube arrays
do depend on P/D. For the downstream tube, the effect is much smaller. This is

consistent with the previous data on fluidelastic instability of square arrays.
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3. Downstream Tube

Figure 18 shows o' for various tube array with P/D = 1.35. In all cases, at
lower Ur corresponding to vortex shedding region, o is positive. The location and
the range depend on tube array. The single tube occurs at higher Ur while tube
arrays occurs at lower Ur. The peak value of o' is the largest for tube row, then
triangular tube array, and finally square array and two tube normal to flow. Itis
also noted that the first crossing point of o' for all tube arrays are very close to
each other. Another characteristic is that the crossing point of o’ from negative to
positive occurs at lower Ur for lower Re. This can be seen clearly for two tubes
normal to flow, Fig. 5 and triangular array, Fig. 12a; it is also valid for two tubes

in tandem, tube row, and square arrays.

Several specific examples can be considered: two tubes in tandem, tube row,
triangular array, and square arrays. The stability boundaries for fluid-damping-
controlled instability are given in Figs. 19 to 23 as a function of mass-damping

parameter, 3;. Some general features are noted from these figures.

Two Tubes in Tandem (Fig. 19): Fluid-damping-controlled instability occurs
at lower 8s. The lower boundaries vary with P/D but change slowly with Js.

When P/D is smaller, the critical flow velocity is also lower.

Tube Row (Fig. 20): The general behavior is similar to that of two tubes in
tandem. Fluid-damping-controlled instability occurs at lower &s. The lowest

critical flow velocity increases with tube T/D.

Triangular Array (Fig. 21): Fluid-damping-controlled instability occurs at g
less than about 2. It is noted that the instability region depends on Reynolds

number. As Reynolds number increases, the region moves upward; this means
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that the critical flow velocity is higher. In this case, the size of the instability

region is almost independent of Reynolds number.

Square Arrays (Figs. 22 and 23): For square arrays, fluid-damping-
controlled instability can occur for various 85 depending on the location of the
tube. Except for the downstream tube, which is similar to triangular array, fluid-
damping-controlled instability can occur in the whole range of 8s. For a tube in
the second and third rows, there is a sudden jump of the critical flow velocity at a

specific 85, =0.75 and 0.18 for tubes in the second and third rows respectively.

6. CLOSING REMARKS

The unsteady flow theory has been used extensively in the aerospace industry
and in bridge flutter. In this paper, a direct-measurement technique for fluid
damping and fluid stiffness provides adequate characterization of the fluid effects
for fluid-damping-controlled instability for different tube arrays. The critical
components of fluid forces are described by o' and B'. Once these two fluid-force
coefficients are measured, they can be used in practical applications. Similar
data have been used successfully to predict lock-in resonance of a single tube in

crossflow (Chen et al. 1995).

A change in response frequency is determined by fluid stiffness and mass
ratio, whereas the stability depends on fluid damping. Fluid damping may be
negative when o' or B’ are positive in some regions; this means that the energy of
the fluid is being pumped into the structural system. Based on the sign of o’ and
B, fluid-damping controlled instability of a single flexible tube in a tube array can

be determine immediately.
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o' and B’ depend on many system parameters: Reynolds number, tube pitch,
tube pattern, reduced flow velocity, and oscillation amplitude. Based on the fluid-
force coefficients, o' and B, presented in this papers, some general conclusions

can be made:

e  Fluid-damping-controlled instability is most likely to be associated with
the motion in the lift direction since in many cases o' is positive while f'

is negative.

e When the reduced flow velocity is small, say Ur < 10, o’ and B’ depend on
Reynolds number. At large Ur, Reynolds number has little effect on o
and B'. In the region of Ur in which o' is positive, the crossing point of
o' changing from negative to positive or positive to negative shifts to

larger Ur as Re increases.

e o' and B’ may depend on the pitch-to-diameter ratio. For square arrays,
the effect of P/D is very small. This means that for square tube arrays
with different P/D, the critical flow velocities for damping-controlled-
instability are approximately the same and a single stability criterion
can be used for different P/D. On the other hand, for tube rows and

triangular arrays, different criteria have to be used for different P/D.

e In the square tube arrays, the most unstable position is the upstream
tube and the most stable one is the downstream tube. On the other hand
in the triangular tube array, the upstream tube and the tube in the

middle of tube array are stable.

e  The stability of the downstream tube in various tube arrays is very

similar to that of a single tube. This is attributed to the vortex shedding
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associated with downstream tube. In all cases, there is a limited range
of Ur in which the tube is subjected to fluid-damping-controlled
instability.

e  For fluid-damping-controlled instability, the interaction effect associated
with the motion of the surrounding tubes is less significant. This
means that the critical flow velocity of a single flexible tube and that of a
group of flexible tube are not very much different. On the other hand,
the interaction of multiple tube motions is a necessary condition for

fluid-stiffness-controlled instability.

