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ABSTRACT

This paper starts by overviewing results dealing with the ap-
proximation capabilities of neural networks, as well as
bounds on the size of threshold gate circuits. Based on a con-
structive solution for Kolmogorov’s superpositions we will
show that implementing Boolean functions can be done using
neurons having an identity transfer function. Because in this
case the size of the network is minimised, it follows that size-
optimal solutions for implementing Boolean functions can be
obtained using analog circuitry. Conclusions and several
comiments on the required precision are ending the paper.

Keywords: neural networks, Kolmogorov’s superpositions,
threshold gate circuits, analog circuits, size, precision.

1 INTRODUCTION

In this paper a network is an acyclic graph having several
input nodes, and some (at least one) output nodes. If a sy-
naptic weight is associated with each edge, and each node
computes the weighted sum of its inputs to which a nonlinear
activation function is then applied: f(x)=f(x;, ..., xy) =
=0 (Y2, w,x;+8), the network is a neural network (NN),
with w; € IR the synaptic weights, 8 € IR known as the thresh-
old, A being the fan-in, and G a non-linear activation func-
tion. Because the underlying graph is acyclic, the network
does not have feedback, and can be layered. That is why such
a network is also known as a multilayer feedforward neural
network, and is commonly characterised by: its depth (i.e.,
number of layers), and its size (i.e., number of neurons).
The paper starts by overviewing several of the results deal-
ing with the approximation capabilities of NNs. They are fol-
lowed by details on known upper and lower bounds on the
size of threshold gate circuits (TGCs). They show that TGCs
require exponential size if arbitrary Boolean functions (BFs)
are to be implemented. Based on a constructive solution for
Kolmogorov’s superpositions we will prove that in order to
obtain linear size NNs (i.e., size-optimal) for implementing
any BF, the nonlinear activation function of the neurons has
to be the identity function. Because both Boolean and TGCs
require exponential size, it follows that size-optimal imple-
mentations of discrete NNs (i.e., implementing BFs) can be
obtained only in analog circuitry. Conclusions, and several
comments on the required precision are ending the paper.

* On leave of absence from the “Politehnica” University of Bucharest,
Computer Science Department, Spl. Independentei 313, RO-77206
Bucharest, Roménia.

2 PREVIOUS RESULTS

NNs have been experimentally shown to be quite effective
in many applications (see Applications of Neural Networks
in [2], together with Part F: Applications of Neural Compu-
tation and Part G: Neural Networks in Practice: Case Stud-
ies from [20]). This success has led researchers to undertake
a rigorous analysis of their mathematical properties and has
generated two directions of research for finding: (i) exist-
ence/constructive proofs for the ‘universal approximation
problem’; (ii) tight bounds on the size needed by the approxi-
mation problem. The paper will focus on both aspects, for
the case when the functions to be implemented are BFs.

2.1 Neural Networks as Universal Approximators

The first line of research has concentrated on the approxima-
tion capabilities of NNs [14, 22, 34, 35]. It was started in
1987 by Hecht-Nielsen [25] and Lippmann [46] who, to-
gether with LeCun [44], were probably the first to recognise
that the specific format in [65, 66] of the form:

FGn ) = 32 {qu[zp:l ap\y(xp+qa):|}

of Kolmogorov’s superpositions f (x;, ..., x,) = 2.2 ®, (¥,)
[40] can be interpreted as a NN with one hidden layer. This
gave an existence proof of the approximation properties of
NNs. The first nonconstructive proof was given in 1988 by
Cybenko [16, 17] using a continuous activation function, and
was independently presented by Irie and Miyake [33]. Thus,
the fact that NNs are computationally universal—with more
or less restrictive conditions—when modifiable connections
are allowed, was established. Different enhancements have
been later presented (for details see [62], and Chp. I in [9]):
® Funahashi [21] proved the same result but in a more con-
structive way and also refined the use of Kolmogorov’s
theorem in [25], giving an approximation result for two-
hidden-layer NNs;
® Hornik et al. [30] showed that the continuity require-
ment for the output function can partly be removed;
® Hornik et al. [31] also proved that a NN can approximate
simultaneously a function and its derivative;
® Park and Sandberg [56, 57] used radial basis functions
in the hidden layer, and gave an almost constructive
proof;
® Hornik [28] showed that the continuity requirement can
be completely removed, the activation function having
to be ‘bounded and nonconstant’;




® Geva and Sitte [23] proved that four-layered NNs with
sigmoid activation function are universal approximators;

