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ABSTRACT:

Using seven-card archived, static-weight and weigh-in-motion (WIM), truck data
received by FHWA for 1966-1992, we examine the fluctuations of four fiducial weight
measures reported at weight sites in the 50 states. The reduced 172 MB Class 9
(332000) database was prepared and ordered from 2 CD-ROMS with duplicate records
removed. Front-axle weight and gross-vehicle weight (GWV) are combined
conceptually by determining the front axle weight in four-quartile GVW categories. The
four categories of front axle weight from the four GVW categories are combined in four
ways. Three linear combinations are with fixed-coefficient fiducials and one is that
optimal linear combination producing the smallest standard deviation to mean value
ratio. The best combination gives coefficients of variation of 2-3% for samples of 100
trucks, below the expected accuracy of single-event WIM measurements. Time tracking
of data shows some high-variation sites have seasonal variations, or linear variations
over the time-ordered samples. Modeling of these effects is very site specific but
provides a way to reduce high variations. Some automatic calibration schemes would
erroneously remove such seasonal or linear variations were they static effects.
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THE DATA WE USE:

USA truck weight data [1] of Class 9 (332000) vehicles from 1966-1989 and beyond
have been grouped together in the form of a database. A portion of these data have
been obtained on static scales throughout the United States and are regarded as being
accurate to a fraction of a percent. Ground truth is exactly what these weight data files
represent. There are no electronics involved to vary in signal strength. All of the axle
spacings were done with tape measurements. All of the weights were obtained from

wheel-load weighers exact enough to issue citations for weight violations. The WIM
data was submitted to FHWA in the 7-card format .

All Class 9 7-card data from two Federal Highway Administration (FHWA) CD-ROMS
have been aggregated and sorted (171.6 MB with duplicates removed and data made
uniform) according to the following properties in order of importance

state code,

functional classification,

station id,

direction of travel,

year of data,

month of data,

date of month,

hour of day,

vehicle type code,

body type,

engine type,

(option open),

registered weight,

basis of registration,

(option open),

lane of travel,

(commodity code),

(load status code),

total weight of truck or combination,
5 weights of axles in hundreds of pounds,
4 axle spacings in tenths of feet,
total wheel base,

record serial number,
continuation indicator.

A two-character state code, a three character station identification, and a one digit
direction of travel characterize a site referred to as a directed site for clarity. In this
study a blank character was considered different from 0. A major change occurred in




data entered into the database after the introduction of the Traffic Monitoring Guide,
July 1985[1]. It specified use of the Federal Information Processing Standards (FIPS 5-
1 now 5-2) [2] alphabetically-ordered numerical code for designation of the state rather
than the previous Traffic Weight Study [3] system which was based on sub-units of
region (New England, Mid-Atlantic States, etc.). At this time, states such as Texas
changed the designation system for sites from which data was collected. Tracking site

data through this transition period requires more information than found in the 7-card
data set.

GOALS OF THIS STUDY:

We are looking for a means of determining if the weights that would have been
registered by a weigh-in-motion (WIM) device are sufficiently regular and predictable
that a drift or sudden change in WIM calibration can be detected. To do so we examine
a mix of static weight and WIM data. The criteria/approach that such a method will have
for the purposes of this study are:

(0) Conventional 7-card weight data [1] are used exclusively.

(1) It is based on pools of a number of Class 9 truck observations.

(2) Errors in WIM devices will be compared with old static weight variations.

(3) The computation is straight forward and understandable.

(4) The method involves determining a quantity that has dimensions of weight called
the weight fiducial and watching variations of that fiducial over time.

(5) Robust algorithm: it makes a prediction for each pooled set of data.

(6) Methodology for establishing false positives, natural static weight variations that
might be confused with WIM malfunction, can be established.

(7) It utilizes the information of the data set efficiently.

(8) Scheduled calibrated vehicles are implicit but beyond the scope of this study.

Additional notes:

(0) Weight data as opposed to transponder information indicates a near-term concern.
(1) Class 9 trucks are most numerous and are sufficiently heavy to be important in
infrastructure maintenance. We use pools of 100 vehicles. Moving averages can also
be used [4,5].

(2) WIM errors depend on road roughness, tire quality, device mechanics, device
electronics, and more. Vehicle dynamics contribute to significant differences between
WIM and static weight. See WIM Errors Section.

(3),(4) Suggest a linear combination of weights may be considered.