On the basis of the unsteady flow theory, the definition of fluidelastic
instability can be defined specifically. Due to fluid damping, when the resultant
modal damping ratio becomes zero, the tube is subjected to fluidelastic instability
regardless the source of fluid damping. On the other hand, when the modal
damping ratio is larger than zero and the tube has large oscillation amplitudes
due to other excitation sources such as vortex shedding, this will belong to forced
excitation. For example, lock-in resonance due to vortex shedding may be in the
fluidelastic instability region or forced excitation depending on Ur and other

parameters.

In summary, based on the results, the unsteady flow theory is a simple
model that can be used to predict tube response. In addition, the theory points out
the role of fluidelastic instability associated with other excitation mechanisms.
For example, vortex-induced vibration is a coupled forced vibration and
fluidelastic instability when the vortex-shedding frequency is close to the natural
frequency of a cylinder. The unsteady flow theory can be used to examine the
detailed characteristics in the instability regions as well as forced response due to

other excitation sources.
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Figure Captions
Tube oscillating in crossflow.
Tube arrays in crossflow: (a) single tube; (b) two tubes normal to flow; (c)
two tubes in tandem; (d) a tube in the wake of another tube; (e) tube row;

(f) triangular array; and (g, h, i) square arrays.

Fluid-stiffness coefficient o" and fluid-damping coefficient o' for a

single tube (Case a) for three Reynolds numbers.

Fluid-stiffness coefficient o" and fluid-damping coefficient o' for a

single tube (Case a) for Re = 2760.

Fluid-stiffness coefficients o" and " and fluid-damping coefficients o'

and B’ for two tubes normal to flow (Case b).

Fluid-stiffness coefficients o' and B" and fluid-damping coefficients o'

and ' for the upstream tube of two tubes in tandem (Case c).

Fluid-stiffness and fluid-damping coefficient for the downstream tube of

two tubes in tandem (Case ¢): (a) o." and o; and (b) B" and B".

Fluid-stiffness and fluid-damping coefficient for a tube in the wake of
another tube (Case d): (a) " and o'; and (b) B” and B'.

Fluid-stiffness coefficient o" and fluid-damping coefficient o' for tube

row with T/D = 1.35 (Case e.1) for three Re.



10

11

14

16

17

Fluid-stiffness coefficient a" and fluid-damping coefficient o' for tube
row with T/D = 1.35 (Case e.1) for Re = 3140.

Fluid-stiffness coefficient a" and fluid-damping coefficient a' for tube
row with T/D = 2.7 (Case e.2).

Fluid-stiffness and fluid-damping coefficient for triangular array (Case
f): (a) " and o'; and (b) " and B'.

Fluid-stiffness and fluid-damping coefficient for square tube array with
P/D = 1.35 (Case g): (a) o; (b) a"; (¢) B'; and (d) B".

Fluid-stiffness coefficients o" and B" and fluid-damping coefficients o'

and B’ for square tube array with P/D = 1.42 (Case h).

Fluid-stiffness and fluid-damping coefficient for square array with P/D =

1.46 (Case i): (a) 0" and o'; and (b) " and B'.

Fluid-damping coefficient o' at different locations for square array with

P/D = 1.46.

Fluid-damping coefficient o' for square array with different P/D.

Fluid-damping coefficient o' of the downstream tube for various tube

arrays.
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Fluid-damping-controlled instability boundaries for two tubes in

tandem, Cases c.1, ¢.2, and c.3.

Fluid-damping-controlled instability boundaries for tube rows, Cases e.1

and e.2.

Fluid-damping-controlled instability boundaries for triangular array,
Case £.3.

Fluid-damping-controlled instability boundaries for square array, Cases

g.1, g2, g3, and g.4.

Fluid-damping-controlled instability boundaries for square array, Cases
g.4 and i.3.
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