® Kiirkovd {42, 43] has demonstrated the existence of ap-
proximate superposition representations within the con-
straints of NN, i.e.  and @, can be approximated with
functions of the form Y, a, ¢ (b, x+c,), where O is an
arbitrary activation sigmoidal function;

® Mhaskar and Micchelli [48, 49] approach was based on
the Fourier series of the function, by truncating the infi-
nite sum to a finite set, and rewriting e ™ in terms of the
activation function (which now has to be periodic);

® Koiran [39] presented a new proof on the line of Funa-
hashi’s proof [21], but more general in that it allows the
use of units with ‘piecewise continuous’ activation func-
tions; these include the particular but important case of
threshold gates (TGs);

@ Leshno et al. [45] relaxed the condition for the activation
function to ‘locally bounded piecewise continuous’ (i.e.,
if and only if the activation function is not a polynomial),
thus embedding as special cases almost all the activation
functions that have been reported in the literature;

® Hornik [29] added to these results by proving that: (7) if
the activation function is locally Riemann integrable and
nonpolynomial, the weights and the thresholds can be
constrained to arbitrarily small sets; and (i7) if the acti-
vation function is locally analytic, a single universal
threshold will do; _

® Funahashi and Nakamura [22] showed that the universal
approximation theorem also holds for trajectories of pat-
terns;

® Sprecher [67] has demonstrated that there are umversal
hidden layers that are independent of the number of in-
put variables n;

® Barron [4] described spaces of functions that can be ap-
proximated by the relaxed algorithm of Jones [36] using
functions computed by single-hidden-layer networks of
perceptrons;

e Attali and Paggs [3] provide an elementary proof based
on the Taylor expansion and the Vandermonde determi-
nant, yielding bounds for the design of the hidden layer
and convergence results for the derivatives.

All these results—with the partial exception of [4, 39, 42,
56, 57]—were obtained “provided that sufficiently many hid-
den units are available” (i.e., with no claims on the size mini-
mality). More constructive solutions have been obtained in
very small depth later {37, 53, 54}, but their size still grows
fast with respect to the number of dimensions and/or exam-
ples, or with the required precision.

Recently, an explicit numerical algorithm for superposi-
tions has been detailed [68—70].

2.2 Threshold Gate Circuits

The other line of research was to find the smallest size NN
which can realise an arbitrary function given a set of m vec-
tors from IR”. Many results have been obtained for TGs [50].
The first lower bound of size 22 2"/ n) 12 51 the sizeof a

TGC for “almost all” n-ary BFs (f: IB”— IB) was given in

[52]. Later [47] a very ufght upper bound was groven in
depth=4: size <2 (2"7n) 2 x{1+Q[2Yn) ! A si-
milar existence exponential lower bound of Q (2 n/ ) for ar-
bitrary BFs can be found in [63], which also gives bounds
for many particular but important BFs (see also [61]).

For classification problems (f: IR"— IBk), the first result
was that a NN of depth =3 and size =m ~ 1 could compute
an arbitrary dichotomy. The main improvements have been:

¢ Baum [5] presented a TGC with one hidden layer having
lm/ n] neurons capable of realising an arbitrary dichot-
omy on a set of m points in general position in IR"; if
the points are on the corners of the n-dimensional hyper-
cube (f: IB"— IB), m — 1 nodes are still needed;

*a slightly tighter bound of only 'l + (7 — 2) / nl neurons
in the hidden layer for realising an arbitrary dichotomy
on a set of m points which satisfy a more relaxed topo-
logical assumption was proven in {32]; the m — 1 nodes
condition was shown to be the least upper bound needed;

® Arai [1] showed that m — 1 hidden neurons are necessary
for arbitrary separability, but improved the bound for the
dichotomy problem to m /3 (without any condition on
the inputs);

® Beiu and De Pauw [10] have detailed existence lower
and upper bounds by estimating the entropy of the data-
set 2m / (nlogn) < size < 1.44m /n (see also [11, 13]).

Other existence lower bounds for the arbitrary dichotomy
problem can be found in [24, 58]:

¢ a depth-2 TGC requires at least m/ {n log(m / n)} TGs;

® a depth-3 TGC requires at least 2 (m / logm) ZTGs in
each of the two hidden layer (if m >n ©);

® an arbitrarily interconnected TGC w1thout feedback
needs (2m / logm) 172 1Gs (ifm>n )

One study [15] has tried to unify these two lines of research
by first presenting analytical solutions for the general NN
problem in one dimension (having infinite size), and then
giving practical solutions for the one-dimensional cases (i.e.,

~ including an upper bound on the size). Extensions to the n-

dimensional case using three- and four-layers solutions were
derived under piecewise constant approximations (having
constant or variable width partitions), and under piecewise
linear approximations (using ramps instead of sigmoids).