BACKGROUND/OTHER WORK:

A variety of metrics have been proposed [4-11] as a way of determining if a shift in the
calibration of a WIM device occurs. Some of these are practical today and other
methods could apply in the future. There is no absolute way to separate a calibration
shift from a shift in vehicle weights without additional information as to calibration or




weight expectation. To do so practically, it must be sufficiently large to make a
difference beyond normal fluctuation expectations. At that point, one expects a
calibration shift and recalibrates. If the new calibration is the same as the old, the shift
is considered a real-weight shift. Then procedures may be considered for modeling
these shifts. Such a posteriori modeling is very site dependent. Although such modeling
could in principal be done on a national scale a priori, it would require detailed
information about shipping decisions, available fleet vehicles, information usually
thought to reside in the private sector. It would also involve road quality and have other
stochastic elements describing tire and rim non-uniformity, possibly king-pin location,
and suspension wear for instance. After sufficient a posteriori modeling, it may be
possible to guess most important factors that would go into an a priori model.
Stochastic elements, for instance, may average away or be described by a few
parameters. Important commercial parameters could conceivably have surrogate
parameters that are observable. Before such a national model is constructed, however,
it is likely that technology will change the very nature of the problem. In particular,
individual vehicle identification technology and fluidity of that information will impact

calibration. For instance, a measured-weight versus claimed-weight system could lead
to a different type of WIM calibration-drift detection.

One existing technique under study is to determine the gross vehicle weights (GVW) at
which peaks occur in the distribution of vehicles. The underlying assumption is that
there are many nearly-full and nearly-empty Class 9 trucks but many fewer
intermediately loaded trucks. The approach of this technique is similar to a Bayesian a
priori expectation. A future version of the model might predict GVW and front axle
weights at particular sites in the various directions and lanes. As it now stands, the

Bayesian expectations are not always met and the method suffers from lack of
robustness, criterion (5).

A second technique is to use the front axle weight of Class 9 vehicles; it meets criteria

(1)-(6) but needs to be evaluated with respect to (7). It is one of four techniques
evaluated in this study.

OUR APPROACH:

After we visually explored multi-dimensional data sets in projection space, classes of
algorithms we consider promising for this study have the additional properties

(1) They are site and direction specific, but lane is not considered.

(2) They involve utilizing both GVW and front axle weight.

(3) Quartile statistics capture relevant information and generalize front-axle-only
information.

(4) Solving linear equations as used in the best-fit technique is not overly complex.
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METHOD:

We order the vehicles by state, road-site designation, direction, and then by time. A
weight fiducial is formed by four techniques: front-axle weight, first-quartile front-axle
weight, 0-quartile extrapolated front-axle weight, and a best percentage fit of the four
quartile axle weights. The later measure involves taking a linear combination of the
quartile values that have been accumulated for 5 {0100 100-vehicle sets at each
directed site. The quartiles are 4 bins of 25 vehicles each, with respect to the total
GVW. The bins may be thought of as lightweight, heavyweight, and two intermediate
weights. The average front axle weights in each bin are the only four numbers we use
to characterize the 100 vehicle samples.

Comment:

The statistical efficacy of the method depends weakly on the vehicle properties being
independent of time of day; most of the samples occur at peak traffic hours. The
sparsity of the static data prohibited a closer look at short-time dependent effects. Such
a study could be undertaken, for instance by pooling all vehicles in the same functional
class within a given state, but site-specific effects could impact the utility of this
approach. The linear combination method looks at that linear combination of sets of
guartile values which minimize the fractional standard deviation, for a particular state,
road-site, and direction. (This method can be solved by linear algebra, see Appendix
A.) A variation on this theme is to use fixed GVW boundaries between bins rather than
determine the boundaries of the quartiles. Lane variations may be expected when
trucks occupy a slow lane, for instance, but these effects are not treated here.

The extrapolation to zero GVW is based on assigning the centers of the quartile values
to 1/8,3/8,5/8, and 7/8 and interpolating best linear fit to 0. We do not attempt to justify
this method by an underlying model; it did, however, work well on an initial trial set of
data. The method amounts to assigning fixed importance to the quartile bins.

RESULTS:

Computational results for directed sites having more than 500 vehicles are shown in
Fig. 1 and Fig. 2 for the front axle weight (irrespective of GVW) and for the best linear
combination method, respectively. There the percent standard deviation is the ordinate
or y axis. The number of pools of 100 vehicles is the abscissa. When more than 100
pools were present, the excess were dropped from the study. Here we see that the best
linear combination method does sufficiently better. What this means is that fewer

- samples of vehicles need to be used to get the same standard deviation. Figs. 3-6
show a summary of the results for all four techniques.

Extraordinarily good results occurred at a few sites. With the best-combination method,
standard deviations as low as 0.02% occurred with the 100-vehicle-sample sets.
However, standard deviation errors as large as 16%-50% depending on method




occurred at the worst-case site. Generally, the best-combination method gives about 2-
3% as the fractional standard deviation. It should be noted that these values typically
have raw data spanning a time interval of 5-6 years.

Often 0-quartile estimation does better than using the front axle weight of the first
quartile group, though usually not as well. The 0-quartile method was developed by
examining a subset of data on which it was ideally suited. The lack of good fit to all the
data suggested that modeling of data is very site specific.

The best of these results are also very site specific. They involve combinations of
weights that have no simple known method by which to justify them, e.g. the
extrapolation to 0 method. One can imagine a set of vehicles over the years appropriate
to one direction of traffic at a state site. What is it that governs whether a vehicle set
appropriate to another site will or will not visit the site under study or will not turn around
and go the other way? Assuming there is an answer, this question gets into the area of
how one models the traffic flow of Class 9 vehicles. These vehicles exist in many
configurations varying from bread trucks to gasoline tankers. The cargo they carry may
vary or be relatively fixed. The distribution of their weight depends strongly on the
position of the largely unobservable kingpin.