2.3 Boolean Functions

The particular case of BFs has been studied intensively [9,
55]. Many results have been obtained for particular BFs [61,
63], but a size-optimal result for BFs that have exactly m
groups of ones in their truth table JF, ,, (BFs which are de-
fined on the m groups) was detailed by Red’kin in 1970 [60].

Theorem from [60] The complexity realisation (i.e., hum-
ber of threshold elements) of IF, ,, is at most 2 (2m) 17243,

This result—as are all the previous mentioned ones—is
valid for unlimited fan-in TGs. Departing from these lines,
Horne and Hush [27] have detailed a solution for limited fan-
in TGCs.

Theorem from [27] Arbitrary Boolean functions of the
form f: {0, 1}" = {0, 1} can be implemented in a NN of
perceptrons restricted to fan-in 2 with a node complexity of
© {m2"/(n+logm)} and requiring O (n) layers.




3 SIZE-OPTIMAL IMPLEMENTATIONS

It is known that implementing arbitrary BFs using classical
Boolean gates (i.e., AND and OR gates) requires exponential
size circuits. As has been seen from all the previous results,
the known bounds for size are also exponential if TGCs are
used for solving arbitrary BFs [6]. It is true that these bounds
reveal exponential gaps (thus encouraging research efforts to
reduce them), and also suggest that TGCs with more layers
(depth # small constant [8, 12]) might have a smaller size.

A different approach is to use Kolmogorov’s superposi-
tions, which shows that there are NNs having only 2n + 1
neurons which can approximate any function. Such a solution
would clearly be size-optimal. We start from [68-70], where
a constructive solution for the general case was detailed.

Theorem from [68] Define the function y: &— 9 such
that for each integer k€ N:

n 7
w(z,:,w")= a2yt
where Z: i—(y-2){) and

=@y(1+X; 1[l]>< X [i,_])
forr=1,2,...,k

Here y22n+2 is a base, §=[0, 1] is the unit interval, 2
is the set of terminating rational numbers d, =Y, *, iy’
defined on ke N digits (0 <i, <y-1). Also, {i,»=1{i,] =0,
while for r 22: ({,y=0wheni,=0, 1, ...,y—2,{i,) = 1 when
i,=y-1,[}=0wheni,=0,1,...,y—3, while [,] =1 when
i,=vy-2,y-1.

If we limit the functions to be ‘approximated’ to BFs, one
digit is enough (k = 1), which gives y (0.;;) = 0.7,, which is
the identity function ¥ (x) =x. Such a solution builds quite
simple analog neurons. They have fan-in A<2n+1, for
which the known weight bounds (holdmg for any fan-in
A=4)are [51, 55, 59, 64]:

2(A—l)/2 (A+1)(A+1)/2/2A,
Thus, a precision of between A, and A logA bits per weight
would be expected. Unfortunately, the constructive solution
for Kolmogorov’s superpositions requires a double exponen-
tial precision for y (1), and for the weights:

< weight <

= _p-pi=l
= z ’Y -t .
r=1
For BFs precision is reduced to (2n+2) ", or 2nlogn bits
per weight. Analog implementations are limited to just sev-
eral bits of precision [41], this being one of the reasons for
investigations on precision [18, 26,71, 72] and on algo-
rithms relying on limited integer weights [7, 19, 38].

Due to the limitation on precision an optimal solution for
implementing BFs should decompose the given BF in sim-
pler BFs which can be efficiently implemented based on Kol-
mogorov’s superpositions (i.e., we have to reduce » to small
values). The partial results from this first layer of analog
building blocks can be combined using again Kolmogorov’s
superposmons The final analog implementation w1ll re-
quires more than three layers.

4 CONCLUSIONS

Arbitrary BFs can be implemented using:
® classical Boolean gates, but require exponential size;
® TGs, but (again) in exponential size (still, there are ex-
ponential gaps between classical Boolean solutions and
TG ones);
¢ analog building blocks in linear size (having linear fan-
in and polynomial precision weights and thresholds); the
nonlinear activation function is the identity function.
The main conclusion is that size-optimal hardware imple-
mentations of BFs can be obtained only in analog circuitry.
The high precision required by the solution based on Kolmo-
gorov’s superpositions can be tackled by decomposing a
BFs into simpler BFs.
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