Large variations of static-weight data would give rise to false-positive WIM-calibration
errors, were a WIM device measuring correctly. Unusually large errors will resuit in false
positive assignment confusing it with WIM calibration errors. In Fig. 7 we show data
from Texas Site N25 direction 5. The span of these data is from February 1989 to July
1990 and the variation suggests a seasonal change. Here an a posteriori site model
would be useful. Insights from such a model could have application to other sites, even
with less seasonal variation. These particular data are of the WIM variety.

Other less volatile data from Florida Site 004 directions 1 and 5 show in Figs. 8 and 9
that well established trends in one direction do not imply similar trends in other
directions. Here again, a site model for the trend line could be useful if the explanation
were simple and true, and not a calibration error.

WIM ERRORS:

The details of the road roughness hundreds of meters prior [5] and the orientation and
condition of the tires as they cross a weigh-in-motion detector (WIM) are critical, having
up to the 10% effect on a single-vehicle measurement. Other effects such as dynamic
breaking and release cycles by the driver can alter WIM measurements. The entrance
onto the WIM platform should have no discontinuity in height. These WiM-specific
effects have been removed in the study we have reported because the values we use
are highly accurate static weights. Examination of the effects in the list below suggest
that both extrinsic factors such as road roughness or entrance height and intrinsic
factors such as fatigue may be cause for recalibration.




Extrinsic to WIM scale:
Tires out of round, road hop, off-centered mounting on rim [12,13],
Vehicle vibration-resonance enhancement by resonator Q [14],
Breaking/clutching/rolling resistance [15,16],

Aerodynamic effects/Wind [17-21],

Weight-distribution effects/ wheelies [22],

Road roughness condition/path on road [17],

Condition and entrance height to scale platform,

Concrete with water-pumping effects,

Asphalt rutting at scale,

Soil compaction and runoff,

Power conditioning.

Intrinsic to WIM scale:

Piezo-transducer transverse inhomogenities,
Equipment-flex fatigue,

Electronic malfunction,

Environmental dust/charge invasion,
Physical damage by lightning or impact.

The practical use of WIM data derives from plots such as that shown in Fig. 10. The
time scale for this data is one month, considerably shorter than the static weight data.
The question to ask is, “is the observed downward drift owing to calibration or natural
causes?” Because these data from Washington are WIM data, we cannot answer the
question as we could were they from static-weight data.

CONCLUSIONS:

The majority of sites have a static weight fiducial with standard deviations over periods
of 5-6 years that is small compared to expected variations from single event WIM
errors. For these sites, suspected WIM calibration error detection would have been
feasible if it had been undertaken concurrently. The outliers in the static weight fiducial
data have interesting seasonal behavior. The extreme outliers (>10%) are only from
WIM sites. How tight the separation error is set and what false-positive performance
can be achieved at each of the levels is a topic for future investigation. Models of site
behavior such as periodic or linear may be useful providing the underlying cause of the
variation can be identified or the behavior well established. Further characterization of
the outliers may give more insights.
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APPENDIX A

Here we describe a method to minimize the fractional standard deviation of a set of
data. This is appropriate to a system that an error in calibration factor whose value is
independent of the date range. In 4-vector notation, each fiducial weight, fj, is a linear
combination of the four quartile values, q;j, associated with pool j, where the linear
combination 4-vector w is to be determined. This vector may be normalized in any
number of ways: we require the components to add to unity; the magnitude is irrelevant;
only the ratios of components are of interest. Thus,

fi =w.q;.

The minimum ratio of the standard deviation to the mean is achieved by minimizing the

ratio, S, of the sums-of-squares of the fiducials divided by the square of the mean
fiducial.

S=sf?/(zZf ).

This amounts to examining all possible choices for w and choosing that choice with
least S. Without loss of generalization, we find the minimum of X f; ? subject to the unity
constraint £ f;=1. The solution of this problem is that linear-combination vector, w,
which when taken with the dot product of the covariance matrix of the quartiles gives
the mean of the quartiles. The linear combination can be solved for by robust linear

algebra and can be normalized by multiplying each component by a constant without
effecting S.
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Fig. 1 Coefficient of variation in percent plotted against number of groups of 100
trucks: Front -axle weight in first GVW quartile.
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Fig. 2 Coefficient of variation in percent plotted against number of groups of 100
trucks: Best linear combination of front-axle-weight quartiles.
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Fig. 3 Number of sample sets versus 1% bins of coefficient of variation:
Front-axle weight in first GVW quartile.
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Fig. 4 Number of sample sets versus 1% bins of coefficient of variation:
Best linear combination of front-axle weights.
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Fig. 8 Front axle WIM data on Florida road 004 (north direction) 1976-1985
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